Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmacol Res ; 209: 107418, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306022

RESUMO

The ZDHHC13/ZDHHC17 subfamily belongs to the zinc finger DHHC-domain containing (ZDHHC) family, including ZDHHC13 and ZDHHC17. Recent studies have shown that the ZDHHC13/ZDHHC17 subfamily is involved in various pathological and physiological processes, including S-palmitoylation, Mg2+ transport, and CALCOCO1-mediated Golgiphagy. Moreover, the ZDHHC13/ZDHHC17 subfamily plays a crucial role in the occurrence and development of many diseases, including Huntington disease (HD), osteoporosis, atopic dermatitis, diabetes, and cancer. In the present review, we describe the distribution, structure, and post-translational modifications (PTMs) of the ZDHHC13/ZDHHC17 subfamily. Moreover, we effectively summarize the biological functions and associated diseases of this subfamily. Given the pleiotropy of the ZDHHC13/ZDHHC17 subfamily, it is imperative to conduct further research on its members to comprehend the pertinent pathophysiological mechanisms and to devise tactics for managing and controlling various diseases.

2.
bioRxiv ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39282397

RESUMO

Protein S-palmitoylation is a reversible lipophilic posttranslational modification regulating a diverse number of signaling pathways. Within transmembrane proteins (TMPs), S-palmitoylation is implicated in conditions from inflammatory disorders to respiratory viral infections. Many small-scale experiments have observed S-palmitoylation at juxtamembrane Cys residues. However, most large-scale S-palmitoyl discovery efforts rely on trypsin-based proteomics within which hydrophobic juxtamembrane regions are likely underrepresented. Machine learning- by virtue of its freedom from experimental constraints - is particularly well suited to address this discovery gap surrounding TMP S-palmitoylation. Utilizing a UniProt-derived feature set, a gradient boosted machine learning tool (TopoPalmTree) was constructed and applied to a holdout dataset of viral S-palmitoylated proteins. Upon application to the mouse TMP proteome, 1591 putative S-palmitoyl sites (i.e. not listed in SwissPalm or UniProt) were identified. Two lung-expressed S-palmitoyl candidates (synaptobrevin Vamp5 and water channel Aquaporin-5) were experimentally assessed. Finally, TopoPalmTree was used for rational design of an S-palmitoyl site on KDEL-Receptor 2. This readily interpretable model aligns the innumerable small-scale experiments observing juxtamembrane S-palmitoylation into a proteomic tool for TMP S-palmitoyl discovery and design, thus facilitating future investigations of this important modification.

3.
Autophagy ; : 1-19, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39087410

RESUMO

Macroautophagy/autophagy is a fundamental cellular catabolic process that delivers cytoplasmic components into double-membrane vesicles called autophagosomes, which then fuse with lysosomes and their contents are degraded. Autophagy recycles cytoplasmic components, including misfolded proteins, dysfunctional organelles and even microbial invaders, thereby playing an essential role in development, immunity and cell death. Autophagosome formation is the main step in autophagy, which is governed by a set of ATG (autophagy related) proteins. ATG16L1 interacts with ATG12-ATG5 conjugate to form an ATG12-ATG5-ATG16L1 complex. The complex acts as a ubiquitin-like E3 ligase that catalyzes the lipidation of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3), which is crucial for autophagosome formation. In the present study, we found that ATG16L1 was subject to S-palmitoylation on cysteine 153, which was catalyzed by ZDHHC7 (zinc finger DHHC-type palmitoyltransferase 7). We observed that re-expressing ATG16L1 but not the S-palmitoylation-deficient mutant ATG16L1C153S rescued a defect in the lipidation of LC3 and the formation of autophagosomes in ATG16L1-KO (knockout) HeLa cells. Furthermore, increasing ATG16L1 S-palmitoylation by ZDHHC7 expression promoted the production of LC3-II, whereas reducing ATG16L1 S-palmitoylation by ZDHHC7 deletion inhibited the LC3 lipidation process and autophagosome formation. Mechanistically, the addition of a hydrophobic 16-carbon palmitoyl group on Cys153 residue of ATG16L1 enhances the formation of ATG16L1-WIPI2B complex and ATG16L1-RAB33B complex on phagophore, thereby facilitating the LC3 lipidation process and autophagosome formation. In conclusion, S-palmitoylation of ATG16L1 is essential for the lipidation process of LC3 and the formation of autophagosomes. Our research uncovers a new regulatory mechanism of ATG16L1 function in autophagy.Abbreviation: ABE: acyl-biotin exchange; ATG: autophagy related; Baf-A1: bafilomycin A1; 2-BP: 2-bromopalmitate; CCD: coiled-coil domain; co-IP: co-immunoprecipitation; CQ: chloroquine; EBSS: Earle's balanced salt solution; HAM: hydroxylamine; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NP-40: Nonidet P-40; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PtdIns3K-C1: class III phosphatidylinositol 3-kinase complex I; PTM: post-translational modification; RAB33B: RAB33B, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SDS: sodium dodecyl sulfate; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscope; WD: tryptophan and aspartic acid; WIPI2B: WD repeat domain, phosphoinositide interacting 2B; WT: wild-type; ZDHHC: zinc finger DHHC-type palmitoyltransferase.

