Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.993
Filtrar
1.
Antibiotics (Basel) ; 13(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39061299

RESUMO

Bovine mastitis (BM) has caused huge economic and financial losses in the dairy industry worldwide, with Staphylococcus aureus as one of its major pathogens. BM treatment still relies on antibiotics and its extensive use often generates methicillin-resistant S. aureus (MRSA) and mupirocin-resistant S. aureus (MuRSA). This study compared the antimicrobial resistance trend in coagulase-positive Stapholococci (CoPS) isolated from BM milk in conventional and organic dairy farms and checked prevalence of MRSA and MuRSA. A total of 163 presumptive Staphylococci were isolated, wherein 11 out of 74 from 4 conventional farms (CF1, CF2, CF3, CF4) and 17 out of 89 from 3 organic farms (OF1, OF2, OF3) exhibited coagulase activity. Multiplex-PCR amplification confirmed at least one coagulase-positive isolate from CF1, CF2, CF3, CF4, and OF1 as S. aureus, denoted by the presence of the nuc gene. Three isolates from CF2 contained the mecA gene, indicating MRSA prevalence, while the MuRSA gene marker, mupA, was not detected in any of the isolates. Antimicrobial testing showed that conventional farm isolates were more resistant to antibiotics, especially ampicillin and tetracycline. This suggests a risk of developing multidrug resistance in dairy farms if antibiotic use is not properly and strictly monitored and regulated.

2.
Arch Microbiol ; 206(8): 361, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066807

RESUMO

In the complex realm of bacterial infections, particularly those caused by Staphylococcus aureus (S. aureus), macrophages play a pivotal role in orchestrating the immune response. During the initial stages of infection, the monocytes give rise to macrophages with a pro-inflammatory (M1 type) behaviour, engulfing and neutralizing the invading pathogens. However, under the sustained influence of S. aureus infection, monocytes can undergo a transition into an anti-inflammatory M2 state (pro-infection) rather than the M1 state (anti-infection), thereby compromising effective infection control. Therefore, it is necessary to develop a strategy that would preserve the pro-inflammatory functions of macrophages, in a safe and controlled manner. For this, we focused on harnessing the potential of S. aureus-derived ghost cells (GCs) which are non-live empty envelopes of bacterial cells, but with the antigenic determinants intact. Through a unique Lugol's-iodine treatment, we generated GCs and characterization of these GCs using gel electrophoresis, FTIR, flow cytometry, TEM, and SEM confirmed their structural integrity. Following this, we assessed the extend of cellular association of the GCs with RAW267.4 macrophages, and observed an immediate interaction between the two, as evident from the flowcytometry and microscopy studies. We then performed macrophage polarisation on a human monocyte-macrophage model cell line, THP-1. Our findings revealed that GCs effectively activated macrophages, and promoted a pro-inflammatory polarisation with the expression of M1 differentiation markers (CD86, TNFα, IL-1ß, IL-6, IL-12) evaluated through both qPCR and ELISA. Interestingly an intermediary expression of M2 markers viz., CD206 and IL-10 was also observed, but was overruled by the enhanced expression of M1 markers at a later time point. Overall, our study introduces a novel approach utilizing GCs to guide naïve macrophages towards M1 subtypes, thereby potentiating immune responses during microbial infections. This innovative strategy can modulate macrophage function, ultimately improving outcomes in S. aureus infections and beyond.


Assuntos
Diferenciação Celular , Macrófagos , Infecções Estafilocócicas , Staphylococcus aureus , Macrófagos/imunologia , Macrófagos/microbiologia , Staphylococcus aureus/imunologia , Humanos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Animais , Camundongos , Monócitos/imunologia , Monócitos/microbiologia , Citocinas/metabolismo , Citocinas/imunologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/imunologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-39073670

RESUMO

BACKGROUND: We examined whether the time to positivity (TTP) and growth and detection plot graph (GDPG) created by the automated blood culture system can be used to determine the bacterial load in bacteremic patients and its potential association correlation with disease severity. METHODS: Known bacterial inocula were injected into the blood culture bottles. The GDPGs for the specific inocula were downloaded and plotted. A cohort of 30 consecutive clinical cultures positive for S. aureus and E. coli was identified. Bacterial load was determined by comparing the GDPG with the "standard" curves. Variables associated with disease severity were compared across 3 bacterial load categories (< 100, 100-1000, > 1000 CFU/mL). RESULTS: S. aureus growth was sensitive to the blood volume obtained whereas E. coli growth was less so. A 12-hour delay in sample transfer to the microbiology laboratory resulted in a decrease in TTP by 2-3 h. Mean TTP was 15 and 10 h for S. aureus and E. coli, respectively, which correlates with > 1000 CFU/mL and 500-1000 CFU/ml. For S. aureus, patients with a bacterial load > 100 CFU/mL had a higher mortality rate, (OR for death = 9.7, 95% CI 1.6-59, p = 0.01). Bacterial load > 1000 CFU/mL had an odds ratio of 6.4 (95% CI1.2-35, p = 0.03) to predict an endovascular source. For E. coli bacteremia, we did not find any correlations with disease severity. CONCLUSION: GDPG retrieved from the automated blood culture system can be used to estimate bacterial load. S.aureus bacterial load, but not E.coli, was associated with clinical outcome.

4.
J Clin Med ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064238

RESUMO

Background: No consensus in the literature has been found about the necessity of implementing a decolonization screening protocol for Staphylococcus aureus in patients who undergo prosthesis implantation of the knee (TKA) or of the hip (THA), with the aim of reducing periprosthetic infections (PJIs). Methods: A systematic literature search was conducted using PubMed, Web of Science, and Embase in April 2024. Studies conducted on patients who underwent a TKA or THA and who followed a screening and decolonization protocol from S. aureus were included. The benefits of implementing this protocol were evaluated through the number of infections overall caused by S. aureus and other pathogens. The risk of bias and quality of evidence were assessed using Cochrane guidelines. Results: A total of 922 articles were evaluated, and of these, 12 were included in the study for a total of 56,930 patients. The results of the meta-analysis showed a reduced risk of overall PJI (p = 0.002), PJI caused by S. aureus (p < 0.0001), and PJI caused by MRSA (p < 0.0001) and highlighted no differences between the two groups in the onset of a PJI caused by other bacteria (p = 0.50). Conclusions: This study showed that the screening and decolonization of S. aureus in patients undergoing THA or THA procedures reduced the risk of a PJI. The screening and decolonization protocol for this kind of patient represents an important procedure for the safety of the patient and in social-economic and medico-legal terms.

5.
J Infect Dis ; 230(1): 198-208, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052710

RESUMO

Staphylococcus aureus is a prevalent pathogen in pneumonia and harbors glycolipids, which may serve as molecular patterns in Mincle (macrophage-inducible C-type lectin)-dependent pathogen recognition. We examined the role of Mincle in lung defense against S aureus in wild-type (WT), Mincle knockout (KO), and Mincle transgenic (tg) mice. Two glycolipids, glucosyl-diacylglycerol (Glc-DAG) and diglucosyl-diacylglycerol (Glc2-DAG), were purified, of which only Glc-DAG triggered Mincle reporter cell activation and professional phagocyte responses. Proteomic profiling revealed that Glc2-DAG blocked Glc-DAG-induced cytokine responses, thereby acting as inhibitor of Glc-DAG/Mincle signaling. WT mice responded to S aureus with a similar lung pathology as Mincle KO mice, most likely due to Glc2-DAG-dependent inhibition of Glc-DAG/Mincle signaling. In contrast, ectopic Mincle expression caused severe lung pathology in S aureus-infected mice, characterized by bacterial outgrowth and fatal pneumonia. Collectively, Glc2-DAG inhibits Glc-DAG/Mincle-dependent responses in WT mice, whereas sustained Mincle expression overrides Glc2-DAG-mediated inhibitory effects, conferring increased host susceptibility to S aureus.


Assuntos
Lectinas Tipo C , Proteínas de Membrana , Camundongos Knockout , Pneumonia Estafilocócica , Staphylococcus aureus , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/imunologia , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Suscetibilidade a Doenças , Citocinas/metabolismo
6.
Bone ; 187: 117181, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960295

RESUMO

Staphylococcus aureus osteomyelitis leads to extensive bone destruction. Osteoclasts are bone resorbing cells that are often increased in bone infected with S. aureus. The cytokine RANKL is essential for osteoclast formation under physiological conditions but in vitro evidence suggests that inflammatory cytokines may by-pass the requirement for RANKL. The goal of this study was to determine whether RANKL-dependent osteoclast formation is essential for the bone loss that occurs in a murine model of S. aureus osteomyelitis. To this end, humanized-RANKL mice were infected by direct inoculation of S. aureus into a unicortical defect in the femur. Mice were treated with vehicle or denosumab, a human monoclonal antibody that inhibits RANKL, both before and during a 14-day infection period. The severe cortical bone destruction caused by infection was completely prevented by denosumab administration even though the bacterial burden in the femur was not affected. Osteoclasts were abundant near the inoculation site in vehicle-treated mice but absent in denosumab-treated mice. In situ hybridization demonstrated that S. aureus infection potently stimulated RANKL expression in bone marrow stromal cells. The extensive reactive bone formation that occurs in this osteomyelitis model was also reduced by denosumab administration. Lastly, there was a notable lack of osteoblasts near the infection site suggesting that the normal coupling of bone formation to bone resorption was disrupted by S. aureus infection. These results demonstrate that RANKL-mediated osteoclast formation is required for the bone loss that occurs in S. aureus infection and suggest that disruption of the coupling of bone formation to bone resorption may also contribute to bone loss in this condition.

7.
Chem Biol Drug Des ; 104(1): e14578, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044291

RESUMO

The development of new radiopharmaceuticals for the detection of hidden infection foci has great relevance for early detection and the selection of the correct treatment, particularly in immunosuppressed patients. In that sense, the labelling of antimicrobial peptides (AMPs) that are capable of binding specifically to the pathogenic microorganism which causes the infection, should provide a sufficiently specific agent, able to distinguish an infection from a sterile inflammation. Defensins are particularly interesting molecules with antimicrobial activity, the EcgDf1 defensin was identified from the genome of a Uruguayan native plant, Erythrina crista-galli, the 'Ceibo' tree. Our group has previously reported a synthetic biologically active short analogue EcgDf21 (ERFTGGHCRGFRRRCFCTKHC) successfully labelled with 99mTc. Herein we present a shorter analogue which also preserves the γ-core domain, as a pharmacophore for a potential infection detection agent. This peptide was derivatized with the bifunctional chelating agent 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) through a lysine linker in the amino-terminal group (NOTA-KGHCRGFRRRC) and radiolabelled with 68Ga ([68Ga]Ga-NOTA-K-EcgDf1(10)). The [68Ga]Ga-NOTA-K-EcgDf1(10) labelling procedure rendered a product with high radiochemical purity and stability in the labelling milieu. The Log P value indicated that the complex has a hydrophilic behaviour, confirmed by the biodistribution profile. The [68Ga]Ga-NOTA-K-EcgDf1(10) complex demonstrated specific binding to cultures of Candida albicans and Aspergillus niger. Its biodistribution showed renal elimination and low accumulation in the rest of the body. It was possible to successfully differentiate sterile inflammation from infection by PET images in nude mice with a target/non-target ratio of 3.3 for C. albicans and 3.7 for A. niger, respectively.


Assuntos
Defensinas , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Humanos , Camundongos , Sequência de Aminoácidos , Defensinas/química , Radioisótopos de Gálio/química , Peptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Compostos de Organotecnécio/química
8.
Antimicrob Agents Chemother ; : e0063624, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028191

RESUMO

In this study, we showed that phenazine-1 carboxylic acid (PCA) of Pseudomonas aeruginosa induced the expression of Tet38 efflux pump triggering Staphylococcus aureus resistance to tetracycline and phenazines. Exposure of S. aureus RN6390 to supernatants of P. aeruginosa PA14 and its pyocyanin (PYO)-deficient mutants showed that P. aeruginosa non-PYO phenazines could induce the expression of Tet38 efflux pump. Direct exposure of RN6390 to PCA compound at 0.25× MIC led to a five-fold increase in tet38 transcripts. Expression of Tet38 protein was identified through confocal microscopy using RN6390(pRN-tet38p-yfp) that expressed YFP under control of the tet38 promoter by PCA at 0.25× MIC. The MICs of PCA of a Tet38-overexpressor and a Δtet38 mutant showed a three-fold increase and a two-fold decrease, respectively, compared with that of wild-type. Pre-exposure of RN6390 to PCA (0.25× MIC) for 1 hour prior to addition of tetracycline (1× or 10× MIC) improved bacteria viability of 1.5-fold and 2.6-fold, respectively, but addition of NaCl 7% together with tetracycline at 10× MIC reduced the number of viable PCA-exposed RN6390 of a 2.0-log10 CFU/mL. The transcript levels of tetR21, a repressor of tet38, decreased and increased two-fold in the presence of PCA and NaCl, respectively, suggesting that the effects of PCA and NaCl on tet38 production occurred through TetR21 expression. These data suggest that PCA-induced Tet38 protects S. aureus against tetracycline during coinfection with P. aeruginosa; however, induced tet38-mediated S. aureus resistance to tetracycline is reversed by NaCl 7%, a nebulized treatment used to enhance sputum mobilization in CF patients.

9.
BMC Biotechnol ; 24(1): 47, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978013

RESUMO

The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.


Assuntos
Antibacterianos , Biofilmes , Sistemas de Liberação de Medicamentos , Lipossomos , Staphylococcus aureus Resistente à Meticilina , Vancomicina , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Vancomicina/farmacologia , Vancomicina/química , Antibacterianos/farmacologia , Antibacterianos/química , Lipossomos/química , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Liberação Controlada de Fármacos
10.
GMS Hyg Infect Control ; 19: Doc35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993380

RESUMO

Background: Health care workers (HCW) in Emergency Medical Services (EMS) frequently come into contact with carriers of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains and may acquire and transmit them to patients. However, there is little data on MSSA and MRSA colonization of medical personnel in the emergency services. Additionally, few studies have analyzed the association between personal hygiene of staff and colonization. Therefore, we examined the prevalence of MSSA and MRSA in EMS staff of two German regions and evaluated their personal hygiene behavior. Method: Throat and nasal swabs from 300 EMS workers were analyzed. Both direct and pre-enriched cultures of the swabs were cultivated on culture media to identify MSSA and MRSA. Results were analyzed together with questionnaires about sociodemographic data and a self-assessment of hygiene behavior. Statistical analysis was done using the R statistical software. Results: Of the total 300 swabs, 55% were from paramedics, 39% were from emergency medical technicians (EMT) and 5% were from emergency physicians. With 1%, the MRSA prevalence was comparable to that of the German population, while the MSSA rate - 43.7% - was higher than expected. Colonization with MSSA was significantly associated with poor hand hygiene and male sex, and was inversely correlated to time on the job in EMS. Conclusion: The sample size of 300 and a MRSA prevalence of 1% made a meaningful analysis of potential influencing factors on the prevalence of MRSA infeasible. The comparatively high prevalence of MSSA and the association with decreasing frequency of hand antisepsis suggests an influence of personal hygiene on MSSA colonization. HCW in EMS should be encouraged to make use of their personal protective equipment and practice frequent hand hygiene. The implementation of diagnostic tools such as the Hand Hygiene Self-Assessment Framework of the WHO could be utilized to reveal problems in organizations, followed by an individual program to promote hand hygiene.

11.
Mikrochim Acta ; 191(7): 438, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951285

RESUMO

A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.


Assuntos
Benzidinas , Colorimetria , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Platina , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Colorimetria/métodos , Ouro/química , Platina/química , Porosidade , Benzidinas/química , Peróxido de Hidrogênio/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Vancomicina/química , Técnicas Biossensoriais/métodos , Catálise , Humanos
12.
J Agric Food Chem ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031091

RESUMO

Staphylococcus aureus (S. aureus) is a kind of pathogenic bacteria which can lead to food poisoning, hospital, and community infections. S. aureus and methicillin-resistant S. aureus (MRSA) have become headaches for public health worldwide. Therefore, strengthening the detection of S. aureus and MRSA is a critical step to prevent and control its spread and infection. This review summarized multiple detection methods (electrochemical, optical, and other biosensors) for sensitive and efficient detection of nonresistant and resistant S. aureus. First, we have introduced the principle and methods of detection platform for S. aureus and MRSA. We also contrasted various detection strategies. Finally, the current situation and prospect of S. aureus and MRSA detection in the future are explored in depth, and its development direction of detection methods is also predicted. In this review, we found that although biosensors have shown tremendous brilliance in the field of monitoring, they are currently in the experimental stage. It can be certain that we are very close to entering the commercialization stage. The point-of care testing available to nonprofessionals will become a new direction. We firmly believe that the monitoring system will be more perfect and stable and public life will be healthier and safer.

13.
Int J Pharm ; 661: 124416, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964490

RESUMO

In this work, multicomponent trimethoprim-based pharmaceutical solid systems were developed by mechanochemistry, using coformers from the GRAS list and other active pharmaceutical ingredients. The choice of coformers took into account their potential to increase the aqueous solubility/dissolution rate of TMP or its antibacterial activity. All the binary systems were characterized by thermal analysis, powder X-ray diffraction and infrared spectroscopy, and 3 equimolar systems with FTIR pointing to salts, and 4 eutectic mixtures were identified. The intrinsic dissolution rate of TMP in combination with nicotinic acid (a salt) and with paracetamol (eutectic mixture) were 25% and 5% higher than for pure TMP, respectively. For both Gram-positive and -negative strains, the antibacterial activity of TMP with some of the coformers was improved, since the dosage used was lower than the TMP control. A significant increase in antibacterial activity against E. coli was found for the eutectic mixture with curcumin, with the best results being obtained for the eutectic and equimolar mixtures with ciprofloxacin. Combining trimethoprim with coformers offers an interesting alternative to using trimethoprim alone: multicomponent forms with enhanced TMP dissolution rates were identified, as well as combinations showing enhanced antibacterial activity relatively to the pure drug.

14.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000675

RESUMO

In medicine, the occurrence of antibiotic resistance was becoming a critical concern. At the same time, traditional synthesis methods of antibacterial agents often lead to environmental pollution due to the use of toxic chemicals. To address these problems, this study applies the green synthesis method to create a novel composite using a polymer blend (M8) consisting of chitosan (CS), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and silver nanoparticles. The results show that the highest ratio of AgNO3:M8 was 0.15 g/60 mL, which resulted in a 100% conversion of Ag+ to Ag0 after 10 h of reaction at 80 °C. Hence, using M8, Ag nanoparticles (AgNPs) were synthesized at the average size of 42.48 ± 10.77 nm. The AgNPs' composite (M8Ag) was used to inhibit the growth of Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Salmonella enterica (SAL). At 6.25% dilution of M8Ag, the growth of these mentioned bacteria was inhibited. At the same dilution percentage of M8Ag, PA was killed.

15.
ACS Appl Bio Mater ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046905

RESUMO

Antibacterial photodynamic therapy (APDT) has received increased attention as a treatment for multidrug-resistant bacterial infections caused by antibiotic abuse. However, photosensitizers used in APDT have disadvantages such as water insolubility, self-aggregation, and photobleaching. To address these limitations, metal complexes have been explored. However, the use of such complexes tends to confine their antibacterial effectiveness specific bacterial strains. In this study, we report iron (Fe)- and copper (Cu)-based metallosurfactants as unique moieties for antibacterial photodynamic therapy (PDT) under the illumination of visible light. Briefly, our formulated Fe and Cu metallosurfactants, when combined with a fluorescein photosensitizer, exhibit nearly 100% antibacterial efficacy. This high efficiency is primarily attributed to the enhanced generation of singlet oxygen using FL in the presence of metallosurfactants when targeting bacteria such as Escherichia coli and Staphylococcus aureus under laser light. In vitro experiments further confirmed the superior antimicrobial activity of these metallosurfactants against a diverse range of microbial cultures, encompassing Gram-negative and Gram-positive bacteria as well as fungi. This performance outpaces conventional surfactants like cetyltrimethylammonium chloride and cetylpyridinium chloride. The compelling results from MTT assays and flow cytometry endorsed the substantial enhancement in antimicrobial properties achieved through Fe and Cu doping, all without the need for additional secondary agents. Notably, this synergistic antibacterial approach using metallosurfactants in PDT holds significant promise for the elimination of various bacteria in vivo, with the added advantage of mitigating the emergence of multidrug resistance.

16.
J Neuroinflammation ; 21(1): 179, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044282

RESUMO

BACKGROUND: Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS: A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS: TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION: These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.


Assuntos
Craniotomia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Estafilocócicas , Staphylococcus aureus , Fator de Necrose Tumoral alfa , Animais , Camundongos , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Leucócitos/metabolismo , Modelos Animais de Doenças , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo
17.
J Appl Microbiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066496

RESUMO

AIMS: Staphylococcus aureus is an opportunistic pathogen whose treatment is further complicated by its ability to form biofilms. In this study, we examine the impact of growing S. aureus biofilms on different polymerizing surfaces, specifically agar and agarose, on the pathogen's tolerance to fluoroquinolones. METHODS AND RESULTS: Biofilms of two methicillin-resistant strains of S. aureus were grown on agar or agarose in the presence of the same added nutrients, and their antibiotic susceptibility to two fluoroquinolones, moxifloxacin (MXF) and delafloxacin (DLX), were measured. We also compared the metabolism and extracellular polymeric substances (EPS) production of biofilms that were grown on agar and agarose. CONCLUSIONS: Biofilms that were grown on agarose were consistently more susceptible to antibiotics than those grown on agar. We found that in biofilms that were grown on agar, extracellular protein composition was higher, and adding EPS to agarose-grown biofilms increased their tolerance to DLX to levels that were comparable to agar-grown biofilms.

19.
Int J Environ Health Res ; : 1-12, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033513

RESUMO

Staphylococcus aureus with current universal importance represents a main carrier of emerging antimicrobial resistance determinatives of global health concerns that have developed drug resistance mechanisms to the various available antibiotics. On the other hand, due to the antimicrobial potential of Nigella Sativa oil (NSO), it was hypothesized that incorporation of nano-carriers (NS-SLN and NS-chitosan (CH) nanoparticles) can enhance its antibacterial effects. This study evaluated the physico-chemical and antibacterial characteristics of NS-SLN and NS-CH. TEM images revealed a round shape with clear edges for both nanoparticles, and the average sizes were reported to be 196.4 and 446.6 nm for NS-SLN and NS-CH, respectively. The zeta potential and encapsulation efficiency were -28.9 and 59.4 mV and 73.22% and 88% for NS-SLN and NS-CH, respectively. The Minimum Inhibitory Concentrations for NSO, NS-SLN, and NS-CH against S. aureus were 480, 200, and 80 µg/mL, respectively. The results confirm significantly stronger antibacterial influences of NSO when loaded into chitosan nanoparticles as a potential candidate for nano-delivery of antimicrobial agents.

20.
Antimicrob Agents Chemother ; : e0061124, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046236

RESUMO

As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...