Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.445
Filtrar
1.
Drug Chem Toxicol ; : 1-14, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948945

RESUMO

Gallic acid (GAL), rutin (RUT), and quercetin (QUE) are common antioxidant agents in fruits and vegetables with intriguing pharmacological effects. In the present study, we compared the therapeutic outcomes of GAL + QUE in comparison with GAL + RUT co-treatment in a busulfan (BUS) model of testicular injury in Wistar rats. BUS (4 mg kg-1 body weight (b.w) was injected intraperitoneally daily for 4 days. GAL + RUT or GAL + QUE (20 mg kg-1 b. w) was delivered by oral gavage for 52 days. Examination of the testes of BUS-treated rats both biochemically and under light microscopy revealed an increased level of lipid peroxidation, DNA fragmentation, glutathione-S-transferase, lactate dehydrogenase, gamma-glutamyl transpeptidase, alkaline phosphatase and acid phosphatase with a concomitant decrease in the level of antioxidants: glutathione, ascorbic acid, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, suggesting testicular injury. Tissue sections confirmed the testicular injury-induced by BUS, including diminished spermatogenesis score index, tubular diameter, gonado-somatic index, testis weight, epithelia thickness and higher percentage of aberrant tubules. GAL + QUE co-administration had better recovery effects than GAL + RUT on the biochemical markers and protected against BUS-induced testicular damage. GAL + QUE treatment regimen has better capacity to maintain the antioxidant capacity of the testes and is more potent at reducing BUS-induced oxidative damage compared to GAL + RUT.

2.
Sci Rep ; 14(1): 15314, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961104

RESUMO

This work examines the capacity of Naringin and Rutin to influence the DNA damage response (DDR) pathway by investigating their interactions with key DDR proteins, including PARP-1, ATM, ATR, CHK1, and WEE1. Through a combination of in silico molecular docking and in vitro evaluations, we investigated the cytotoxic and genotoxic effects of these compounds on MDA-MB-231 cells, comparing them to normal human fibroblast cells (2DD) and quiescent fibroblast cells (QFC). The research found that Naringin and Rutin had strong affinities for DDR pathway proteins, indicating their capacity to specifically regulate DDR pathways in cancer cells. Both compounds exhibited preferential cytotoxicity towards cancer cells while preserving the vitality of normal 2DD fibroblast cells, as demonstrated by cytotoxicity experiments conducted at a dose of 10 µM. The comet experiments performed particularly on QFC cells provide valuable information on the genotoxic impact of Naringin and Rutin, highlighting the targeted initiation of DNA damage in cancer cells. The need to use precise cell models to appropriately evaluate toxicity and genotoxicity is emphasized by this discrepancy. In addition, ADMET and drug-likeness investigations have emphasized the pharmacological potential of these compounds; however, they have also pointed out the necessity for optimization to improve their therapeutic profiles. The antioxidant capabilities of Naringin and Rutin were assessed using DPPH and free radical scavenging assays at a concentration of 10 µM. The results confirmed that both compounds have a role in reducing oxidative stress, hence enhancing their anticancer effects. Overall, Naringin and Rutin show potential as medicines for modulating the DDR in cancer treatment. They exhibit selective toxicity towards cancer cells while sparing normal cells and possess strong antioxidant properties. This analysis enhances our understanding of the therapeutic uses of natural chemicals in cancer treatment, supporting the need for more research on their mechanisms of action and clinical effectiveness.


Assuntos
Antioxidantes , Neoplasias da Mama , Dano ao DNA , Flavanonas , Simulação de Acoplamento Molecular , Estresse Oxidativo , Rutina , Humanos , Flavanonas/farmacologia , Rutina/farmacologia , Dano ao DNA/efeitos dos fármacos , Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Sobrevivência Celular/efeitos dos fármacos
3.
Yale J Biol Med ; 97(2): 153-164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947101

RESUMO

The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.


Assuntos
Doença de Alzheimer , Carbono , Glucose , Nitrogênio , Rutina , Rutina/farmacologia , Rutina/química , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Carbono/química , Carbono/farmacologia , Nitrogênio/química , Ratos , Glucose/metabolismo , Masculino , Pontos Quânticos/química , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Humanos
4.
Food Chem ; 458: 140226, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38943961

RESUMO

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.

5.
Front Vet Sci ; 11: 1426377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872794

RESUMO

Excessive fat deposition due to impaired fat metabolism in chickens is a major problem in the poultry industry. Nutritional interventions are effective solutions, but current options are limited. A safe phytochemical, rutin, has shown positive effects in animals, but its effect on lipid metabolism in poultry remains unknown. Hence, this study is to investigate the effects of rutin on egg quality, serum biochemistry, fat deposition, lipid peroxidation and hepatic lipid metabolism in post-peak laying hens. A total of 360 Taihang laying hens (49-week-old) were randomly divided into five groups and fed a basal diet (control group, 0%) and a basal diet supplemented with 300 (0.03%), 600 (0.06%), 900 (0.09%), and 1,200 (0.12%) mg rutin/kg feed, respectively. The results showed that eggshell strength was significantly (p < 0.05) higher in the dietary rutin groups, whereas yolk percentage (p < 0.05), total cholesterol (TC) (p < 0.01) and yolk fat ratio (p < 0.01) decreased linearly (p < 0.05) in the dietary rutin groups. Importantly, dietary rutin reduced serum triglyceride (TG) and TC levels, decreased abdominal lipid deposition and liver index (p < 0.05), and which concomitantly decreased hepatic lipid (TG, TC, and free fatty acid) accumulation (p < 0.05). An increase (p < 0.05) in total antioxidant capacity and superoxide dismutase activity and a decrease (p < 0.05) in malondialdehyde levels were also found. At the same time, the activities of hepatic lipase, acetyl-CoA carboxylase and malic enzyme in the liver were decreased (p < 0.05). Dietary rutin also increased (p < 0.05) the expression of fatty acid oxidation-related genes (carnitine palmitoyl transferase 1, peroxisome proliferator-activated receptor α, farnesoid X receptor). Additionally, it decreased fatty acid synthesis genes (sterol regulatory element binding protein-1c, acetyl-CoA carboxylase α, stearoyl-CoA desaturase 1) (p < 0.05). In conclusion, the addition of rutin (0.06-0.12%) to the diet improved the fat metabolism and increased liver antioxidant capacity in post-peak laying hens, and these positive changes improved egg quality to some extent.

6.
Biomed Pharmacother ; 177: 116961, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901206

RESUMO

Peptic ulcer is a sore on the stomach lining that results from the erosion of the gastrointestinal tract mucosa due to various influencing factors. Of these, Helicobacter pylori infection and non-steroidal anti-inflammatory drugs (NSAIDs) stand out as the most prominent causes. This condition poses a significant global health concern due to its widespread impact on individuals worldwide. While various treatment strategies have been employed, including proton pump inhibitors and histamine-2 receptor antagonists, these have notable side effects and limitations. Thus, there is a pressing need for new treatments to address this global health issue. Rutin, a natural flavonoid, exhibits a range of biological activities, including anti-inflammatory, anticancer, and antioxidant properties. This review explores the potential anti-ulcer effect of rutin in experimental models and how rutin can be a better alternative for treating peptic ulcers. We used published literature from different online databases such as PubMed, Google Scholar, and Scopus. This work highlights the abundance of rutin in various natural sources and its potential as a promising option for peptic ulcer treatment. Notably, the anti-inflammatory properties of rutin, which involve inhibiting inflammatory mediators and the COX-2 enzyme, are emphasized. While acknowledging the potential of rutin, it is important to underscore the necessity for further research to fully delineate its therapeutic potential and clinical applicability in managing peptic ulcers and ultimately improving patient outcomes. This review on the anti-ulcer potential of rutin opened a new door for further study in the field of alternative medicine in peptic ulcer management.

7.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892197

RESUMO

Viral pathogens pose a substantial threat to public health and necessitate the development of effective remediation and antiviral strategies. This short communication aimed to investigate the antiviral efficacy of disinfectants on the surface proteins of human pathogenic viruses. Using in silico modeling, the ligand-binding energies (LBEs) of selected disinfectants were predicted and combined with their environmental impacts and costs through an eco-pharmaco-economic analysis (EPEA). The results revealed that the binding affinities of chemical disinfectants to viral proteins varied significantly (p < 0.005). Rutin demonstrated promising broad-spectrum antiviral efficacy with an LBE of -8.49 ± 0.92 kcal/mol across all tested proteins. Additionally, rutin showed a superior eco-pharmaco-economic profile compared to the other chemicals, effectively balancing high antiviral effectiveness, moderate environmental impact, and affordability. These findings highlight rutin as a key phytochemical for use in remediating viral contaminants.


Assuntos
Antivirais , Desinfetantes , Rutina , Desinfetantes/farmacologia , Desinfetantes/química , Antivirais/farmacologia , Antivirais/química , Rutina/química , Rutina/farmacologia , Humanos , Simulação por Computador , Vírus/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Ligação Proteica
8.
Bioorg Chem ; 149: 107503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823312

RESUMO

Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel ß-sheet, and ß-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.


Assuntos
L-Lactato Desidrogenase , Rutina , Rutina/química , Rutina/farmacologia , Rutina/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Simulação por Computador , Antineoplásicos/química , Antineoplásicos/farmacologia
9.
Front Pharmacol ; 15: 1366279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863975

RESUMO

Rhododendron arboreum: Sm., also known as Burans is traditionally used as an anti-inflammatory, anti-diabetic, hepatoprotective, adaptogenic, and anti-oxidative agent. It has been used since ancient times in Indian traditional medicine for various liver disorders. However, the exact mechanism behind its activity against NAFLD is not known. The aim of the present study is to investigate the molecular mechanism of Rhododendron arboreum flower (RAF) in the treatment of NAFLD using network pharmacology and molecular docking methods. Bioactives were also predicted for their drug-likeness score, probable side effects and ADMET profile. Protein-protein interaction (PPI) data was obtained using the STRING platform. For the visualisation of GO analysis, a bioinformatics server was employed. Through molecular docking, the binding affinity between potential targets and active compounds were assessed. A total of five active compounds of RAF and 30 target proteins were selected. The targets with higher degrees were identified through the PPI network. GO analysis indicated that the NAFLD treatment with RAF primarily entails a response to the fatty acid biosynthetic process, lipid metabolic process, regulation of cell death, regulation of stress response, and cellular response to a chemical stimulus. Molecular docking and molecular dynamic simulation exhibited that rutin has best binding affinity among active compounds and selected targets as indicated by the binding energy, RMSD, and RMSF data. The findings comprehensively elucidated toxicity data, potential targets of bioactives and molecular mechanisms of RAF against NAFLD, providing a promising novel strategy for future research on NAFLD treatment.

10.
Mikrochim Acta ; 191(7): 393, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874794

RESUMO

Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.

11.
Pol Przegl Chir ; 96(3): 1-8, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940246

RESUMO

<b>Introduction:</b> Hemorrhoidal disease is the most common disease treated in proctology ambulatories. Conservative treatment is the basic form of treatment for this disease. One of the elements of treatment may be preparations with myoand phlebotropic effects.<b>Aim:</b> To assess the effect of a multi-ingredient myophlebotropic dietary supplement used as an adjunct on the rate and effectiveness of symptom relief in patients with stage II and III hemorrhoidal disease.<b>Material and method:</b> Patients with stage II and III hemorrhoidal disease with clinical symptoms such as pain, burning, itching and bleeding were qualified for the study. The patients were divided into two groups. The control group (Group I) of 29 patients receiving standard local treatment plus placebo and the study group (Group II) of 32 patients receiving the same local treatment and a six-component myophlebotropic product. Symptoms were analyzed at the time of inclusion in the study (day 0), after 4 and 10 days of therapy. The severity of hemorrhoidal disease and the feeling of relief were assessed on the day of inclusion (W0) and after 30 days of therapy.<b>Results:</b> There were no statistical differences between the groups in terms of disease advancement, age, gender, and duration of symptoms. Compared to the moment of inclusion in the study (W0), after 4 days (W1), after 10 days (W2) of taking the multi- -component product, there was a statistically significant improvement in the VAS scale: spontaneous pain and pain during defecation. In the qualitative assessment (yes/no), there were statistically significantly fewer cases of burning in the anus and itching. The treatment did not affect the rate of spontaneous bleeding, which was low at the beginning of the study, but significantly reduced the rate of bleeding during defecation. After 30 days of observation, it was found that the improvement in the severity of hemorrhoidal disease symptoms was significantly higher in the group using the tested preparation. Relief after a month of the study (one-question method) was noted in the group of patients receiving the tested product.<b>Conclusions:</b> The tested six-component myophlebotropic product proved to be effective in reducing the severity of symptoms such as spontaneous pain, pain during defecation, burning/burning in the anus and bleeding during defecation. Statistical significance was demonstrated in the symptom's relief and reduction in the severity of hemorrhoidal disease.


Assuntos
Hemorroidas , Humanos , Hemorroidas/terapia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Suplementos Nutricionais , Idoso
12.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929191

RESUMO

Zearalenone (ZEN) is a common fungal toxin with reproductive toxicity in various grains. It poses a serious threat to ovine and other animal husbandry industries, as well as human reproductive health. Therefore, investigating the mechanism of toxicity and screening antagonistic drugs are of great importance. In this study, based on the natural compound library and previous Smart-seq2 results, antioxidant and anti-apoptotic drugs were selected for screening as potential antagonistic drugs. Three natural plant compounds (oxysophoridine, rutin, and phellodendrine) were screened for their ability to counteract the reproductive toxicity of ZEN on ovine oocytes in vitro using quantitative polymerase chain reaction (qPCR) and reactive oxygen species detection. The compounds exhibited varying pharmacological effects, notably impacting the expression of antioxidant (GPX, SOD1, and SOD2), autophagic (ATG3, ULK2, and LC3), and apoptotic (CAS3, CAS8, and CAS9) genes. Oxysophoridine promoted GPX, SOD1, ULK2, and LC3 expression, while inhibiting CAS3 and CAS8 expression. Rutin promoted SOD2 and ATG3 expression, and inhibited CAS3 and CAS9 expression. Phellodendrine promoted SOD2 and ATG3 expression, and inhibited CAS9 expression. However, all compounds promoted the expression of genes related to cell cycle, spindle checkpoint, oocyte maturation, and cumulus expansion factors. Although the three drugs had different regulatory mechanisms in enhancing antioxidant capacity, enhancing autophagy, and inhibiting cell apoptosis, they all maintained a stable intracellular environment and a normal cell cycle, promoted oocyte maturation and release of cumulus expansion factors, and, ultimately, counteracted ZEN reproductive toxicity to promote the in vitro maturation of ovine oocytes. This study identified three drugs that antagonize the reproductive toxicity of ZEN on ovine oocytes, and compared their mechanisms of action, providing data support and a theoretical basis for their subsequent application in the ovine breeding industry, reducing losses in the breeding industry, screening of ZEN reproductive toxicity antagonists and various toxin antagonists, improving the study of ZEN reproductive toxicity mechanisms, and even protection of human reproductive health.

13.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930884

RESUMO

Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol-cerium-quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics.


Assuntos
Lesão Pulmonar Aguda , Cério , Manitol , Nanopartículas , Polímeros , Quercetina , Lesão Pulmonar Aguda/tratamento farmacológico , Quercetina/farmacologia , Quercetina/química , Animais , Manitol/química , Manitol/uso terapêutico , Nanopartículas/química , Camundongos , Polímeros/química , Cério/química , Cério/farmacologia , Cério/uso terapêutico , Rutina/química , Rutina/farmacologia , Rutina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Sinergismo Farmacológico , Modelos Animais de Doenças , Lipopolissacarídeos
14.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789868

RESUMO

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Assuntos
Apoptose , Proteínas de Transporte , Rutina , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Rutina/farmacologia
15.
J Ethnopharmacol ; 332: 118395, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38801915

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinus officinalis L. (Rosemary) is a popular herb with reported effectiveness against diarrhea, anxiety and constipation, albeit with limited pharmacological evidence. AIM OF THE STUDY: The current study was aimed at evaluating the therapeutic potential, possible pharmacological mechanisms of action and active constituents of hydro-ethanolic extract of rosemary (Rs.Cr), as potential anti-diarrheal, laxative and anxiolytic agent. METHOD: Rs.Cr was analyzed through reverse-phase high pressure liquid chromatography (RP-HPLC). Laxative, antidiarrheal, and anxiolytic activities were assessed using in vivo models. Spasmogenic and spasmolytic mechanisms were studied on isolated guinea pig ileum and rabbit jejunum tissues, respectively. Possible role of diosmetin, one of the active constituents of Rs.Cr was also evaluated. RESULTS: RP-HPLC analysis revealed presence of diosmetin, rutin and apigenin in Rs.Cr. Laxative effect was seen at low doses, which was partially reversed in atropinized mice. The spasmogenic mechanism was mediated by cholinergic and histaminergic receptors stimulation. At higher doses, antidiarrheal activity was evident, with reduction in gastrointestinal motility and secretions using charcoal meal and enteropooling assays, respectively. Rs.Cr also showed dose-dependent anxiolytic effect. The antispasmodic mechanisms were mediated by anti-muscarinic and K+ channel opening-like effect (predominant KATP-dependent). Diosmetin exhibited antidiarrheal and antispasmodic activities, but spasmogenic effect was not seen. CONCLUSION: Rosemary leaves have dual antidiarrheal and laxative effects, and as well as anxiolytic activity. In addition, the possible modulation of muscarinic and histaminergic receptors, and KATP channels show it as potential herb to be explored for irritable bowel syndrome. Diosmetin is possibly one of its constituents that contributes to its antidiarrheal activity.


Assuntos
Ansiolíticos , Motilidade Gastrointestinal , Íleo , Extratos Vegetais , Rosmarinus , Animais , Cobaias , Rosmarinus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Masculino , Motilidade Gastrointestinal/efeitos dos fármacos , Coelhos , Ansiolíticos/farmacologia , Ansiolíticos/isolamento & purificação , Ansiolíticos/química , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/fisiologia , Antidiarreicos/farmacologia , Antidiarreicos/isolamento & purificação , Flavonoides/farmacologia , Parassimpatolíticos/farmacologia , Parassimpatolíticos/isolamento & purificação , Laxantes/farmacologia , Laxantes/isolamento & purificação , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Diarreia/tratamento farmacológico , Feminino
16.
J Agric Food Chem ; 72(23): 13328-13340, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805380

RESUMO

Flavonol glycosides, contributing to the health benefits and distinctive flavors of tea (Camellia sinensis), accumulate predominantly as diglycosides and triglycosides in tea leaves. However, the UDP-glycosyltransferases (UGTs) mediating flavonol multiglycosylation remain largely uncharacterized. In this study, we employed an integrated proteomic and metabolomic strategy to identify and characterize key UGTs involved in flavonol triglycoside biosynthesis. The recombinant rCsUGT75AJ1 exhibited flavonoid 4'-O-glucosyltransferase activity, while rCsUGT75L72 preferentially catalyzed 3-OH glucosylation. Notably, rCsUGT73AC15 displayed substrate promiscuity and regioselectivity, enabling glucosylation of rutin at multiple sites and kaempferol 3-O-rutinoside (K3R) at the 7-OH position. Kinetic analysis revealed rCsUGT73AC15's high affinity for rutin (Km = 9.64 µM). Across cultivars, CsUGT73AC15 expression inversely correlated with rutin levels. Moreover, transient CsUGT73AC15 silencing increased rutin and K3R accumulation while decreasing their respective triglycosides in tea plants. This study offers new mechanistic insights into the key roles of UGTs in regulating flavonol triglycosylation in tea plants.


Assuntos
Camellia sinensis , Flavonóis , Glicosídeos , Glicosiltransferases , Proteínas de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Flavonóis/metabolismo , Flavonóis/química , Flavonóis/biossíntese , Glicosídeos/metabolismo , Glicosídeos/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/enzimologia , Cinética , Rutina/metabolismo , Rutina/química
17.
Food Chem ; 453: 139630, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781895

RESUMO

Rutin is a polyphenol with beneficial pharmacological properties. However, its bioavailability is often compromised due to low solubility and poor stability. Encapsulation technologies, such as emulsion systems, have been proven to be promising delivery vehicles for enhancing the bioavailability of bioactive compounds. Thus, this study was proposed and designed to investigate the colonic targeting and colonic fermentation characteristics of rutin-loaded ovalbumin-ferulic acid-polysaccharide (OVA-FA-PS) complex emulsions. The results indicate that OVA-FA-PS emulsion effectively inhibits the degradation of rutin active substances and facilitates its transport of rutin to the colon. The analysis revealed that the OVA-FA-κ-carrageenan emulsion loaded with rutin exhibited superior elasticity and colon targeting properties compared to the OVA-FA-hyaluronic acid or OVA-FA-sodium alginate emulsions loaded with rutin in the composite emulsion. Additionally, it was observed that the rutin loaded within the OVA-FA-κ-carrageenan emulsion underwent degradation and was converted to 4-hydroxybenzoic acid during colonic fermentation.


Assuntos
Colo , Ácidos Cumáricos , Emulsões , Fermentação , Ovalbumina , Polissacarídeos , Colo/metabolismo , Colo/microbiologia , Emulsões/química , Emulsões/metabolismo , Ovalbumina/química , Ovalbumina/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Animais , Rutina/química , Rutina/metabolismo , Masculino
18.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725448

RESUMO

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Assuntos
Antivirais , Heme Oxigenase-1 , Infecções por Herpesviridae , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Rutina , Transdução de Sinais , Rutina/farmacologia , Rutina/uso terapêutico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Camundongos , Infecções por Herpesviridae/tratamento farmacológico , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Modelos Animais de Doenças , Antioxidantes/farmacologia , Linhagem Celular , Carga Viral/efeitos dos fármacos , Cavalos , Feminino , Proteínas de Membrana
19.
J Agric Food Chem ; 72(22): 12630-12640, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779919

RESUMO

Tartary buckwheat is highly valued for its abundant rutin (quercetin 3-O-rutinoside). As a flavonoid glycoside, rutin is synthesized with the crucial involvement of UDP-dependent glycosyltransferases (UGTs). However, the functions and transcriptional regulation of the UGT-encoded genes remain poorly understood. This study identified a key gene, FtUFGT163, potentially encoding flavonol 3-O-glucoside (1 → 6) rhamnosyltransferase in Tartary buckwheat through omics analysis and molecular docking methods. The recombinant FtUFGT163 expressed in Escherichia coli demonstrated the capacity to glycosylate isoquercetin into rutin. Overexpression of FtUFGT163 significantly enhanced the rutin content in Tartary buckwheat. Further investigation identified a novel bZIP transcription factor, FtGBF1, that enhances FtUFGT163 expression by binding to the G-box element within its promoter, thereby augmenting rutin biosynthesis. Additional molecular biology experiments indicated that the specific positive regulator of rutin, FtMYB5/6, could directly activate the FtGBF1 promoter. Collectively, this study elucidates a novel regulatory module, termed "FtMYB5/6-FtGBF1-FtUFGT163", which effectively coordinates the biosynthesis of rutin in Tartary buckwheat, offering insights into the genetic enhancement of nutraceutical components in crops.


Assuntos
Fagopyrum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Fagopyrum/química , Rutina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Simulação de Acoplamento Molecular
20.
Artigo em Inglês | MEDLINE | ID: mdl-38757332

RESUMO

INTRODUCTION: Quercetin (Qc), rutin (Ru), and hyperoside (Hyp) are three common polyphenols widely distributed in the plant kingdom. METHOD: This study explored the inhibition and mechanisms of Qc, Ru, and Hyp against xanthine oxidase (XOD) by enzyme kinetic analysis, fluorescence analysis, and molecular docking. The inhibitory activities of the three polyphenols on XOD showed the following trend: quercetin > hyperoside > rutin, with IC50 values of 8.327 ± 0.36 µmol/L, 35.215 ± 0.4 µmol/L and 60.811 ± 0.19 µmol/L, respectively. All three polyphenols inhibited xanthine oxidase activity in a mixed-competitive manner. Synchronous fluorescence results demonstrated that three polyphenols binding to XOD were spontaneous and showed static quenching. RESULT: The binding of the three polyphenols to XOD is mainly driven by hydrogen bonding and van der Waals forces, resulting in the formation of an XOD-XA complex with only one affinity binding site. The binding sites of the three RSFQ phenolic compounds are close to those of tryptophan. Molecular docking showed that all three polyphenols enter the active pocket of XOD and maintain the stability of the complex through hydrogen bonding, hydrophobic interaction, and van der Waals forces. CONCLUSION: The results provide a theoretical basis for quercetin, rutin, and hyperoside to be used as function factors to prevent hyperuricemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...