4.
EMBO J ; 43(19): 4274-4297, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39143238

RESUMO

Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane. The GSDMD residues Cys39, Cys57, and Cys192 are the only relevant cysteines involved in GSDMD oligomerization. S-palmitoylation of Cys192, combined with the presence of negatively-charged lipids, controls GSDMD membrane targeting. Simultaneous Cys39/57/192-to-alanine (Ala) mutations, but not Ala mutations of Cys192 or the Cys39/57 pair individually, completely abolish GSDMD insertion into artificial membranes as well as into the plasma membrane. Finally, either Cys192 or the Cys39/Cys57 pair are sufficient to enable formation of GSDMD dimers/trimers, but they are all required for functional higher-order oligomer formation. Overall, our study unveils a cooperative role of Cys192 palmitoylation-mediated membrane binding and Cys39/57/192-mediated oligomerization in GSDMD pore assembly. This study supports a model in which Gasdermin D oligomerization relies on a two-step mechanism mediated by specific cysteine residues.


Assuntos
Membrana Celular , Cisteína , Lipoilação , Proteínas de Ligação a Fosfato , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Cisteína/metabolismo , Humanos , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Multimerização Proteica , Células HEK293 , Animais , Gasderminas
5.
J Proteome Res ; 23(8): 3716-3725, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39008777

RESUMO

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.


Assuntos
Cisteína , Espectrometria de Massas em Tandem , Acilação , Animais , Cisteína/química , Cisteína/metabolismo , Camundongos , Espectrometria de Massas em Tandem/métodos , Hidroxilamina/química , Cromatografia Líquida/métodos , Lipoilação , Processamento de Proteína Pós-Traducional , Compostos de Sulfidrila/química , Proteínas/química , Proteínas/metabolismo , Encéfalo/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(29): e2400883121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980908

RESUMO

Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1ß secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.


Assuntos
Cisteína , Peptídeos e Proteínas de Sinalização Intracelular , Lipoilação , Proteínas de Ligação a Fosfato , Piroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cisteína/metabolismo , Animais , Camundongos , Citocinas/metabolismo , Células HEK293 , Inflamassomos/metabolismo , Gasderminas
7.
Immunology ; 173(1): 53-75, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866391

RESUMO

The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, ß-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.


Assuntos
Processamento de Proteína Pós-Traducional , Humanos , Acilação , Animais , Imunidade , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Lisina/metabolismo
8.
J Cancer Res Clin Oncol ; 150(4): 194, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619631

RESUMO

PURPOSE: Kidney clear cell carcinoma (KIRC) has a poor prognosis, high morbidity and mortality rates, and high invasion and metastasis rate, and effective therapeutic targets are lacking. zDHHC3 has been implicated in various cancers, but its specific role in KIRC remains unclear. METHODS: In this study, we performed a pan-cancer analysis, bioinformatics analysis, and cell experiment to detect the role of zDHHC3 in KIRC. RESULTS: zDHHC3 was significantly down-regulated in KIRC, and that its high expression was associated with favorable patient outcomes. We identified 202 hub genes that were most relevant to high zDHHC3 expression and KIRC, and found that they were involved mainly in ion transport and renal cell carcinoma. Among these hub genes, SLC9A2 was identified as a downstream gene of zDHHC3. zDHHC3 suppression led to decreased expression and S-palmitoylation of SLC9A2, which further inhibited the apoptosis of Caki-2 cells. CONCLUSION: Our findings suggest that zDHHC3 plays an important role in KIRC, due partly to its regulation of SLC9A2 S-palmitoylation. The targeting of the zDHHC3-SLC9A2 axis may provide a new option for the clinical treatment of KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Apoptose , Carcinoma de Células Renais/genética , Rim , Neoplasias Renais/genética , Lipoilação
9.
bioRxiv ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585928

RESUMO

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 micrograms of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g. H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 micrograms of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamlines the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

10.
Acta Pharmacol Sin ; 45(6): 1214-1223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467718

RESUMO

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.


Assuntos
Aciltransferases , Antígeno B7-1 , Lipoilação , Ativação Linfocitária , Humanos , Antígeno B7-1/metabolismo , Aciltransferases/metabolismo , Células HEK293 , Linfócitos T/metabolismo , Linfócitos T/imunologia , Processamento de Proteína Pós-Traducional , Ubiquitinação
11.
Front Immunol ; 15: 1337478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415253

RESUMO

Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.


Assuntos
Lipoilação , Neoplasias , Humanos , Processamento de Proteína Pós-Traducional , Cisteína , Microambiente Tumoral
12.
Biochem Soc Trans ; 52(1): 407-421, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38348884

RESUMO

Calcium (Ca2+) regulates a multitude of cellular processes during fertilization and throughout adult life by acting as an intracellular messenger to control effector functions in excitable and non-excitable cells. Changes in intracellular Ca2+ levels are driven by the co-ordinated action of Ca2+ channels, pumps, and exchangers, and the resulting signals are shaped and decoded by Ca2+-binding proteins to drive rapid and long-term cellular processes ranging from neurotransmission and cardiac contraction to gene transcription and cell death. S-acylation, a lipid post-translational modification, is emerging as a critical regulator of several important Ca2+-handling proteins. S-acylation is a reversible and dynamic process involving the attachment of long-chain fatty acids (most commonly palmitate) to cysteine residues of target proteins by a family of 23 proteins acyltransferases (zDHHC, or PATs). S-acylation modifies the conformation of proteins and their interactions with membrane lipids, thereby impacting intra- and intermolecular interactions, protein stability, and subcellular localization. Disruptions of S-acylation can alter Ca2+ signalling and have been implicated in the development of pathologies such as heart disease, neurodegenerative disorders, and cancer. Here, we review the recent literature on the S-acylation of Ca2+ transport proteins of organelles and of the plasma membrane and highlight the molecular basis and functional consequence of their S-acylation as well as the therapeutic potential of targeting this regulation for diseases caused by alterations in cellular Ca2+ fluxes.


Assuntos
Proteínas de Transporte , Neoplasias , Humanos , Proteínas de Transporte/metabolismo , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Acilação , Aciltransferases/metabolismo
13.
J Biol Chem ; 300(2): 105641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211816

RESUMO

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos , Lipofuscinoses Ceroides Neuronais , Animais , Camundongos , Modelos Animais de Doenças , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Camundongos Endogâmicos C57BL
14.
Transl Res ; 264: 66-75, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37769810

