Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Assunto principal
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 127, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947683

RESUMO

BACKGROUND: 2n pollen play a strong competitive role in hybridization and breeding of multiploids in Rosa hybrida. The ploidy inheritable characteristic of 'Orange Fire' × 'Old Blush' were analyzed. RESULT: The results of the cytological observations indicated that 2n pollen developed from the defeated cytoplasmic division or nuclear division in the meiosis metaphase II of PMC (pollen mother cell) in 'Old Blush'. The natural generation rate of the 2n pollen in 'Old Blush' (2x) was about 1.39 in percentage of all male gametes, whereas the tetraploids in the F1 offspring possessed a high rate, i.e., 44.00%. The temporal and spatial characteristics of 'Old Blush' pollen germination on the stigma and growth in pistil of 'Orange Fire' and 'DEE' were observed, and the results suggested that the germination rate of 2n pollen on the stigma was not superior to that of 1n pollen, but that the proportion of 2n pollen increased to 30.90 and 37.20%, respectively, while it traversed the stigma and entered into style. The callose plug in the 2n pollen tube was significantly thinner than that of 1n pollen tube. And each trait involved in our experiment probably is very important for F1 morphological phenotypes. CONCLUSION: We conclude that 2n pollen are involved in hybridization and have a competitive advantage while it traversed the stigma and entered into style. The callose plug in the 2n pollen tube was may have strongly influenced the competitive process in R. hybrida.


Assuntos
Rosa/genética , Germinação/genética , Hibridização Genética , Meiose/genética , Melhoramento Vegetal , Pólen/genética , Pólen/fisiologia , Poliploidia , Rosa/fisiologia
2.
Ciênc. rural (Online) ; 48(8): e20161002, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1045181

RESUMO

ABSTRACT: Growth retardants, such as paclobutrazol, reduce plant height, and thus enable commercialization of larger ornamental plants in pots. The aim of this research was to evaluate the size, yield and flower quality of two rose cultivars as a function of various paclobutrazol applications to growing substrate. Treatments consisted of two cultivars (Yellow Terrazza® and Shiny Terrazza®) planted in plastic pots and five paclobutrazol doses (0, 0.5, 1.0, 1.5, and 2.0mg pot-1). The experiment was carried out in a greenhouse. Experimental design was randomized blocks with four replications. The following traits were evaluated: plant height; stem diameter, number of flowers and leaves of floral stem; length of flower bud; floral cycle, leaf area; flower diameter and floral longevity; chlorophyll content in leaves; and yield. Paclobutrazol improved the quality and esthetics of flowers of both cultivars. It also reduced leaf dry matter production, plant height, flower height and diameter and increased chlorophyll content and flower longevity. Paclobutrazol effectively reduced plant height, producing a harmonious relationship between the plant and the pot, without phytotoxicity. Therefore, we suggested applying 2.0mgpot-1 of paclobutrazol to the substrate of Yellow Terrazza® and Shiny Terrazza® rose cultivars.


RESUMO: A aplicação de retardantes de crescimento, como o paclobutrazol, reduz a altura das plantas e tem possibilitado a comercialização de algumas espécies ornamentais de maior porte em vasos. Objetivou-se com este estudo avaliar porte, produção e qualidade da flor de duas cultivares de roseira cultivadas em vaso em função da aplicação de doses de paclobutrazol no substrato. Os tratamentos foram dispostos em esquema fatorial 2x5, com duas cultivares de roseira (Yellow Terrazza® e Shiny Terrazza®) e cinco doses de paclobutrazol (0; 0,5; 1,0; 1,5 e 2,0 mg vaso-1). O experimento foi conduzido em vasos plásticos sob ambiente protegido, em delineamento de blocos ao acaso com quatro repetições. Foram avaliados a altura das plantas; diâmetro, número de flores e folhas da haste floral; comprimento do botão floral; ciclo, área foliar; diâmetro floral e longevidade floral; teor de clorofila nas folhas e produção. A aplicação de paclobutrazol no substrato proporcionou melhoria na qualidade floral e estética de ambas cultivares de roseira. Também reduziu a produção de matéria seca foliar, altura da planta e diâmetro floral e aumentou o teor de clorofila e a longevidade floral. O paclobutrazol foi eficiente em reduzir a altura, conferindo uma relação harmoniosa entre a planta e o vaso, sem causar sintomas de toxidez e alterações morfológicas. Sugere-se a aplicação no substrato de 2mg vaso-1 de paclobutrazol para as cultivares de roseira Yellow Terrazza® e Shiny Terrazza® produzidas em vasos.

3.
Front Plant Sci ; 8: 1724, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067031

RESUMO

Bud outgrowth is a key process in the elaboration of yield and visual quality in rose crops. Although light intensity is well known to affect bud outgrowth, little is known on the mechanisms involved in this regulation. The objective of this work was to test if the control of bud outgrowth pattern along the stem by photosynthetic photon flux density (PPFD) is mediated by sugars, cytokinins and/or abscisic acid in intact rose plants. Rooted cuttings of Rosa hybrida 'Radrazz' were grown in growth chambers under high PPFD (530 µmol m-2 s-1) until the floral bud visible stage. Plants were then either placed under low PPFD (90 µmol m-2 s-1) or maintained under high PPFD. Bud outgrowth inhibition by low PPFD was associated with lower cytokinin and sugar contents and a higher abscisic acid content in the stem. Interestingly, cytokinin supply to the stem restored bud outgrowth under low PPFD. On the other hand, abscisic acid supply inhibited outgrowth under high PPFD and antagonized bud outgrowth stimulation by cytokinins under low PPFD. In contrast, application of sugars did not restore bud outgrowth under low PPFD. These results suggest that PPFD regulation of bud outgrowth in rose involves a signaling pathway in which cytokinins and abscisic acid play antagonistic roles. Sugars can act as nutritional and signaling compounds and may be involved too, but do not appear as the main regulator of the response to PPFD.

4.
Front Plant Sci ; 4: 418, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167509

RESUMO

Rose bush architecture, among other factors, such as plant health, determines plant visual quality. The commercial product is the individual plant and interplant variability may be high within a crop. Thus, both mean plant architecture and interplant variability should be studied. Expansion is an important feature of architecture, but it has been little studied at the level of individual organs in rose bushes. We investigated the expansion kinetics of primary shoot organs, to develop a model reproducing the organ expansion of real crops from non-destructive input variables. We took interplant variability in expansion kinetics and the model's ability to simulate this variability into account. Changes in leaflet and internode dimensions over thermal time were recorded for primary shoot expansion, on 83 plants from three crops grown in different climatic conditions and densities. An empirical model was developed, to reproduce organ expansion kinetics for individual plants of a real crop of rose bush primary shoots. Leaflet or internode length was simulated as a logistic function of thermal time. The model was evaluated by cross-validation. We found that differences in leaflet or internode expansion kinetics between phytomer positions and between plants at a given phytomer position were due mostly to large differences in time of organ expansion and expansion rate, rather than differences in expansion duration. Thus, in the model, the parameters linked to expansion duration were predicted by values common to all plants, whereas variability in final size and organ expansion time was captured by input data. The model accurately simulated leaflet and internode expansion for individual plants (RMSEP = 7.3 and 10.2% of final length, respectively). Thus, this study defines the measurements required to simulate expansion and provides the first model simulating organ expansion in rosebush to capture interplant variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA