RESUMO
Fruit peels of Plinia cauliflora (Mart.) Kausel are widely used in Brazilian traditional medicine, but no studies have proved the safety of its pharmacological effects on the respiratory, cardiovascular, and central nervous systems. The present study assessed the safety pharmacology of P. cauliflora in New Zealand rabbits. First, an ethanol extract (EEPC) was selected for the pharmacological experiments and chemical characterization. Then, different groups of rabbits were orally treated with EEPC (200 and 2000 mg/kg) or vehicle. Acute behavioral and physiological alterations in the modified Irwin test, respiratory rate, arterial blood gas, and various cardiovascular parameters (i.e., heart rate, blood pressure, and electrocardiography) were evaluated. The main secondary metabolites that were identified in EEPC were ellagic acid, gallic acid, O-deoxyhexosyl quercetin, and the anthocyanin O-hexosyl cyanidin. No significant behavioral or physiological changes were observed in any of the groups. None of the doses of EEPC affected respiratory rate or arterial blood gas, with no changes on blood pressure or electrocardiographic parameters. The present study showed that EEPC did not cause any significant changes in respiratory, cardiovascular, or central nervous system function. These data provide scientific evidence of the effects of this species and important safety data for its clinical use.
RESUMO
OBJECTIVE: Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS: Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS: SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION: In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.
Assuntos
Transtornos da Memória/metabolismo , Mitocôndrias/metabolismo , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Potencial da Membrana Mitocondrial/fisiologia , Dilatação Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos Wistar , Reconhecimento Psicológico/fisiologia , EscopolaminaRESUMO
BACKGROUND: According to the incentive sensitization theory, addiction is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems. After repeated ethanol administration, some animals develop psychomotor sensitization, a phenomenon which occurs simultaneously with the incentive sensitization. Recent evidence suggests the involvement of norepinephrine (NE) in drug addiction, with a critical role in the ethanol reinforcing properties. In this study we evaluated the influence of an agonist (phenylephrine) and an antagonist (prazosin) of alpha1-adrenergic receptors on the development and expression of behavioral sensitization to ethanol. Male Swiss mice, previously treated with ethanol or saline, were challenged with the combined administration of ethanol (or saline) with alpha1-adrenergic drugs. Prazosin (0.1; 0.5 and 1.0 mg/kg) and phenylephrine (1.0 and 2.0 mg/kg) administration blocked the expression of behavioral sensitization to ethanol. In another set of experiments, mice treated with 0.5mg/kg of prazosin+ethanol did not present the development of behavioral sensitization. However, when challenged with ethanol alone, they showed the same sensitized levels of locomotor activity of those presented by mice previously treated with ethanol and saline. Phenylephrine (1.0 mg/kg) treatment did not affect the development of behavioral sensitization. Based on this data, we concluded that the alteration of alpha1-adrenergic receptors functioning, by the administration agonists or antagonists, affected the locomotor sensitization to the stimulant effect of ethanol, suggesting that the normal functioning of the noradrenergic system is essential to its development and expression.
Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Etanol/farmacologia , Atividade Motora/efeitos dos fármacos , Fenilefrina/farmacologia , Prazosina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , CamundongosRESUMO
Polycomb Repressive Complex 2 (PRC2) mediates transcriptional silencing by catalyzing histone H3 lysine 27 trimethylation (H3K27me3), but its role in the maturation of postmitotic mammalian neurons remains largely unknown. We report that the PRC2 paralogs Ezh1 and Ezh2 are differentially expressed during hippocampal development. We show that depletion of Ezh2 leads to increased expression of PSD-95, a critical plasticity gene, and that reduced PSD-95 gene transcription is correlated with enrichment of Ezh2 at the PSD-95 gene promoter; however, the H3K27me3 epigenetic mark is not present at the PSD-95 gene promoter, likely due to the antagonizing effects of the H3S28P and H3K27Ac marks and the activity of the H3K27 demethylases JMJD3 and UTX. In contrast, increased PSD-95 gene transcription is accompanied by the presence of Ezh1 and elongation-engaged RNA Polymerase II complexes at the PSD-95 gene promoter, while knock-down of Ezh1 reduces PSD-95 transcription. These results indicate that Ezh1 and Ezh2 have antagonistic roles in regulating PSD-95 transcription.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Complexo Repressor Polycomb 2/genética , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transcrição GênicaRESUMO
Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 µM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism.
Assuntos
Acetilcolinesterase/metabolismo , Antipsicóticos/farmacologia , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Encéfalo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Prolina/farmacologia , Peixe-Zebra/fisiologia , Animais , Feminino , Haloperidol/farmacologia , Técnicas In Vitro , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Sistema Nervoso Parassimpático/efeitos dos fármacos , Prolina/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Sulpirida/farmacologiaRESUMO
The forced swim test (FST) is a preclinical test to the screening of antidepressants based on rats or mice behaviours, which is also sensitive to stimulants of motor activity. This work standardised and validated a method to register the active and passive behaviours of Swiss mice during the FST in order to strength the specificity of the test. Adult male Swiss mice were subjected to the FST for 6 min without any treatment or after intraperitoneal injection of saline (0.1 ml/10 g), antidepressants (imipramine, desipramine, or fluoxetine, 30 mg/kg) or stimulants (caffeine, 30 mg/kg or apomorphine, 10mg/kg). The latency, frequency and duration of behaviours (immobility, swimming, and climbing) were scored and summarised in bins of 6, 4, 2 or 1 min. Parameters were first analysed using Principal Components Analysis generating components putatively related to antidepressant (first and second) or to stimulant effects (third). Antidepressants and stimulants affected similarly the parameters grouped into all components. Effects of stimulants on climbing were better distinguished of antidepressants when analysed during the last 4 min of the FST. Surprisingly, the effects of antidepressants on immobility were better distinguished from saline when parameters were scored in the first 2 min. The method proposed here is able to distinguish antidepressants from stimulants of motor activity using Swiss mice in the FST. This refinement should reduce the number of mice used in preclinical evaluation of antidepressants.
Assuntos
Antidepressivos/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Natação , Animais , Apomorfina/farmacologia , Cafeína/farmacologia , Desipramina/farmacologia , Fluoxetina/farmacologia , Imipramina/farmacologia , Resposta de Imobilidade Tônica/efeitos dos fármacos , Masculino , Camundongos , Análise de Componente Principal , Fatores de TempoRESUMO
Primeiro esforço coletivo de especialistas, tratando em profundidade da questão dos recursos humanos em saúde na Argentina, Brasil, Paraguai e Uruguai. O livro aborda o processo de integração e reflete sobre a situação do campo dos recursos humanos desses países, com enfoque para a formação, o exercício profissional e o mercado de trabalho - cruzando e analisando dados, comparando-os -, na busca do estabelecimento de um panorama real. Traz, ainda, o Tratado para a Constituição de um Mercado Comum (o Tratado de Assunção) e o Regulamento da Comissão Parlamentar Conjunta do Mercosul.