RESUMO

To investigate the role of S-palmitoylation in pyroptosis following acute myocardial infarction (AMI). Myocardial ischemic injury is mainly related to the death of terminally differentiated cardiomyocytes. Pyroptosis is a new form of programmed cell death and recently is identified a potential mechanism of cardiomyocyte loss. However, the role of S-palmitoylation in pyroptosis following MI remains elusive. AMI was mimicked by permanent left anterior descending artery ligation. The palmitoylated proteins labeled by Click-iT palmitic acid were precipitated using streptavidin magnetic bead conjugate. The short-term palmitic acid dietary intake by modified western diet with palm oil for 7 days is compared with modified western diet with olive oil. Palmitoylation is increased in myocardial infarction and anoxic cardiomyocytes. Pyroptosis, but not apoptosis and necrosis, is more relevant with palmitoylation in the process of myocardial ischemia injury. The gasdermin D (GSDMD) Cys192 palmitoylation promotes its cytomembrane localization by ZDHHC14. GSDMD Cys192 palmitoylation aggravates in vitro cardiomyocyte pyroptosis. The short-term palmitic acid dietary intake or ML348 deteriorates myocardial pyroptosis, infarct size and cardiac function in AMI mice by GSDMD palmitoylation. Disulfiram antagonizes Cys192 palmitoylation of GSDMD-N-terminal and reduces myocardial pyroptosis and injury in AMI mice. We identifies ZHDDC14 induced palmitoylation as a crucial node for modulating GSDMD-N-terminal cytomembrane localization and establishes Disulfiram targeting GSDMD Cys192 palmitoylation as a potential clinical intervention for myocardial pyroptosis.


Assuntos
Dissulfiram , Infarto do Miocárdio , Camundongos , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Gasderminas , Lipoilação , Ácido Palmítico/farmacologia
15.
Reprod Sci ; 31(1): 128-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603234

RESUMO

Despite its prevalence and the severity of symptoms, little is known about the pathogenesis and etiology of adenomyosis. In our previous study, Scribble localization has been found to be partially translocated to cytoplasm; however, its regulatory mechanism is known. In consideration of the important role of supraphysiologic estrogen production in the endometrium in the development of adenomyosis, we analyzed the effect and mechanism of estrogen on Scribble localization in vivo and in vitro. Firstly, we found Scribble translocation from the basolateral membrane to the cytoplasm was easily to be seen in women and mice with adenomyosis (68% vs 27%, 60% vs 10% separately). After treatment with the S-palmitoylation inhibitor 2-bromopalmitate for 48H, cytoplasmic enrichment of Scribble and the reduced level of palm-Scribble was observed by immunofluorescence, Western blot, and acyl-biotin exchange palmitoylation assay. High estrogen exposure could not only induce partially cytoplasmic translocation of Scribble but also decrease the expression level of palm-Scribble, which can be recovered by estrogen receptor inhibitor ICI182,780. Based on following experiments, we found that estrogen regulated Scribble localization by APT through S-palmitoylation of Scribble protein. At last, IHC was performed to verify the expression of APT1 and APT2 in human clinical tissue specimens and found that they were all increased dramatically. Furthermore, positive correlations were found between APT1 or APT2 and aromatase P450. Therefore, our research may provide a new understanding of the pathogenesis of adenomyosis.


Assuntos
Adenomiose , Feminino , Humanos , Animais , Camundongos , Adenomiose/metabolismo , Lipoilação , Endométrio/metabolismo , Estrogênios/metabolismo , Células Epiteliais/metabolismo
16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1017109

RESUMO

@#Abstract: S-palmitoylation, a reversible and dynamic post-translational modification in cells, is involved in regulating the transcription and expression of downstream target genes as well as signal transduction, thereby affecting cell life activities. Studies have shown that thousands of human proteins undergo S-palmitoylation modification, suggesting that S-palmitoylation is closely related to the progression and treatment of diseases. T cells play central roles in anti-tumor immune responses. A variety of T cell immune-related proteins are regulated by S-palmitoylation. In the present study, we focus on the impact of S-palmitoylation on T cell signal transduction and its application in T cell immunotherapy, aiming to provide new ideas for the development of new targets and peptide inhibitors for T cell immunotherapy.

17.
Biochim Biophys Acta Biomembr ; 1866(3): 184264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104647

RESUMO

S-palmitoylation is a dynamic lipid-based protein post-translational modification facilitated by a family of protein acyltransferases (PATs) commonly known as DHHC-PATs or DHHCs. It is the only lipid modification that is reversible, and this very fact uniquely qualifies it for therapeutic interventions through the development of DHHC inhibitors. Herein, we report that 4″-alkyl ether lipophilic derivatives of EGCG can effectively inhibit protein S-palmitoylation in vitro. With the help of metabolic labeling followed by copper(I)-catalyzed azide-alkyne cycloaddition Click reaction, we demonstrate that 4″-C14 EGCG and 4″-C16 EGCG markedly inhibited S-palmitoylation in various mammalian cells including HEK 293T, HeLa, and MCF-7 using both in gel fluorescence as well as confocal microscopy. Further, these EGCG derivatives were able to attenuate the S-palmitoylation to the basal level in DHHC3-overexpressed cells, suggesting that they are plausibly targeting DHHCs. Confocal microscopy data qualitatively reflected spatial and temporal distribution of S-palmitoylated proteins in different sub-cellular compartments and the inhibitory effects of 4″-C14 EGCG and 4″-C16 EGCG were clearly observed in the native cellular environment. Our findings were further substantiated by in silico analysis which revealed promising binding affinity and interactions of 4″-C14 EGCG and 4″-C16 EGCG with key amino acid residues present in the hydrophobic cleft of the DHHC20 enzyme. We also demonstrated the successful inhibition of S-palmitoylation of GAPDH by 4″-C16 EGCG. Taken together, our in vitro and in silico data strongly suggest that 4″-C14 EGCG and 4″-C16 EGCG can act as potent inhibitors for S-palmitoylation and can be employed as a complementary tool to investigate S-palmitoylation.


Assuntos
Éter , Lipoilação , Animais , Humanos , Lipoilação/fisiologia , Proteínas , Etil-Éteres , Éteres , Chá , Polifenóis , Lipídeos , Mamíferos
18.
J Proteome Res ; 23(2): 673-683, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38157263

RESUMO

Protein S-acylation is a reversible post-translational modification (PTM). It is present on diverse proteins and has important roles in regulating protein function. Aminolysis with hydroxylamine is widely used in the global identification of the PTM. However, the identification is indirect. Distinct criteria have been used for identification, and the false discovery rate has not been addressed. Here, we report a site-specific method for S-acylation identification based on tagging of S-acylation sites with iodoTMT0. Efforts to improve the performance of the method and confidence of identification are discussed, highlighting the importance of reducing contaminant peptides and keeping the recovery rate consistent between aliquots with or without hydroxylamine treatment. With very stringent criteria, presumptive S-acylation sites of 269, 684, 695, and 780 were identified from HK2 cells, HK11 cells, mouse brain, and mouse liver samples, respectively. Among them, the newly identified protein S-acylation sites are equivalent to 34% of human and 24% of mouse S-acylation sites reported previously. In addition, false-positive rates for S-acylation identification and S-acylation abundances were estimated. Significant differences in S-acylation abundance were found from different samples (from 0.08% in HK2 cells to 0.76% in mouse brain), and the false-positive rates were significantly higher for samples with a low abundance of S-acylation.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Animais , Camundongos , Humanos , Acilação , Lipoilação , Hidroxilamina , Hidroxilaminas
19.
Viruses ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140570

RESUMO

Interferon-induced transmembrane proteins (IFITM1, 2 and 3) are important host antiviral defense factors. They are active against viruses like the influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus (SARS-CoV). In this review, we focus on IFITM3 S-palmitoylation, a reversible lipid modification, and describe its role in modulating IFITM3 antiviral activity. Our laboratory discovered S-palmitoylation of IFITMs using chemical proteomics and demonstrated the importance of highly conserved fatty acid-modified Cys residues in IFITM3 antiviral activity. Further studies showed that site-specific S-palmitoylation at Cys72 is important for IFITM3 trafficking to restricted viruses (IAV and EBOV) and membrane-sterol interactions. Thus, site-specific lipid modification of IFITM3 directly regulates its antiviral activity, cellular trafficking, and membrane-lipid interactions.


Assuntos
Vírus da Influenza A , Infecção por Zika virus , Zika virus , Humanos , Lipoilação , Proteínas de Ligação a RNA/metabolismo , Zika virus/metabolismo , Vírus da Influenza A/metabolismo , Antivirais/metabolismo , Lipídeos , Proteínas de Membrana/metabolismo
20.
Biomed Pharmacother ; 169: 115859, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37948993

RESUMO

Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.


Assuntos
Ansiolíticos , Complexo Nuclear Basolateral da Amígdala , Ratos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Ansiolíticos/farmacologia , Lipoilação , Atividade Motora , Ansiedade/metabolismo , Diazepam/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA