Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891311

RESUMO

Roots play a fundamental role in forest ecosystems, but obtaining samples from deep layers remains a challenging process due to the methodological and financial efforts required. In our quest to understand the dynamics of Eucalyptus roots, we raise three fundamental questions. First, we inquire about the average extent of the roots of two contrasting Eucalyptus genotypes. Next, we explore the factors that directly influence the growth and depth of these roots, addressing elements such as soil type, climate, and water availability. Lastly, we investigate how the variation in Eucalyptus species may impact root growth patterns, biomass, and carbon stock. In this study, we observed that the maximum root depth increased by an average of 20% when genotypes were grown on sites with higher water availability (wet site). E. urophylla stands had a higher biomass and carbon stock (5.7 Mg C ha-1) of fine roots when cultivated on dry sites (annual rainfall~727 mm) than the wet sites (annual rainfall~1590 mm). In E. grandis × E. camaldulensis stands, no significant differences were observed in the stock of fine root biomass (3.2 Mg C ha-1) between the studied environments. Our results demonstrated that genotypes with greater drought tolerance (E. grandis × E. camaldulensis) tend to maintain higher stocks of fine root biomass (3.2-6.3 Mg ha-1) compared to those classified as plastic (E. urophylla), regardless of the edaphoclimatic conditions of the cultivation site. Finally, our research helps understand how Eucalyptus trees adapt to their environment, aiding sustainable forest management and climate change mitigation. We also provide a practical tool to estimate underground biomass, assisting forest managers and policymakers in ensuring long-term forest sustainability.

2.
Sci Total Environ ; 934: 172955, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38719045

RESUMO

Biomass is an important indicator of the ability of tropical forests to deliver ecosystem services, but little attention has been given to belowground biomass and its drivers in human-modified landscapes. Here, we investigated the belowground biomass and nutrient concentration/stocks (C, P, and N) across regenerating forest stands with varying ages (10-76 years old) and old-growth forests in the Caatinga dry forest (northeastern Brazil) in the context of slash-and-burn agriculture. Belowground biomass ranged from 1.89 ± 0.33 Mg ha-1 to 17.53 ± 2.28 Mg ha-1 (mean ± SE) across regenerating forest stands and averaged 8.33 ± 1.59 Mg ha-1, with no differences compared to old-growth stands. However, regenerating stands exhibited a higher root/shoot ratio with biomass concentrated in the superficial soil layer and in large-sized roots, regardless of the successional stage. Root nutrient concentration and stocks were highly variable across forest stands with fine roots supporting a higher concentration of N and P, while regenerating stands supported lower nutrient stocks as compared to old-growth forests. Finally, precipitation and chronic disturbance emerged as the most important drivers of belowground biomass and nutrient concentrations/stocks, while aboveground biomass played a negligible role. Our results indicate that, in human-modified landscapes of tropical dry forests, belowground biomass and nutrients play important roles in ecosystem functions in regenerated forests after slash-and-burn agriculture. Forest resilience and provision of ecosystem services (e.g., nutrient cycling) appear to be very sensitive to increased aridity and exploitation of forest resources.


Assuntos
Agricultura , Biomassa , Florestas , Raízes de Plantas , Clima Tropical , Agricultura/métodos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brasil , Humanos , Conservação dos Recursos Naturais/métodos , Nutrientes
3.
Environ Monit Assess ; 195(4): 492, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943528

RESUMO

Deforestation accounts for the majority of greenhouse gas emissions in developing countries. In Brazil, deforestation represents ~ 70% of the nation's greenhouse gas emissions. Among the main deforested vegetation, Cerrado (Brazilian savanna) occupies a prominent position as it is the second biggest biome in Brazil. Despite its importance, there are still few estimates of above and belowground biomass of Cerrado vegetation encompassing its structural and spatial complexity. Also, Cerrado holds a specific biodiversity that is normally undervalued and which is being lost in the fires of agricultural fronts. In this context, this study aimed to verify the relationship of the existing flora biodiversity in a cerrado stricto sensu with its aboveground biomass and carbon stocks. The possibility of a relationship between fine root mass and soil organic carbon content was also verified. The study area presented a total of 67 species and 798 trees (average: 1596 trees ha-1). The mean total aboveground biomass and carbon stocks were 77.08 Mg ha-1 and 38.54 Mg ha-1 respectively. Soil organic carbon stock (0-30 cm) was 8.51 Mg ha-1 whereas fine roots were 1.637 Mg ha-1. Total aboveground biomass presented a highly significant asymptotic relationship with biodiversity demonstrating its importance in reaching high biomass accumulation. A significant relationship between soil organic carbon content and fine root biomass was found making easier belowground biomass estimates.


Assuntos
Florestas , Gases de Efeito Estufa , Biomassa , Brasil , Solo/química , Carbono/análise , Monitoramento Ambiental , Biodiversidade , Árvores
4.
Front Plant Sci ; 11: 581140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262777

RESUMO

Wheat roots are known to play an important role in the yield performance under water-limited (WL) conditions. Three consecutive year trials (2015, 2016, and 2017) were conducted in a glasshouse in 160 cm length tubes on a set of spring wheat (Triticum aestivum L.) genotypes under contrasting water regimes (1) to assess genotypic variability in root weight density (RWD) distribution in the soil profile, biomass partitioning, and total water used; and (2) to determine the oxygen and hydrogen isotopic signatures of plant and soil water in order to evaluate the contribution of shallow and deep soil water to plant water uptake and the evaporative enrichment of these isotopes in the leaf as a surrogate for plant transpiration. In the 2015 trial under well-watered (WW) conditions, the aerial biomass (AB) was not significantly different among 15 wheat genotypes, while the total root biomass and the RWD distribution in the soil profile were significantly different. In the 2016 and 2017 trials, a subset of five genotypes from the 2015 trial was grown under WW and WL regimes. The water deficit significantly reduced AB only in 2016. The water regimes did not significantly affect the root biomass and root biomass distribution in the soil depths for both the 2016 and 2017 trials. The study results highlighted that under a WL regime, the production of thinner roots with low biomass is more beneficial for increasing the water uptake than the production of large thick roots. The models applied to estimate the relative contribution of the plant's primary water sources (shallow or deep soil water) showed large interindividual variability in soil, and plant water isotopic composition resulted in large uncertainties in the model estimates. On the other side, the combined information of root architecture and the leaf stable isotope signatures could explain plant water status.

5.
Sci Total Environ ; 743: 140771, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32673921

RESUMO

Overseeding legumes in natural grasslands coupled with phosphorous fertilization are management practices oriented to increase forage production and quality, and to restore nutrient losses generated by livestock. Several studies show increases in forage due to this practice, but less is known about impacts on soil fertility and carbon sequestration. The objective of this study was to evaluate under real farm conditions changes in root C and N stocks and soil organic carbon (SOC) and nitrogen (SON) stocks in two different soil pools, the particulate organic matter (POM) and the mineral associated organic matter (MAOM), after the introduction in natural grasslands of a legume species, Lotus subbiflorus cv. "El Rincón", accompanied with phosphorous fertilization. We also evaluated changes in the natural abundance of 15N and 13C in soils and roots to understand changes in N fixation and species composition. We selected 12 adjacent paddocks of natural grasslands (NG) and natural grasslands overseeded with legumes and fertilized with phosphorous (NGLP) located in commercial farms in Uruguay. We found that overseeding legumes increased root C and N stocks and SOC and SON stocks in some farms but decreased them in others. On average, no significant differences arose between NGLP and NG paddocks in total stocks of 0-30 cm depth. However, higher C stocks were observed in POM of NGLP paddocks in 0-5 cm layer and lower contents in 5-10 cm layer indicating a change in the vertical distribution of C in POM. Changes in δ15N suggest that atmospheric N is being fixed by legumes in NGLP paddocks, but not translated into more N or C stocks in the MAOM fraction, probably due to high N losses promoted by cattle grazing. Our work suggests that carbon sequestration can be achieved after legumes introduction in grazed natural grasslands but will depend on grazing management practices.


Assuntos
Fabaceae , Solo , Animais , Biomassa , Carbono/análise , Bovinos , Fazendas , Pradaria , Nitrogênio/análise , Uruguai
6.
Rev. biol. trop ; Rev. biol. trop;68(2)jun. 2020.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1507677

RESUMO

Introducción: Debido a su extensión actual, la biomasa radicular de los pastizales tropicales es de vital importancia para el almacenamiento del carbono terrestre, pero su estimación ha sido principalmente indirecta y con un rango muy amplio de valores. Objetivo: Documentar a nivel nacional y mundial, y comparar, las existencias de carbono radicular extraídas en forma directa, de dos pastizales de origen y tipo de crecimiento distinto. Método: Se midió la biomasa y carbono total de dos pastizales con más de 40 años de uso, uno nativo de América y de crecimiento estolonífero (Paspalum notatum) y otro introducido de África y de crecimiento en macollos (Urochloa decumbens). El estudio se realizó entre agosto y octubre 2016. Se seleccionaron 3 parcelas de 1 600 m2 por pastizal, con 10 subcuadros (4 m2 c/u) en cada parcela, para determinar composición florística, biomasa y C aéreo. La biomasa y C radicular se estimaron mediante extracción directa en tres trincheras (1.50 m x 0.50 m x 1.0 m) por parcela. El contenido de carbono orgánico se determinó con el método por ignición a una temperatura promedio de 550 °C durante 3 horas. Para el análisis estadístico se usó un ANOVA de dos factores, en el que un factor fueron dos tratamientos (tipo de pastizal) y el otro factor fue la parte morfológica del pasto (aéreo y radicular). Resultados: La composición florística de los dos tipos de pastizal fue diferente debido a su historia de manejo. En promedio se estimó 28.25 MgC ha-1 total para la localidad. El pastizal nativo y de crecimiento estolonífero P. notatum produce casi tres veces más biomasa (42.5 MgC ha-1) que el introducido y de crecimiento en macollos U. decumbens (14 MgC ha-1) debido al almacén radicular (38.5 vs. 11.46 MgC ha-1). El 74.5 % del carbono en P. notatum se localizó en la parte radicular y el 25.5 % en la parte aérea, mientras que en U. decumbens fueron 56.5 y 43.5 %, respectivamente. Conclusión: P. notatum acumuló más biomasa y carbono total y radicular que U. decumbens. La mejor adaptación del pasto nativo, así como la morfología de su sistema radicular, pueden explicar esta diferencia. El 96 % de la biomasa y del C radicular se encuentra en los primeros 0.50 m de profundidad. Debido a la contribución de su porción radicular, los pastizales tropicales pueden constituir importantes reservorios de carbono terrestre, considerando su extensión hoy en día.


Introduction: Due to its current coverage, the root biomass of tropical pastures is of vital importance for the terrestrial carbon storage, but its estimation has been mainly indirect and with a very wide range of values. Objective: To document at national and global level as well as compare, the root carbon stocks extracted directly from two grasslands of different growth type and origin. Methods: The biomass and root carbon stocks were directly extracted from two tropical pastures with more than 40 yr of age. The biomass and total carbon, one native with stoloniferous growth (Paspalum notatum) and one introduced with growth in tillers (Urochloa decumbens) were measured. The study was conducted between August and October 2016. Three plots of 1 600 m2 each were selected per pasture, with 10 sub-squares (4 m2 each) in each plot to determine the floristic composition, aboveground biomass and C. The biomass and root C were estimated by hand in three trenches (1.50 m x 0.50 m x 1.0 m) per plot. The organic carbon content was determined with the ignition method at an average temperature of 550 °C for 3 hours. For the statistical analysis, a two-factor ANOVA was used, where one factor was the treatments that were the type of pasture (2) and the other factor was the section of the grass (above and belowground). Results: The floristic composition of the two types of pasture was different due to its management history. On average, 28.25 Mg ha-1 of total C was estimated for the locality. The native pasture of stoloniferous growth P. notatum yields almost three-fold more biomass (42.5 MgC ha-1) than the introduced with growth in tillers U. decumbens (14 MgC ha-1) due to the radicular storage (38.5 vs. 11.46 MgC ha-1). Seventy-four point five percent of the carbon in P. notatum was located in the radicular part and 25.5 % above-ground, while in U. decumbens 56.5 and 43.5 %, respectively. Conclusions: P. notatum accumulated more total and radicular biomass and carbon than U. decumbens. The best adaptation of the native grass as well as the morphology of its root system may explain this difference. Ninety six percent of the biomass and root C is found in the first 0.50 m depth. Due to the contribution of its radicular portion, tropical pastures can constitute important reservoirs of terrestrial carbon considering its extension nowadays.


Assuntos
Carbono , Pastagens , Biomassa , Poaceae , Paspalum , Criação de Animais Domésticos , México
7.
Theor Exp Plant Physiol ; 29: 143-154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-33552846

RESUMO

Drought stress limits growth and yield of crops, particularly under smallholder production systems with minimal use of inputs and edaphic limitations such as nitrogen (N) deficiency. The development of genotypes adapted to these conditions through genetic improvement is an important strategy to address this limitation. The identification of morpho-physiological traits associated with drought resistance contributes to increasing the efficiency of breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool was evaluated. A greenhouse study using soil cylinders was conducted to determine root vigor traits (total root length and fine root production) under drought stress. Two field trials were conducted to determinate grain yield, symbiotic nitrogen fixation (SNF) ability and other shoot traits under drought stress. Field data on grain yield and other shoot traits measured under drought were related with the greenhouse data on root traits under drought conditions to test the relationships between shoot traits and root traits. Response of root vigor to drought stress appeared to be related with ideotypes of water use (water savers and water spenders). The water spender ideotypes presented deeper root system, while the water saver ideotypes showed a relatively shallower root system. Increase in SNF ability under drought stress was associated with greater values of mean root diameter while greater acquisition of N from soil was associated with finer root system. We identified seven common bean lines (SEA 15, NCB 280, SCR 16, SMC 141, BFS 29, BFS 67 and SER 119) that showed greater root vigor under drought stress in the greenhouse and higher values of grain yield under drought stress in the field. These lines could serve as parents for improving drought resistance in common bean.

8.
MethodsX ; 3: 513-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630821

RESUMO

The present article describes a field auger sampling method for row-crop root measurements. In agroecosystems where crops are planted in a specific design (row crops), sampling procedures for root biomass quantification need to consider the spatial variability of the root system. This article explains in detail how to sample and calculate root biomass considering the sampling position in the field and the differential weight of the root biomass in the inter-row compared to the crop row when expressing data per area unit. This method is highly reproducible in the field and requires no expensive equipment and/or special skills. It proposes to use a narrow auger thus reducing field labor with less destructive sampling, and decreases laboratory time because samples are smaller. The small sample size also facilitates the washing and root separation with tweezers. This method is suitable for either winter- or summer crop roots. •Description of a direct field method for row-crop root measurements.•Description of data calculation for total root-biomass estimation per unit area.•The proposed method is simple, less labor- and less time consuming.

9.
New Phytol ; 205(2): 461-2, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25521068
10.
J Environ Manage ; 134: 47-55, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463848

RESUMO

The objective of this study was to analyze the effect of grazing disturbance on the amount and the spatial distribution (vertical and horizontal) of root biomass and soil organic carbon (SOC) in order to evaluate whether grazing alters the belowground storage of organic carbon (C) in arid rangelands of the Patagonian Monte. We selected three representative sites (3 ha each) with low, moderate and high grazing disturbance located far, mid-distance and near the watering point, respectively, in rangelands submitted to sheep grazing for more than 100 years. We assessed the canopy structure and identified the four most frequent plant patch types at each site. We selected four replications of each patch type and extracted a soil sample (0-30 cm depth) underneath the canopy and in the middle of the nearest inter-patch bare soil area in winter and summer. We assessed the root and soil dry mass and the respective organic C concentration in each sample and then we estimated the total belowground organic C storage at each site. Total plant and perennial grass cover were lower with high than low grazing disturbance while the reverse occurred with dwarf shrub cover. High grazing disturbance led to the increase in total root biomass in the whole soil profile of patch areas and in the upper soil of inter-patch areas. SOC was higher in patch than in inter-patch areas at all sites but at both areas was reduced with high grazing disturbance. This was probably the result of the low total plant cover and the low and recalcitrant contribution of above and below-ground plant litter to soils at sites with high grazing disturbance. Accordingly, these changes did not result in variations in the total belowground organic C storage. We concluded that high grazing disturbance did not affect the total belowground organic C storage but led to changes in the spatial patterning of this organic C storage (i.e shifting from soil to roots).


Assuntos
Sequestro de Carbono , Herbivoria , Animais , Argentina , Biomassa , Carbono/análise , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Ovinos
11.
Semina ciênc. agrar ; 34(5): 2415-2426, 2013.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1499291

RESUMO

O estudo objetivou avaliar as concentrações de carboidratos não estruturais (CNE), nitrogênio (N) total e avaliação do sistema radicular em pastagem de capim-Tanzânia adubada com uréia em diferentes doses nas estações de outono, primavera e verão. O experimento foi conduzido na Fazenda Experimental de Iguatemi, Maringá, PR, no período de março de 2007 a março de 2008. O delineamento experimental utilizado foi de blocos completos ao acaso, com parcelas subdivididas com quatro repetições. Foram usadas como parcelas, as doses de N-uréia (50, 100 e 150 kg ha-1 de N-uréia) e, como subparcelas, as estações do ano. As amostragens das raízes foram realizadas nas profundidades de 0-10, 10-20 e 20-40 cm. A biomassa radicular apresentou tendência de acúmulo de massa até 100 kg ha-1 de N em todas as estações avaliadas. Independente da dose de N utilizada cerca de 80% do sistema radicular do capim-Tanzânia estava concentrado na camada de 0 - 10 cm de profundidade. A adubação nitrogenada acima de 100 kg ha-1 pode estimular o crescimento acelerado da planta forrageira, reduzindo sua capacidade de armazenamento de CNE nas raízes. No entanto, favorecem o armazenamento de CNE e N total na base do colmo. As concentrações de CNE e N total foram mais elevadas no período do outono, demonstrando que sua utilização é maior na primavera devido às condições climáticas favoráveis ao crescimento da planta


The goal of this study was to evaluate the concentrations of non-structural carbohydrate (NSC) and of total nitrogen (N), as well as, to evaluate the root system in Tanzania-grass pastures fertilized with doses of urea in fall, spring and summer. The experiment was conducted at the Experimental Farm of Iguatemi, Maringá, Paraná, Brazil, from March 2007 to March 2008. The experimental design was complete random blocks with subplots and four repetitions. The plots showed doses of N (50, 100 e 150 kg ha-1 of N) plus the control (no N fertilization), and the subplots the season of the year. Root samples were taken at depths of 0-10, 10-20 and 20-40 cm. Root biomass showed a trend for mass accumulation up to a dosage of 100 kg ha-1 for all seasons evaluated. Also, about 80% of the root system of Tanzaniagrass plants was found on the 0-10 cm layer for all dosages of N. Nitrogen fertilizer above 100 kg ha-1 may foster fast forage plant growth reducing its NSC root storage capacity although favoring NSC and total N storage at stem base. NSC and total N concentrations were highest in fall, demonstrating that its usage is greater in spring due to the weather conditions being favorable to plant growth. In the regrowth, the largest reserve of total N was at the 0-10 cm root layer and the largest NSC reserve is at stem base.

12.
Semina Ci. agr. ; 34(5): 2415-2426, 2013.
Artigo em Inglês | VETINDEX | ID: vti-470904

RESUMO

O estudo objetivou avaliar as concentrações de carboidratos não estruturais (CNE), nitrogênio (N) total e avaliação do sistema radicular em pastagem de capim-Tanzânia adubada com uréia em diferentes doses nas estações de outono, primavera e verão. O experimento foi conduzido na Fazenda Experimental de Iguatemi, Maringá, PR, no período de março de 2007 a março de 2008. O delineamento experimental utilizado foi de blocos completos ao acaso, com parcelas subdivididas com quatro repetições. Foram usadas como parcelas, as doses de N-uréia (50, 100 e 150 kg ha-1 de N-uréia) e, como subparcelas, as estações do ano. As amostragens das raízes foram realizadas nas profundidades de 0-10, 10-20 e 20-40 cm. A biomassa radicular apresentou tendência de acúmulo de massa até 100 kg ha-1 de N em todas as estações avaliadas. Independente da dose de N utilizada cerca de 80% do sistema radicular do capim-Tanzânia estava concentrado na camada de 0 - 10 cm de profundidade. A adubação nitrogenada acima de 100 kg ha-1 pode estimular o crescimento acelerado da planta forrageira, reduzindo sua capacidade de armazenamento de CNE nas raízes. No entanto, favorecem o armazenamento de CNE e N total na base do colmo. As concentrações de CNE e N total foram mais elevadas no período do outono, demonstrando que sua utilização é maior na primavera devido às condições climáticas favoráveis ao crescimento da planta


The goal of this study was to evaluate the concentrations of non-structural carbohydrate (NSC) and of total nitrogen (N), as well as, to evaluate the root system in Tanzania-grass pastures fertilized with doses of urea in fall, spring and summer. The experiment was conducted at the Experimental Farm of Iguatemi, Maringá, Paraná, Brazil, from March 2007 to March 2008. The experimental design was complete random blocks with subplots and four repetitions. The plots showed doses of N (50, 100 e 150 kg ha-1 of N) plus the control (no N fertilization), and the subplots the season of the year. Root samples were taken at depths of 0-10, 10-20 and 20-40 cm. Root biomass showed a trend for mass accumulation up to a dosage of 100 kg ha-1 for all seasons evaluated. Also, about 80% of the root system of Tanzaniagrass plants was found on the 0-10 cm layer for all dosages of N. Nitrogen fertilizer above 100 kg ha-1 may foster fast forage plant growth reducing its NSC root storage capacity although favoring NSC and total N storage at stem base. NSC and total N concentrations were highest in fall, demonstrating that its usage is greater in spring due to the weather conditions being favorable to plant growth. In the regrowth, the largest reserve of total N was at the 0-10 cm root layer and the largest NSC reserve is at stem base.

13.
Acta amaz ; Acta amaz;42(1): 95-104, mar. 2012. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: lil-607980

RESUMO

The objective of this work was to assess the fine-root (≤ 2 mm diameter) production dynamics of two forest regrowths at different ages. Fine-root production was monitored by the ingrowth core method in one 18-year-old site (2 ha) and one 10-year-old site (0.5 ha), both localized in the Apeú region, Northern Pará State, Brazil. The sites were abandoned after successive shifting cultivation, beginning in 1940. Monthly production of live fine-root was similar between sites and was influenced by rainfall seasonality, with higher production during the dry season than the wet season for mass and length. However, mortality in terms of mass was higher in the 10-year-old site than in the 18-year-old site. The seasonality influenced mortality only in the 18-year old site following the pattern observed for live fine-root. The influence seasonal on mortality in terms of length was different between sites, with higher mortality during the wet season in the 10-year-old site and higher mortality during the dry season in the 18-year-old site. Specific root length was higher during the wet season and at the 10-year-old site. Fine-root production was not influenced by the chronosequence of the sites studied, probably fine-root production may have already stabilized in the sites or it depended more on climate and soil conditions. The production of fine-roots mass and length were indicators that generally showed the same pattern.


O objetivo deste trabalho foi avaliar a dinâmica de produção de raízes finas (diâmetro ≤ 2 mm) em duas áreas de floresta secundária com diferentes idades. A produção de raízes finas foi monitorada utilizando a técnica de ingrowth core em um sítio com 18 anos de idade (2 ha) e um outro sítio com 10 anos de idade (0,5 ha), localizados na região de Apeú, nordeste do Estado do Pará. Os sítios foram abandonados depois de sucessivos ciclos agrícolas, iniciados em 1940. A produção mensal de raízes vivas foi semelhante entre os sítios e influenciada pela sazonalidade pluviométrica, com maior produção durante a estação seca para massa e comprimento. No entanto, a mortalidade, em termos de massa, foi maior no sítio de 10 anos. A sazonalidade influenciou a mortalidade somente no sítio de 18 anos, seguindo o padrão observado para as raízes vivas. A influência sazonal sobre a mortalidade em termos de comprimento foi diferente entre os sítios, com maior mortalidade durante a estação chuvosa no sítio de 10 anos e maior mortalidade durante a estação seca no sítio de 18 anos. O comprimento radicular específico foi maior durante a estação chuvosa e influenciado pelos sítios, sendo maior no sítio de 10 anos. A produção de raízes finas não foi influenciada pela cronossequência dos sítios estudados, provavelmente porque a produção de raízes finas pode ter estabilizado nos sítios ou depende mais das condições de clima e solo. A produção, em termos de massa e comprimento, foram indicadores que geralmente mostraram o mesmo padrão.


Assuntos
Estações do Ano , Biomassa , Secas , Floresta Úmida
14.
Acta amaz. ; 42(1)2012.
Artigo em Inglês | VETINDEX | ID: vti-450724

RESUMO

The objective of this work was to assess the fine-root ( 2 mm diameter) production dynamics of two forest regrowths at different ages. Fine-root production was monitored by the ingrowth core method in one 18-year-old site (2 ha) and one 10-year-old site (0.5 ha), both localized in the Apeú region, Northern Pará State, Brazil. The sites were abandoned after successive shifting cultivation, beginning in 1940. Monthly production of live fine-root was similar between sites and was influenced by rainfall seasonality, with higher production during the dry season than the wet season for mass and length. However, mortality in terms of mass was higher in the 10-year-old site than in the 18-year-old site. The seasonality influenced mortality only in the 18-year old site following the pattern observed for live fine-root. The influence seasonal on mortality in terms of length was different between sites, with higher mortality during the wet season in the 10-year-old site and higher mortality during the dry season in the 18-year-old site. Specific root length was higher during the wet season and at the 10-year-old site. Fine-root production was not influenced by the chronosequence of the sites studied, probably fine-root production may have already stabilized in the sites or it depended more on climate and soil conditions. The production of fine-roots mass and length were indicators that generally showed the same pattern.


O objetivo deste trabalho foi avaliar a dinâmica de produção de raízes finas (diâmetro 2 mm) em duas áreas de floresta secundária com diferentes idades. A produção de raízes finas foi monitorada utilizando a técnica de ingrowth core em um sítio com 18 anos de idade (2 ha) e um outro sítio com 10 anos de idade (0,5 ha), localizados na região de Apeú, nordeste do Estado do Pará. Os sítios foram abandonados depois de sucessivos ciclos agrícolas, iniciados em 1940. A produção mensal de raízes vivas foi semelhante entre os sítios e influenciada pela sazonalidade pluviométrica, com maior produção durante a estação seca para massa e comprimento. No entanto, a mortalidade, em termos de massa, foi maior no sítio de 10 anos. A sazonalidade influenciou a mortalidade somente no sítio de 18 anos, seguindo o padrão observado para as raízes vivas. A influência sazonal sobre a mortalidade em termos de comprimento foi diferente entre os sítios, com maior mortalidade durante a estação chuvosa no sítio de 10 anos e maior mortalidade durante a estação seca no sítio de 18 anos. O comprimento radicular específico foi maior durante a estação chuvosa e influenciado pelos sítios, sendo maior no sítio de 10 anos. A produção de raízes finas não foi influenciada pela cronossequência dos sítios estudados, provavelmente porque a produção de raízes finas pode ter estabilizado nos sítios ou depende mais das condições de clima e solo. A produção, em termos de massa e comprimento, foram indicadores que geralmente mostraram o mesmo padrão.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA