Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Access Microbiol ; 4(9): acmi000455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415544

RESUMO

Increasing proton concentration in the environment represents a potentially lethal stress for single-celled microorganisms. To survive in an acidifying environment, the foodborne pathogen Listeria monocytogenes quickly activates the alternative sigma factor B (σB), resulting in upregulation of the general stress response (GSR) regulon. Activation of σB is regulated by the stressosome, a multi-protein sensory complex involved in stress detection and signal transduction. In this study, we used L. monocytogenes strains harbouring two stressosome mutants to investigate the role of this complex in triggering expression of known amino acid-based resistance mechanisms in response to low pH. We found that expression of glutamate decarboxylase (gadD3) and arginine and agmatine deiminases (arcA and aguA1, respectively) were upregulated upon acid shock (pH 5 for 15 min) in a stressosome-dependent manner. In contrast, transcription of the arg operons (argGH and argCJBDF), which encode enzymes for the l-arginine biosynthesis pathway, were upregulated upon acid shock in a stressosome-independent manner. Finally, we found that transcription of argR, which encodes a transcriptional regulator of the arc and arg operons, was largely unaffected by acidic shock. Thus, our findings suggest that the stressosome plays a role in activating amino acid-based pH homeostatic mechanisms in L. monocytogenes . Additionally, we show that genes encoding the l-arginine biosynthesis pathway are highly upregulated under acidic conditions, suggesting that intracellular arginine can help withstand environmental acidification in this pathogen.

2.
Appl Environ Microbiol ; 87(12): e0039721, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811030

RESUMO

Listeria monocytogenes is a ubiquitous environmental bacterium and intracellular pathogen that responds to stress using predominantly the alternative sigma factor SigB. Stress is sensed by a multiprotein complex, the stressosome, extensively studied in bacteria grown in nutrient media. Following signal perception, the stressosome triggers a phosphorylation cascade that releases SigB from its anti-sigma factor. Whether the stressosome is activated during the intracellular infection is unknown. Here, we analyzed the subcellular distribution of stressosome proteins in L. monocytogenes located inside epithelial cells following their immunodetection in membrane and cytosolic fractions prepared from intracellular bacteria. Unlike bacteria in laboratory media, intracellular bacteria have a large proportion of the core stressosome protein RsbR1 associated with the membrane. However, another core protein, RsbS, is undetectable. Despite the absence of RsbS, a SigB-dependent reporter revealed that SigB activity increases gradually from early (1 h) to late (6 h) postinfection times. We also found that RsbR1 paralogues attenuate the intensity of the SigB response and that the miniprotein Prli42, reported to tether the stressosome to the membrane in response to oxidative stress, plays no role in associating RsbR1 to the membrane of intracellular bacteria. Altogether, these data indicate that, once inside host cells, the L. monocytogenes stressosome may adopt a unique configuration to sense stress and to activate SigB in the intracellular eukaryotic niche. IMPORTANCE The response to stress mediated by the alternative sigma factor SigB has been extensively characterized in Bacillus subtilis and Listeria monocytogenes. These bacteria sense stress using a supramacromolecular complex, the stressosome, which triggers a cascade that releases SigB from its anti-sigma factor. Despite the fact that many structural data on the complex are available and analyses have been performed in mutants lacking components of the stressosome or the signaling cascade, the integration of the stress signal and the dynamics of stressosome proteins following environmental changes remain poorly understood. Our study provides data at the protein level on essential stressosome components and SigB activity when L. monocytogenes, normally a saprophytic bacterium, adapts to an intracellular lifestyle. Our results support activation of the stressosome complex in intracellular bacteria. The apparent loss of the stressosome core protein RsbS in intracellular L. monocytogenes also challenges current models, favoring the idea of a unique stressosome architecture responding to intracellular host cues.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Listeria monocytogenes/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Linhagem Celular , Proliferação de Células , Células Eucarióticas , Humanos
3.
J Zhejiang Univ Sci B ; 20(8): 660-669, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31273963

RESUMO

Listeria monocytogenes is an important zoonotic foodborne pathogen that can tolerate a number of environmental stresses. RsbR, an upstream regulator of the sigma B (SigB) factor, is thought to sense environmental challenges and trigger the SigB pathway. In Bacillus subtilis, two phosphorylation sites in RsbR are involved in activating the SigB pathway and a feedback mechanism, respectively. In this study, the role of RsbR in L. monocytogenes under mild and severe stresses was investigated. Strains with genetic deletion (ΔrsbR), complementation (C-ΔrsbR), and phosphorylation site mutations in the rsbR (RsbR-T175A, RsbR-T209A, and RsbR-T175A-T209A) were constructed to evaluate the roles of these RsbR sequences in listerial growth and survival. SigB was examined at the transcriptional and translational levels. Deletion of rsbR reduced listerial growxth and survival in response to acidic stress. Substitution of the phosphorylation residue RsbR-T175A disabled RsbR complementation, while RsbR-T209A significantly upregulated SigB expression and listerial survival. Our results provide clear evidence that two phosphorylation sites of RsbR are functional in L. monocytogenes under acidic conditions, similar to the situation in B. subtilis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Fator sigma/metabolismo , Alanina/genética , Bacillus subtilis , Sítios de Ligação , Deleção de Genes , Teste de Complementação Genética , Homeostase , Concentração de Íons de Hidrogênio , Mutação , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Estresse Fisiológico
4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010472

RESUMO

Listeria monocytogenes is an important zoonotic foodborne pathogen that can tolerate a number of environmental stresses. RsbR, an upstream regulator of the sigma B (SigB) factor, is thought to sense environmental challenges and trigger the SigB pathway. In Bacillus subtilis, two phosphorylation sites in RsbR are involved in activating the SigB pathway and a feedback mechanism, respectively. In this study, the role of RsbR in L. monocytogenes under mild and severe stresses was investigated. Strains with genetic deletion (ΔrsbR), complementation (C-ΔrsbR), and phosphorylation site mutations in the rsbR (RsbR-T175A, RsbR-T209A, and RsbR-T175A-T209A) were constructed to evaluate the roles of these RsbR sequences in listerial growth and survival. SigB was examined at the transcriptional and translational levels. Deletion of rsbR reduced listerial growxth and survival in response to acidic stress. Substitution of the phosphorylation residue RsbR-T175A disabled RsbR complementation, while RsbR-T209A significantly upregulated SigB expression and listerial survival. Our results provide clear evidence that two phosphorylation sites of RsbR are functional in L. monocytogenes under acidic conditions, similar to the situation in B. subtilis.


Assuntos
Alanina/genética , Bacillus subtilis , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Homeostase , Concentração de Íons de Hidrogênio , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Mutação , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Fator sigma/metabolismo , Estresse Fisiológico
5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-847022

RESUMO

Listeria monocytogenes is an important zoonotic foodborne pathogen that can tolerate a number of environmental stresses. RsbR, an upstream regulator of the sigma B (SigB) factor, is thought to sense environmental challenges and trigger the SigB pathway. In Bacillus subtilis, two phosphorylation sites in RsbR are involved in activating the SigB pathway and a feedback mechanism, respectively. In this study, the role of RsbR in L. monocytogenes under mild and severe stresses was investigated. Strains with genetic deletion (ΔrsbR), complementation (C-ΔrsbR), and phosphorylation site mutations in the rsbR (RsbR-T175A, RsbR-T209A, and RsbR-T175A-T209A) were constructed to evaluate the roles of these RsbR sequences in listerial growth and survival. SigB was examined at the transcriptional and translational levels. Deletion of rsbR reduced listerial growxth and survival in response to acidic stress. Substitution of the phosphorylation residue RsbR-T175A disabled RsbR complementation, while RsbR-T209A significantly upregulated SigB expression and listerial survival. Our results provide clear evidence that two phosphorylation sites of RsbR are functional in L. monocytogenes under acidic conditions, similar to the situation in B. subtilis.

6.
Subcell Biochem ; 83: 1-41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28271471

RESUMO

The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fosforilação , Fator sigma/agonistas , Fator sigma/metabolismo
7.
Stand Genomic Sci ; 6(1): 84-93, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675601

RESUMO

Saprospira grandis is a coastal marine bacterium that can capture and prey upon other marine bacteria using a mechanism known as 'ixotrophy'. Here, we present the complete genome sequence of Saprospira grandis str. Lewin isolated from La Jolla beach in San Diego, California. The complete genome sequence comprises a chromosome of 4.35 Mbp and a plasmid of 54.9 Kbp. Genome analysis revealed incomplete pathways for the biosynthesis of nine essential amino acids but presence of a large number of peptidases. The genome encodes multiple copies of sensor globin-coupled rsbR genes thought to be essential for stress response and the presence of such sensor globins in Bacteroidetes is unprecedented. A total of 429 spacer sequences within the three CRISPR repeat regions were identified in the genome and this number is the largest among all the Bacteroidetes sequenced to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...