Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Front Mol Neurosci ; 17: 1350716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828281

RESUMO

The prefrontal cortex (PFC) is a key neural node mediating behavioral responses to stress and the actions of ketamine, a fast-acting antidepressant. The molecular mechanisms underlying these processes, however, are not fully understood. Our recent study revealed a pivotal role of hippocampal Ahnak as a regulator of cellular and behavioral adaptations to chronic stress. However, despite its significant expression in the PFC, the contribution of cortical Ahnak to behavioral responses to stress and antidepressants remains unknown. Here, using a mouse model for chronic social stress, we find that Ahnak expression in the PFC is significantly increased in stress-resilient mice and positively correlated with social interaction after stress exposure. Conditional deletion of Ahnak in the PFC or forebrain glutamatergic neurons facilitates stress susceptibility, suggesting that Ahnak is required for behavioral resilience. Further supporting this notion, Ahnak expression in the PFC is increased after the administration of ketamine or its metabolite (2R, 6R)-hydroxynorketamine (HNK). Moreover, Ahnak deletion in forebrain glutamatergic neurons blocks the restorative behavioral effects of ketamine or HNK in stress-susceptible mice. This forebrain excitatory neuron-specific Ahnak deletion reduces the frequency of mini excitatory postsynaptic currents in layer II/III pyramidal neurons, suggesting that Ahnak may induce its behavioral effects via modulation of glutamatergic transmission in the PFC. Altogether, these data suggest that Ahnak in glutamatergic PFC neurons may be critical for behavioral resilience and antidepressant actions of ketamine or HNK in chronic social stress-exposed mice.

2.
Cell Signal ; 119: 111173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604343

RESUMO

Targeted therapy based on BRD4 and MYC shows promise due to their well-researched oncogenic functions in cancer, but their tumor-suppressive roles are less understood. In this study, we employ a systematic approach to delete exons that encode the low-complexity domain (LCD) of BRD4L in cells by using CRISPR-Cas9. In particular, the deletion of exon 14 (BRD4-E14) results in cellular morphological changes towards spindle-shaped and loosely packed. BRD4-E14 deficient cells show increased cell migration and reduced cell adhesion. The expression of S100A10 was significantly increased in cells lacking E14. BRD4L binds with MYC via the E14-encoded region of the LCD to inhibit the expression of S100A10. In cancer tissues, there is a positive correlation between BRD4 and MYC, while both of these proteins are negatively associated with S100A10 expression. Finally, knocking out the BRD4-E14 region or MYC promotes tumor growth in vivo. Together, these data support a tumor-suppressive role of BRD4L and MYC in some contexts. This discovery emphasizes the significance of a discreetly design and precise patient recruitment in clinical trials that testing cancer therapy based BRD4 and MYC.


Assuntos
Proteínas de Ciclo Celular , Movimento Celular , Proteínas Proto-Oncogênicas c-myc , Proteínas S100 , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas S100/metabolismo , Proteínas S100/genética , Animais , Linhagem Celular Tumoral , Camundongos , Invasividade Neoplásica , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Feminino , Proteínas que Contêm Bromodomínio
3.
Am J Physiol Cell Physiol ; 326(4): C1042-C1053, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372137

RESUMO

Solute carrier organic anion transporter family member 2A1 (SLCO2A1) is a prostaglandin (PG) transporter and serves as the osmosensitive ATP-permeable maxi-anion channel (Maxi-Cl). Since a heterotetrameric complex of annexin A2 (ANXA2) and S100A10 is obligatory for the channel activity, the present study aimed to determine if they regulate SLCO2A1-mediated PG transport. This study examined PGE2 uptake and ATP release in Anxa2 and/or S100a10 knockout (KO) murine breast C127 cells. Deletion of Slco2a1 decreased PGE2-d4 uptake by wild-type (WT) cells in an isotonic medium (290 mosmol/kgH2O). Decreased osmolarity (135 mosmol/kgH2O) stimulated ATP release but did not affect PGE2 uptake kinetics, showing Km (1,280 nM) and Vmax (10.38 pmol/15 s/mg protein) similar to those in isotonic medium (1,227 nM and 10.65 pmol/15 s/mg protein), respectively, in WT cells. Deletion of Anxa2 associated with loss of S100a10 diminished SLCO2A1-mediated ATP release and uncompetitively inhibited PGE2 uptake with lowered Km (376 nM) and Vmax (2.59 pmol/15 s/mg protein). Moreover, the immunoprecipitation assay confirmed the physical interaction of ANXA2 with SLCO2A1 in WT cells. Enforcement of ANXA2 expression to Anxa2 KO cells partially restored PGE2 uptake and increased Km (744.3 nM) and Vmax (9.07 pmol/15 s/mg protein), whereas the uptake clearance (Vmax/Km) did not change much regardless of ANXA2 expression. These results suggest that an ANXA2/S100A10 complex modulates PG transport activity but osmolality has little effect on it; therefore, the bound form of SLCO2A1, which functions as a PG transporter and Maxi-Cl, may exist regardless of changes in the cell volume.NEW & NOTEWORTHY A previous study indicated that the ANXA2/S100A10 complex represents the regulatory component of SLCO2A1-mediated Maxi-Cl channel activity. The present study showed that apparent PGE2 uptake by C127 cells was osmoinsensitive and uncompetitively inhibited by loss of ANXA2 expression, demonstrating that ANXA2 is a regulatory factor of SLCO2A1-mediated PG transport activity.


Assuntos
Anexina A2 , Transportadores de Ânions Orgânicos , Prostaglandinas , Proteínas S100 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anexina A2/metabolismo , Transporte Biológico , Dinoprostona/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Prostaglandinas/metabolismo , Proteínas S100/metabolismo
4.
Int Immunopharmacol ; 128: 111499, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232535

RESUMO

BACKGROUND AND AIMS: S100a10 is a member of the S100 family of proteins, which plays a key role in the depression and tumor metastasis. However, the role of S100a10 is unclear in ulcerative colitis. METHODS: The effect of S100a10 was assessed using a murine ulcerative colitis model which was accompanied by parameters including body weight loss, disease activity index, histological score, colon weight and length. The quantity and role of immune cells was determined by flow cytometry and bone marrow chimeric mice. Neutrophils depletion, adoptive cell transfer and conditional knockout mice were used to ascertain which cells played the key role in ulcerative colitis. The function of neutrophils was evaluated by migration assay, phagocytosis assay, multiplex immunoassay and real-time PCR. RESULTS: In this study, our data showed that S100a10-/- mice were prone to ulcerative colitis induced by dextran sodium sulfate. Neutrophils number increased in colon of S100a10-/- mice after dextran sodium sulfate treatment significantly. Meanwhile, adoptive transfer of neutrophils from wild type mice partially decreased the susceptibility of S100a10-/- mice to dextran sodium sulfate. There was no difference in ulcerative colitis between the groups of S100a10-/- mice without neutrophils and wild type mice. Finally, we found that S100a10-/- neutrophils had stronger function in secretion and synthesis of inflammatory factor. CONCLUSIONS: In one word, these results suggest that S100a10 has a role in inhibiting the pathogenesis of ulcerative colitis through regulation of neutrophils function.


Assuntos
Colite Ulcerativa , Colite , Sulfatos , Animais , Camundongos , Colite/induzido quimicamente , Colite Ulcerativa/patologia , Colo/patologia , Sulfato de Dextrana/farmacologia , Dextranos/efeitos adversos , Dextranos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo
5.
J Cancer ; 14(15): 2931-2945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781076

RESUMO

Background: The incidence of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) is increasing in women. S100A10 overexpression is commonly reported in various malignancies and is closely associated with tumor cell characteristics and prognosis. Methods: The expression of S100A10 and its prognostic relevance were assessed utilizing RNA-seq data from The Cancer Genome Atlas. S100A10 regulation of CESC cell growth and migration was investigated using CCK-8, colony-forming, and Transwell-based approaches. Xenograft model mice were used to examine the in vivo effects of S100A10, and differentially expressed genes (DEGs) linked to S100A10 were identified to explore its functional role in oncogenesis. Associations between S100A10 levels, chemosensitivity, and the immune microenvironment were assessed, and the mutational and methylation status of S100A10 was evaluated using the cBioPortal and MethSurv databases, respectively. Results: S100A10 was upregulated in CESC samples, and higher S100A10 mRNA levels were associated in poor prognostic outcomes. The area under the curve for S100A10 when diagnosing CESC was 0.935, and S100A10 was found to regulate tumor cell proliferation and metastasis both in vitro and in vivo. Overall, 1125 DEGs enriched in crucial CESC progression-associated signaling pathways were identified. S100A10 expression was also associated with the intratumoral immune microenvironment and immune checkpoint activity. Patients expressing elevated S100A10 levels exhibited distinct chemotherapeutic susceptibility, and methylation of the S100A10 gene was correlated with patient survival outcomes. Conclusion: In summary, this research demonstrated that S100A10 plays a crucial role in regulating CESC development, prognosis, and the intratumoral immune microenvironment. Thus, S100A10 shows potential as a prognostic or diagnostic tool and as a potential target for CESC immunotherapy.

6.
Biomolecules ; 13(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37892132

RESUMO

S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.


Assuntos
Anexina A2 , Proteínas S100 , Proteínas S100/metabolismo , Anexina A2/metabolismo , Anexinas , Fenômenos Fisiológicos Celulares
7.
Proc Natl Acad Sci U S A ; 120(43): e2307118120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844241

RESUMO

In various epithelial tissues, the epithelial monolayer acts as a barrier. To fulfill its function, the structural integrity of the epithelium is tightly controlled. When normal epithelial cells detach from the basal substratum and delaminate into the apical lumen, the apically extruded cells undergo apoptosis, which is termed anoikis. In contrast, transformed cells often become resistant to anoikis and able to survive and grow in the apical luminal space, leading to the formation of multilayered structures, which can be observed at the early stage of carcinogenesis. However, the underlying molecular mechanisms still remain elusive. In this study, we first demonstrate that S100A10 and ANXA2 (Annexin A2) accumulate in apically extruded, transformed cells in both various cell culture systems and murine epithelial tissues in vivo. ANXA2 acts upstream of S100A10 accumulation. Knockdown of ANXA2 promotes apoptosis of apically extruded RasV12-transformed cells and suppresses the formation of multilayered epithelia. In addition, the intracellular reactive oxygen species (ROS) are elevated in apically extruded RasV12 cells. Treatment with ROS scavenger Trolox reduces the occurrence of apoptosis of apically extruded ANXA2-knockdown RasV12 cells and restores the formation of multilayered epithelia. Furthermore, ROS-mediated p38MAPK activation is observed in apically delaminated RasV12 cells, and ANXA2 knockdown further enhances the p38MAPK activity. Moreover, the p38MAPK inhibitor promotes the formation of multilayered epithelia of ANXA2-knockdown RasV12 cells. These results indicate that accumulated ANXA2 diminishes the ROS-mediated p38MAPK activation in apically extruded transformed cells, thereby blocking the induction of apoptosis. Hence, ANXA2 can be a potential therapeutic target to prevent multilayered, precancerous lesions.


Assuntos
Anexina A2 , Animais , Camundongos , Anexina A2/genética , Apoptose , Células Epiteliais , Epitélio , Espécies Reativas de Oxigênio
8.
J Biomol Struct Dyn ; : 1-10, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705315

RESUMO

Ca2+-dependent membrane-binding by the Annexin A2/p11 heterotetramer (A2t) plays an important role in various biological processes including fibrinogen activation and exocytosis in neuroendocrine cells. Two models where A2t associates with a single membrane surface were generated and used to perform molecular dynamics simulations. The first model mimics initial A2t-membrane binding through both Annexin A2 (A2) subunits of A2t (TS model) while the second model mimics A2t-binding through a single A2 subunit (OS model). Conformational changes were summarized using principal component analysis (PCA), simulation snapshots, and distance plots from the simulations. The full TS model, including the p11 dimer, fully associates with the membrane adopting a stable structure with little conformational variation as evidence by PCA. The unassociated subunits of the OS model moved toward the membrane. The molecular mechanics/Generalized-Born surface area (MMGBSA) method was applied to investigate the energetics of the models. The MMGBSA results demonstrated that R63 of p11 was the primary contributor to the p11-membrane interaction. The TS model results were both consistent with those found in the literature and provide novel insights about the specific residues driving the A2t-membrane interaction. Additionally, it represents the most complete model of A2t on the membrane surface available.Communicated by Ramaswamy H. Sarma.

9.
Virulence ; 14(1): 2237222, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37482693

RESUMO

Annexin A2 is a Ca2+ regulated protein belonging to the Annexin family and is found in the cytoplasm and cell membrane. It can exist in a monomeric form or in a heterotetrameric form with the S100A10 dimer. The research on Annexin A2 in tumours is currently active, and studies on its role in pathogen infection are increasing. Annexin A2 plays a crucial role in the life cycle of viruses by mediating adhesion, internalization, uncoating, transport, and release. In the case of parasites, bacteria, mycoplasma, fungi, and other pathogens, Annexin A2 binds to the ligand on the pathogen, which mediates the pathogen's adhesion to the host cell, ultimately leading to infection and damage to the host. Furthermore, some studies have developed biological or chemical drugs that target Annexin A2, which have demonstrated promising anti-infective effects. Thus, targeting Annexin A2 may present a promising therapeutic approach for the treatment of diverse infectious diseases. In summary, this paper provides an overview of Annexin A2 and its role in various pathogens. It highlights its regulation of pathogen infection and its potential as a therapeutic target for the treatment of infectious diseases.


Assuntos
Anexina A2 , Doenças Transmissíveis , Humanos , Proteínas S100/metabolismo , Anexina A2/metabolismo , Membrana Celular/metabolismo
10.
J Cancer ; 14(10): 1781-1793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476183

RESUMO

S100A10, a member of the S100 protein family, is upregulated in multiple human malignancies and plays a key role in regulating tumor progression. This study aimed to reveal the underlying mechanism by which S100A10 in regulates the proliferation, migration, and invasion of glioma. The expression and clinical information data of S100A10 were downloaded from public databases (TCGA, CGGA, and GEPIA2). S100A10 expression levels in glioma tumor tissues and adjacent nontumor tissues were compared by immunohistochemistry (IHC). The functional roles of S100A10 in glioma were assessed by cell counting kit-8 (CCK-8) cell proliferation assay, wound healing assay, transwell assay, and flow cytometry. miRDB and double luciferase assay were used to predict and identify potential S100A10 mRNA-complementary miRNAs, and the roles of miR-21-5p in glioma cell were examined by targeted knockdown or overexpression miR-21-5p in glioma cell lines. We found that S100A10 was overexpressed in glioma tissues and predicted a worse prognosis. S100A10 knockdown significantly inhibited glioma cell proliferation, invasion, and migration. Furthermore, we demonstrated that miR-21-5p inhibits glioma proliferation, migration, and invasion by targeting S100A10. This study showed S100A10 was a new prognostic predictor among glioma patients and provided new insights into the pathogenesis of gliomas, suggesting that miR-21-5p /S100A10 axis may serve as a valuable therapeutic target for glioma.

11.
BMC Cancer ; 23(1): 637, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420211

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common human cancers with poor prognosis in the world. HCC has become the second leading cause of cancer-related death in China. It is urgent to identify novel biomarker and valid target to effectively diagnose, treat or predict the prognosis of HCC. It has been reported that S100A family is closely related to cell proliferation and migration of different cancers. However, the values of S100As in HCC remain to be further analyzed. METHODS: We investigated the transcriptional and translational expression of S100As, as well as the value of this family in HCC patients from the various databases. RESULTS: S100A10 was most relevant to HCC. CONCLUSIONS: The results from HCC patients' tissues and different cells also confirmed the role of S100A10 in HCC. Furthermore, we proved that S100A10 could influenced the cell proliferation of HCC cells via ANXA2/Akt/mTOR pathway. However, it would appear that the relationship between S100A10 and HCC is complex and requires more research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Biomarcadores , Proliferação de Células/genética , Linhagem Celular , Prognóstico
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(5): 733-740, 2023 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-37313814

RESUMO

OBJECTIVE: To investigate the effects of expression levels of S100 calcium-binding protein A10 (S100A10) in lung adenocarcinoma (LUAD) on patient prognosis and the regulatory role of S100A10 in lung cancer cell proliferation and metastasis. METHODS: Immunohistochemistry was used to detect the expression levels of S100A10 in LUAD and adjacent tissues, and the relationship between S100A10 expression and clinicopathological parameters and prognosis of the patients was statistically analyzed. The lung adenocarcinoma expression dataset in TCGA database was analyzed using gene enrichment analysis (GSEA) to predict the possible regulatory pathways of S100A10 in the development of lung adenocarcinoma. Lactate production and glucose consumption of lung cancer cells with S100A10 knockdown or overexpression were analyzed to assess the level of glycolysis. Western blotting, CCK-8 assay, EdU-594 assay, and Transwell assays were performed to determine the expression level of S100A10 protein, proliferation and invasion ability of lung cancer cells. A549 cells with S100A10 knockdown and H1299 cells with S100A10 overexpression were injected subcutaneously in nude mice, and tumor growth was observed. RESULTS: The expression level of S100A10 was significantly upregulated in LUAD tissues as compared with the adjacent tissues, and an elevated S100A10 expression level was associated with lymph node metastasis, advanced tumor stage and distant organ metastasis (P < 0.05), but not with tumor differentiation or the patients' age or gender (P > 0.05). Survival analysis showed that elevated S100A10 expressions in the tumor tissue was associated with a poor outcome of the patients (P < 0.001). In the lung cancer cells, S100A10 overexpression significantly promoted cell proliferation and invasion in vitro (P < 0.001). GSEA showed that the gene sets of glucose metabolism, glycolysis and mTOR signaling pathway were significantly enriched in high expressions of S100A10. In the tumor-bearing nude mice, S100A10 overexpression significantly promoted tumor growth, while S100A10 knockdown obviously suppressed tumor cell proliferation (P < 0.001). CONCLUSION: S100A10 overexpression promotes glycolysis by activating the Akt-mTOR signaling pathway to promote proliferation and invasion of lung adenocarcinoma cells.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas S100 , Animais , Camundongos , Adenocarcinoma de Pulmão/patologia , Proliferação de Células , Neoplasias Pulmonares/patologia , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Proteínas S100/genética
13.
Front Immunol ; 14: 1157179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063869

RESUMO

Introduction: Although many studies have demonstrated the existing neurological symptoms in COVID-19 patients, the mechanisms are not clear until now. This study aimed to figure out the critical molecular and immune infiltration situations in the brain of elderly COVID-19 patients. Methods: GSE188847 was used for the differential analysis, WGCNA, and immune infiltration analysis. We also performed GO, KEGG, GSEA, and GSVA for the enrich analysis. Results: 266 DEGs, obtained from the brain samples of COVID-19 and non-COVID-19 patients whose ages were over 70 years old, were identified. GO and KEGG analysis revealed the enrichment in synapse and neuroactive ligand-receptor interaction in COVID-19 patients. Further analysis found that asthma and immune system signal pathways were significant changes based on GSEA and GSVA. Immune infiltration analysis demonstrated the imbalance of CD8+ T cells, neutrophils, and HLA. The MEpurple module genes were the most significantly different relative to COVID-19. Finally, RPS29, S100A10, and TIMP1 were the critical genes attributed to the progress of brain damage. Conclusion: RPS29, S100A10, and TIMP1 were the critical genes in the brain pathology of COVID-19 in elderly patients. Our research has revealed a new mechanism and a potential therapeutic target.


Assuntos
Asma , Lesões Encefálicas , COVID-19 , Idoso , Humanos , COVID-19/genética , Encéfalo , Genes Reguladores
14.
Proteins ; 91(8): 1042-1053, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36965169

RESUMO

Annexin A2 (A2) is a member of the Annexin family, which contains Ca2+ -regulated phospholipid-binding proteins. Annexins associate with S100 proteins to form heterotetramers. The A2/S100A10 heterotetramer (A2t) is the most extensively studied of these heterotetramers. It induces membrane microdomain formation, causes membrane budding, and facilitates proliferation of some cancers. In this work, the first molecular dynamics (MD) study on the complete A2t of 868 amino acids was performed. MD trajectories of more than 600 ns each were generated for complete A2t complexes with and without Ca2+ ions. The outward extension of membrane-binding residues A2-K279 and A2-K281 was shown to be inhibited in the absence of Ca2+ as they were captured by Ca2+ -binding residue D322. F-actin binding residue A2-D339 was observed to occupy either an exposed or buried state in the absence of Ca2+ , while it only occupied the buried state in the presence of Ca2+ . The observed motions of the A2t subunits are highly organized with a strongly correlated central region which is negatively correlated with the periphery of the complex. The central region contains the S100A10 (p11) dimer, A2-N, and A2-I, while the periphery contains A2-II, A2-III, and A2-IV. Novel interactions between A2 and p11 were identified. A2 residues outside of A2-N (K80, R77, E82, and R145) had strong interactions with p11. Residue R145 of A2 may have a significant effect on the dynamics of the system, with its interaction resulting in asymmetric motions of A2. The presented results provide novel insights to inform future experimental studies.


Assuntos
Anexina A2 , Anexina A2/química , Anexina A2/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Ligação Proteica , Fosfolipídeos , Íons/metabolismo
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-986983

RESUMO

OBJECTIVE@#To investigate the effects of expression levels of S100 calcium-binding protein A10 (S100A10) in lung adenocarcinoma (LUAD) on patient prognosis and the regulatory role of S100A10 in lung cancer cell proliferation and metastasis.@*METHODS@#Immunohistochemistry was used to detect the expression levels of S100A10 in LUAD and adjacent tissues, and the relationship between S100A10 expression and clinicopathological parameters and prognosis of the patients was statistically analyzed. The lung adenocarcinoma expression dataset in TCGA database was analyzed using gene enrichment analysis (GSEA) to predict the possible regulatory pathways of S100A10 in the development of lung adenocarcinoma. Lactate production and glucose consumption of lung cancer cells with S100A10 knockdown or overexpression were analyzed to assess the level of glycolysis. Western blotting, CCK-8 assay, EdU-594 assay, and Transwell assays were performed to determine the expression level of S100A10 protein, proliferation and invasion ability of lung cancer cells. A549 cells with S100A10 knockdown and H1299 cells with S100A10 overexpression were injected subcutaneously in nude mice, and tumor growth was observed.@*RESULTS@#The expression level of S100A10 was significantly upregulated in LUAD tissues as compared with the adjacent tissues, and an elevated S100A10 expression level was associated with lymph node metastasis, advanced tumor stage and distant organ metastasis (P < 0.05), but not with tumor differentiation or the patients' age or gender (P > 0.05). Survival analysis showed that elevated S100A10 expressions in the tumor tissue was associated with a poor outcome of the patients (P < 0.001). In the lung cancer cells, S100A10 overexpression significantly promoted cell proliferation and invasion in vitro (P < 0.001). GSEA showed that the gene sets of glucose metabolism, glycolysis and mTOR signaling pathway were significantly enriched in high expressions of S100A10. In the tumor-bearing nude mice, S100A10 overexpression significantly promoted tumor growth, while S100A10 knockdown obviously suppressed tumor cell proliferation (P < 0.001).@*CONCLUSION@#S100A10 overexpression promotes glycolysis by activating the Akt-mTOR signaling pathway to promote proliferation and invasion of lung adenocarcinoma cells.


Assuntos
Animais , Camundongos , Humanos , Adenocarcinoma de Pulmão/patologia , Proliferação de Células , Neoplasias Pulmonares/patologia , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas S100/genética
16.
Front Cell Neurosci ; 17: 1276506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188669

RESUMO

Accaumulating studies focus on the effects of C3-positive A1-like phenotypes and S100A10-positive A2-like phenotypes of reactive astrocytes on spinal cord injury (SCI), however the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI remain poorly understood. Through transgenic mice and lineage tracing, we aimed to determine the origins of C3- and S100A10-positive reactive astrocytes. Meanwhile, the distribution and dynamic changes in C3- and S100A10-positive reactive astrocytes were also detected in juvenile and adult SCI mice models and cultured astrocytes. Combing with bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq) and bioinformatic analysis, we further explored the dynamic transcripts changes of C3- and S100A10-positive reactive astrocytes after SCI. We confirmed that resident astrocytes produced both C3- and S100A10-positive reactive astrocytes, whereas ependymal cells regenerated only S100A10-positive reactive astrocytes in lesion area. Importantly, C3-positive reactive astrocytes were predominantly activated in adult SCI mice, while S100A10-positive reactive astrocytes were hyperactivated in juvenile mice. Furthermore, we observed that C3- and S100A10-positive reactive astrocytes had a dynamic transformation process at different time in vitro and vivo, and a majority of intermediate states of C3- and S100A10-positive reactive astrocytes were found during transformation. RNA-seq and scRNA-seq results further confirmed that the transcripts of C3-positive reactive astrocytes and their lipid toxicity were gradually increased with time and age. In contrast, S100A10-positive reactive astrocytes transcripts increased at early time and then gradually decreased after SCI. Our results provide insight into the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI, which would be valuable resources to further target C3- and S100A10-positive reactive astrocytes after SCI.

17.
Neurochem Res ; 47(12): 3733-3744, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103106

RESUMO

Spinal cord injury (SCI) usually results in loss or reduction in motor and sensory functions. Despite extensive research, no available therapy can restore the lost functions after SCI. Reactive astrocytes play a pivotal role in SCI. Rho kinase inhibitors have also been shown to promote functional recovery of SCI. However, the role of Rho kinase inhibitors in reactive astrocytic phenotype switch within SCI remains largely unexplored. In this study, astrocytes were treated with proinflammatory cytokines and/or the Rho kinase inhibitor Y27632. Concomitantly the phenotype and morphology of astrocytes were examined. Meanwhile, the SCI model of SD rats was established, and nerve functions were evaluated following treatment with Y27632. Subsequently, the number of A1 astrocytes in the injured area was observed and analyzed. Eventually, the expression levels of nuclear factor kappa B (NF-κB), C3, and S100A10 were measured. The present study showed that the Rho kinase inhibitor Y27632 improved functional recovery of SCI and elevated the proliferation and migration abilities of the astrocytes. In addition, Y27632 treatment initiated the switch of astrocytes morphology from a flattened shape to a process-bearing shape and transformed the reactive astrocytes A1 phenotype to an A2 phenotype. More importantly, further investigation suggested that Y27632 was actively involved in promoting the functional recovery of SCI in rats by inhabiting the ROCK/NF-κB/C3 signaling pathway. Together, Rho kinase inhibitor Y27632 effectively promotes the functional recovery of SCI by shifting astrocyte phenotype and morphology. Furthermore, the pro-regeneration event is strongly associated with the ROCK/NF-κB/C3 signal pathway.


Assuntos
Astrócitos , Inibidores de Proteínas Quinases , Traumatismos da Medula Espinal , Animais , Ratos , Astrócitos/metabolismo , NF-kappa B/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
18.
World Neurosurg ; 165: e650-e663, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779750

RESUMO

OBJECTIVE: Previous studies have demonstrated the role of S100A10 in the progression of several tumors; however, few studies have investigated its immunological characteristics in adult gliomas. In this study, we systematically explored its biological features and clinical significance in adult gliomas. METHODS: Altogether, 325 glioma cases from the Chinese Glioma Genome Atlas and 699 glioma cases from The Cancer Genome Atlas were included as the training and validation cohorts. R software was used for data analysis and mapping using the RNA sequencing data from these cases. One-way analysis of variance and Student's t-test were used to assess the differences between the groups. Differences were considered statistically significant at P < 0.05. RESULTS: We found that S100A10 was remarkably highly expressed in high-grade glioma, isocitrate dehydrogenase wild type, 1p19q noncodeletion type, O6-methylguanine-DNA methyltransferase promoter unmethylation type, and mesenchymal-like molecular subtype. S100A10 specifically and sensitively indicates the mesenchymal-like molecular subtype. Upregulated S100A10 levels were independently correlated with poor survival. S100A10-related biological processes in gliomas mainly concentrate on immunoreaction and inflammatory response. We then proved that S100A10 was positively related to most inflammatory metagenes, except IgG, including HCK, LCK, MHC II, STAT1, and interferon. More importantly, the levels of glioma-infiltrating immune cells were positively associated with the expression of S100A10, especially in tumor-related macrophages, regulatory T cells, and myeloid-derived suppressor cells. CONCLUSIONS: S100A10 is closely related to malignant pathological subtypes, worse prognosis, and immunosuppressive immune cell infiltration in adult gliomas, making it a promising biomarker and potential target in the diagnosis, treatment, and prognostic assessment of gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Imunoglobulina G , Terapia de Imunossupressão , Interferons , Isocitrato Desidrogenase/genética , O(6)-Metilguanina-DNA Metiltransferase , Prognóstico
19.
Bioengineered ; 13(5): 12298-12308, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35579448

RESUMO

As an aggressive musculoskeletal malignancy, osteosarcoma (OSa) is popular among young adults and teenagers worldwide. S100 calcium-binding protein A10 (S100A10) functioned as a novel tumor-promoting protein in several human cancers. However, its role in OSa remains obscure. In this study, gene and protein levels were respectively determined by RT-qPCR or Western blotting. OSa cell proliferation, apoptosis, and metastasis were evaluated via CCK-8, colony formation, flow cytometry, and Transwell assays. To assess the glycolysis level, glucose consumption and lactate production were detected. It was found S100A10 was highly expressed in OSa tissues and cell lines. Besides, S100A10 facilitated proliferation and metastasis, and inhibited apoptosis in OSa cells. In addition, S100A10 regulated OSa cell proliferation, metastasis and apoptosis via mediating the glycolysis process. Furthermore, S100A10-mediated AKT/mTOR signaling accelerated glycolysis, thereby promoting malignant behaviors in OSa cells. Taken together, our findings indicated that S100A10 might promote malignant phenotypes of OSa cells by accelerating glycolysis and activating the AKT/mTOR signaling, providing a promising target for OSa treatment.


Assuntos
Anexina A2 , Neoplasias Ósseas , Osteossarcoma , Proteínas Proto-Oncogênicas c-akt , Proteínas S100 , Serina-Treonina Quinases TOR , Adolescente , Anexina A2/metabolismo , Apoptose/genética , Benzenoacetamidas , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas S100/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Inflamm Res ; 71(3): 369-376, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35217896

RESUMO

BACKGROUND: Excessive inflammation has been implicated in the immunopathogenesis of coronavirus disease 2019 (COVID-19). In the current study, the involvement of S100 calcium binding protein S100A4, S100A9, and S100A10 in the inflammatory settings of COVID-19 patients were evaluated. METHODS: Peripheral blood samples were obtained from 65 COVID-19 subjects and 50 healthy controls. From the blood samples, RNA was extracted and cDNA was synthesized, and then the mRNA expression levels of S100A4, S100A9, and S100A10 were measured by Real-time PCR. RESULTS: The mRNA expression of S100A4 (fold change [FC] = 1.45, P = 0.0011), S100A9 (FC = 1.47, P = 0.0013), and S100A10 (FC = 1.35, P = 0.0053) was significantly upregulated in COVID-19 patients than controls. The mRNA expression of S100A4 (FC = 1.43, P = 0.0071), (FC = 1.66, P = 0.0001), and S100A10 (FC = 1.63, P = 0.0003) was significantly upregulated in the severe COVID-19 subjects than mild-to-moderate subjects. There was a significant positive correlation between mRNA expression of S100A4 (ρ = 0.49, P = 0.030), S100A9 (ρ = 0.55, P = 0.009), and S100A10 (ρ = 0.39, P = 0.040) and D-dimer in the COVID-19 patients. The AUC for S100A4, S100A9, and S100A10 mRNAs were 0.79 (95% CI 0.66-0.92, P = 0.004), 0.80 (95% CI 0.67-0.93, P = 0.002), and 0.71 (95% CI 0.56-0.85, P = 0.010), respectively. CONCLUSIONS: S100A4, S100A9, and S100A10 play a role in the inflammatory conditions in COVID-19 patients and have potential in prognosis of severe form of COVID-19. Targeting these modules, hopefully, might confer a therapeutic tool in preventing sever symptoms in the COVID-19 patients.


Assuntos
Anexina A2/genética , COVID-19/genética , Calgranulina B/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteínas S100/genética , SARS-CoV-2 , Adulto , Idoso , COVID-19/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/sangue , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...