Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Cureus ; 16(6): e61837, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975383

RESUMO

Brugada syndrome (BrS) is an inherited arrhythmogenic disorder marked by distinctive ST-segment elevations on electrocardiograms (ECG) and an increased risk of sudden cardiac death. Characterized by mutations primarily in the SCN5A gene, BrS disrupts cardiac ion channel function, leading to abnormal electrical activity and arrhythmias. Although BrS primarily affects young, healthy males, it poses significant diagnostic challenges due to its often concealed or intermittent ECG manifestations and clinical presentation that can mimic other cardiac disorders. Current management strategies focus on symptom control and prevention of sudden death, with implantable cardioverter-defibrillators (ICD) serving as the primary intervention for high-risk patients. However, the complications associated with ICDs and the lack of effective pharmacological options necessitate a cautious and personalized approach. Recent advancements in catheter ablation have shown promise, particularly for managing ventricular fibrillation (VF) storms and reducing ICD shocks. Additionally, pharmacological treatments such as quinidine have been effective in specific cases, though their use is limited by availability and side effects. This review highlights significant gaps in the BrS literature, particularly in terms of long-term management and novel therapeutic approaches. The importance of genetic screening and tailored treatment strategies to better identify and manage at-risk individuals is emphasized. The review aims to enhance the understanding of BrS and improve patient outcomes, advocating for a multidisciplinary approach to this complex syndrome.

2.
Front Cardiovasc Med ; 11: 1406614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883985

RESUMO

Background: Lacosamide is frequently used as a mono- or adjunctive therapy for the treatment of adults with epilepsy. Although lacosamide is known to act on both neuronal and cardiac sodium channels, potentially leading to cardiac arrhythmias, including Brugada syndrome (BrS), its adverse effects in individuals with genetic susceptibility are less understood. Case: We report a 33-year-old female with underlying epilepsy who presented to the emergency department with a four-day history of seizure clusters, and was initially treated with lacosamide therapy. During the intravenous lacosamide infusion, the patient developed sudden cardiac arrest caused by ventricular arrhythmias necessitating resuscitation. Of note, the patient had a family history of sudden cardiac death. Workup including routine laboratory results, 12-lead electrocardiogram (ECG), echocardiogram, and coronary angiogram was non-specific. However, a characteristic type 1 Brugada ECG pattern was identified by ajmaline provocation testing; thus, confirming the diagnosis of BrS. Subsequently, the genotypic diagnosis was confirmed by Sanger sequencing, which revealed a heterozygous mutation (c.2893C>T, p.Arg965Cys) in the SCN5A gene. Eventually, the patient underwent implantable cardioverter-defibrillator implantation and was discharged with full neurological recovery. Conclusion: This case highlights a rare but lethal adverse event associated with lacosamide treatment in patients with genetic susceptibility. Further research is warranted to investigate the interactions between lacosamide and SCN5A variants.

3.
Adv Exp Med Biol ; 1441: 295-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884718

RESUMO

Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.


Assuntos
Redes Reguladoras de Genes , Cardiopatias Congênitas , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Coração/fisiologia , Miocárdio/metabolismo
4.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884719

RESUMO

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido , Animais , Humanos , Processamento Alternativo/genética , Regulação da Expressão Gênica , Edição de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
5.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884729

RESUMO

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Assuntos
Comunicação Interventricular , Humanos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Comunicação Interventricular/genética , Mutação , Fatores de Transcrição/genética
6.
Adv Exp Med Biol ; 1441: 1057-1090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884769

RESUMO

Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.


Assuntos
Arritmias Cardíacas , Modelos Animais de Doenças , Animais , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/metabolismo , Transdução de Sinais/genética
7.
Europace ; 26(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38875491

RESUMO

AIMS: Patients with mutations in SCN5A encoding NaV1.5 often display variable severity of electrical and structural alterations, but the underlying mechanisms are not fully elucidated. We here investigate the combined modulatory effect of genetic background and age on disease severity in the Scn5a1798insD/+ mouse model. METHODS AND RESULTS: In vivo electrocardiogram and echocardiograms, ex vivo electrical and optical mapping, and histological analyses were performed in adult (2-7 months) and aged (8-28 months) wild-type (WT) and Scn5a1798insD/+ (mutant, MUT) mice from the FVB/N and 129P2 inbred strains. Atrio-ventricular (AV) conduction, ventricular conduction, and ventricular repolarization are modulated by strain, genotype, and age. An aging effect was present in MUT mice, with aged MUT mice of both strains showing prolonged QRS interval and right ventricular (RV) conduction slowing. 129P2-MUT mice were severely affected, with adult and aged 129P2-MUT mice displaying AV and ventricular conduction slowing, prolonged repolarization, and spontaneous arrhythmias. In addition, the 129P2 strain appeared particularly susceptible to age-dependent electrical, functional, and structural alterations including RV conduction slowing, reduced left ventricular (LV) ejection fraction, RV dilatation, and myocardial fibrosis as compared to FVB/N mice. Overall, aged 129P2-MUT mice displayed the most severe conduction defects, RV dilatation, and myocardial fibrosis, in addition to the highest frequency of spontaneous arrhythmia and inducible arrhythmias. CONCLUSION: Genetic background and age both modulate disease severity in Scn5a1798insD/+ mice and hence may explain, at least in part, the variable disease expressivity observed in patients with SCN5A mutations. Age- and genetic background-dependent development of cardiac structural alterations furthermore impacts arrhythmia risk. Our findings therefore emphasize the importance of continued assessment of cardiac structure and function in patients carrying SCN5A mutations.


Assuntos
Arritmias Cardíacas , Modelos Animais de Doenças , Fibrose , Predisposição Genética para Doença , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Animais , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Fatores Etários , Índice de Gravidade de Doença , Sistema de Condução Cardíaco/fisiopatologia , Potenciais de Ação , Eletrocardiografia , Fenótipo , Patrimônio Genético , Camundongos da Linhagem 129 , Masculino , Frequência Cardíaca/genética , Miocárdio/patologia , Envelhecimento/genética
8.
Biochem Biophys Res Commun ; 723: 150175, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38820625

RESUMO

BACKGROUND: Variants of the SCN5A gene, which encodes the NaV1.5 cardiac sodium channel, have been linked to arrhythmic disorders associated with dilated cardiomyopathy (DCM). However, the precise pathological mechanisms remain elusive. The present study aimed to elucidate the pathophysiological consequences of the DCM-linked Nav1.5/R219H variant, which is known to generate a gating pore current, using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in monolayers. METHODS: Ventricular- and atrial-like hiPSC-CM monolayers were generated from DCM patients carrying the R219H SCN5A variant as well as from healthy control individuals. CRISPR-corrected hiPSC-CMs served as isogenic controls. Simultaneous optical mapping of action potentials (APs) and calcium transients (CaTs) was employed to measure conduction velocities (CVs) and AP durations (APDs) and served as markers of electrical excitability. Calcium handling was evaluated by assessing CaT uptake (half-time to peak), recapture (tau of decay), and durations (TD50 and TD80). A multi-electrode array (MEA) analysis was conducted on hiPSC-CM monolayers to measure field potential (FP) parameters, including corrected Fridericia FP durations (FPDc). RESULTS: Our results revealed that CVs were significantly reduced by more than 50 % in both ventricular- and atrial-like hiPSC-CM monolayers carrying the R219H variant compared to the control group. APDs were also prolonged in the R219H group compared to the control and CRISPR-corrected groups. CaT uptake, reuptake, and duration were also markedly delayed in the R219H group compared to the control and CRISPR-corrected groups in both the ventricular- and the atrial-like hiPSC-CM monolayers. Lastly, the MEA data revealed a notably prolonged FPDc in the ventricular- and atrial-like hiPSC-CMs carrying the R219H variant compared to the control and isogenic control groups. CONCLUSIONS: These findings highlight the impact of the gating pore current on AP propagation and calcium homeostasis within a functional syncytium environment and offer valuable insights into the potential mechanisms underlying DCM pathophysiology.


Assuntos
Potenciais de Ação , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/citologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/patologia , Cálcio/metabolismo , Ativação do Canal Iônico , Células Cultivadas , Fenômenos Eletrofisiológicos
9.
Heart Rhythm ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750908

RESUMO

BACKGROUND: Cardiac voltage-gated sodium channel alpha subunit 5 (NaV1.5) encoded by SCN5A is associated with arrhythmia disorders. However, the molecular mechanism underlying NaV1.5 expression remains to be fully elucidated. Previous studies have reported that the 14-3-3 family acts as an adaptor involved in regulating kinetic characteristics of cardiac ion channels. OBJECTIVE: The purpose of this study was to establish 14-3-3ε/YWHAE, a member of the 14-3-3 family, as a crucial regulator of NaV1.5 and to explore the potential role of 14-3-3ε in the heart. METHODS: Western blotting, patch clamping, real-time reverse transcription-polymerase chain reaction, RNA immunoprecipitation, electrocardiogram recording, echocardiography, and histologic analysis were performed. RESULTS: YWHAE overexpression significantly reduced the expression level of SCN5A mRNA and sodium current density, whereas YWHAE knockdown significantly increased SCN5A mRNA expression and sodium current density in HEK293/NaV1.5 and H9c2 cells. Similar results were observed in mice injected with adeno-associated virus serotype 9-mediated YWHAE knockdown. The effect of 14-3-3ε on NaV1.5 expression was abrogated by knockdown of TBX5, a transcription factor of NaV1.5. An interaction between 14-3-3ε protein and TBX5 mRNA was identified, and YWHAE overexpression significantly decreased TBX5 mRNA stability without affecting SCN5A mRNA stability. In addition, mice subjected to adeno-associated virus serotype 9-mediated YWHAE knockdown exhibited shorter R-R intervals and higher prevalence of premature ventricular contractions. CONCLUSION: Our data unveil a novel regulatory mechanism of NaV1.5 by 14-3-3ε and highlight the significance of 14-3-3ε in transcriptional regulation of NaV1.5 expression and cardiac arrhythmias.

10.
Eur Heart J ; 45(26): 2320-2332, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38747976

RESUMO

BACKGROUND AND AIMS: Brugada syndrome (BrS) is an inherited arrhythmia with a higher disease prevalence and more lethal arrhythmic events in Asians than in Europeans. Genome-wide association studies (GWAS) have revealed its polygenic architecture mainly in European populations. The aim of this study was to identify novel BrS-associated loci and to compare allelic effects across ancestries. METHODS: A GWAS was conducted in Japanese participants, involving 940 cases and 1634 controls, followed by a cross-ancestry meta-analysis of Japanese and European GWAS (total of 3760 cases and 11 635 controls). The novel loci were characterized by fine-mapping, gene expression, and splicing quantitative trait associations in the human heart. RESULTS: The Japanese-specific GWAS identified one novel locus near ZSCAN20 (P = 1.0 × 10-8), and the cross-ancestry meta-analysis identified 17 association signals, including six novel loci. The effect directions of the 17 lead variants were consistent (94.1%; P for sign test = 2.7 × 10-4), and their allelic effects were highly correlated across ancestries (Pearson's R = .91; P = 2.9 × 10-7). The genetic risk score derived from the BrS GWAS of European ancestry was significantly associated with the risk of BrS in the Japanese population [odds ratio 2.12 (95% confidence interval 1.94-2.31); P = 1.2 × 10-61], suggesting a shared genetic architecture across ancestries. Functional characterization revealed that a lead variant in CAMK2D promotes alternative splicing, resulting in an isoform switch of calmodulin kinase II-δ, favouring a pro-inflammatory/pro-death pathway. CONCLUSIONS: This study demonstrates novel susceptibility loci implicating potentially novel pathogenesis underlying BrS. Despite differences in clinical expressivity and epidemiology, the polygenic architecture of BrS was substantially shared across ancestries.


Assuntos
Síndrome de Brugada , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Síndrome de Brugada/genética , Japão/epidemiologia , Masculino , Europa (Continente)/epidemiologia , Predisposição Genética para Doença/genética , Feminino , População Branca/genética , Pessoa de Meia-Idade , Povo Asiático/genética , Estudos de Casos e Controles , Adulto , Polimorfismo de Nucleotídeo Único/genética
11.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758505

RESUMO

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Assuntos
Cardiomegalia , Isoproterenol , Canal de Sódio Disparado por Voltagem NAV1.5 , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ratos , Linhagem Celular , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Animais , Técnicas de Silenciamento de Genes , Humanos , Mioblastos Cardíacos/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica/genética
12.
Card Electrophysiol Clin ; 16(2): 211-218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749643

RESUMO

The following case series presents three different pediatric patients with SCN5A-related disease. In addition, family members are presented to demonstrate the variable penetrance that is commonly seen. Identifying features of this disease is important, because even in the very young, SCN5A disorders can cause lethal arrhythmias and sudden death.


Assuntos
Arritmias Cardíacas , Síndrome do QT Longo , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Masculino , Feminino , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/diagnóstico , Criança , Eletrocardiografia , Pré-Escolar , Adolescente , Lactente
13.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731905

RESUMO

A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.


Assuntos
Cricetulus , Canal de Sódio Disparado por Voltagem NAV1.5 , Linhagem , Penetrância , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Humanos , Animais , Células CHO , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Espanha , Mutação com Perda de Função , Fenótipo , Mutação
14.
Heart Rhythm ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614189

RESUMO

BACKGROUND: A rare gene variant in SCN5A can be found in approximately 20%-25% of patients with Brugada syndrome (BrS). OBJECTIVE: The aim of this systematic review and meta-analysis was to evaluate the differences in clinical characteristics of BrS patients with and without SCN5A rare variants and the prognostic role of SCN5A for ventricular arrhythmias in BrS. METHODS: PubMed and Cochrane Central Register of Controlled Trials (CENTRAL) were systematically searched from inception to January 2024 to identify all relevant studies. Studies were analyzed if they included patients diagnosed with BrS in whom genetic testing for SCN5A variants was performed and arrhythmic outcomes were reported. RESULTS: A total of 17 studies with 3568 BrS patients, of whom 3030 underwent genetic testing for SCN5A variants, fulfilled the eligibility criteria and were included. Compared with SCN5A- patients, SCN5A+ BrS patients more frequently had spontaneous type 1 electrocardiogram, history of syncope, and documented arrhythmias. Furthermore, higher PQ and QRS intervals in SCN5A+ BrS patients compared with SCN5A- have been found. The pooled analysis demonstrated a significant association between the presence of SCN5A rare variants in BrS patients and the risk of major arrhythmic events, with a pooled odds ratio of 2.14 (95% confidence interval, 1.53-2.99; I2 = 29%). CONCLUSION: SCN5A+ BrS patients showed a worse clinical phenotype compared with SCN5A-. The pooled analysis demonstrated a significant association between SCN5A+ mutation status and the risk of major arrhythmic events in BrS patients.

15.
Front Cardiovasc Med ; 11: 1334096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559671

RESUMO

Background: Brugada syndrome (BrS) is a channelopathy that can lead to sudden cardiac death in the absence of structural heart disease. Patients with BrS can be asymptomatic or present with symptoms secondary to polymorphic ventricular tachycardia or ventricular fibrillation. Even though BrS can exhibit autosomal dominant inheritance, it is not easy to identify the phenotype and genotype in a family thoroughly. Case: We report the case of a 20-year-old man with variants in SCN5A and RyR2 genes who was resuscitated from sudden cardiac death during sleep due to a ventricular fibrillation. The patient did not have underlying diseases. The routine laboratory results, imaging study, coronary angiogram, and echocardiogram (ECG) were normal. A type 1 BrS pattern was identified in one resting ECG. Furthermore, prominent J wave accentuation with PR interval prolongation was identified during therapeutic hypothermia. Therefore, we were easily able to diagnose BrS. For secondary prevention, the patient underwent implantable cardioverter defibrillator implantation. Before discharge, a genetic study was performed using next-generation sequencing. Genotyping was performed in the first-degree relatives, and ECG evaluations of almost all maternal and paternal family members were conducted. The proband and his mother showed SCN5A-R376H and RyR2-D4038Y variants. However, his mother did not show the BrS phenotype on an ECG. One maternal aunt and uncle showed BrS phenotypes. Conclusion: Genetics alone cannotdiagnose BrS. However, genetics could supply evidence or direction for evaluating ECG phenotypes in family groups. This case report shows how family evaluation using ECGs along with a genetic study can be used in BrS diagnosis.

16.
J Innov Card Rhythm Manag ; 15(3): 5810-5812, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38584746

RESUMO

Multifocal ectopic Purkinje-related premature contractions are a unique electrophysiological finding that can be characteristic of a rare sodium channelopathy. We describe the medical management of this rare channelopathy in a patient who was pregnant.

17.
ESC Heart Fail ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504463

RESUMO

We report the case of a 36-year-old woman who presented to the emergency department complaining of palpitations and asthenia. Investigations showed frequent ventricular ectopy and severe left ventricular ejection fraction impairment. She was diagnosed with a peculiar condition defined multifocal ectopic premature Purkinje-related contractions syndrome, which in some cases can be associated with a dilated cardiomyopathy phenotype. Genetic testing showed a novel mutation in the SCN5A gene (c.673C > G). In the context of acute left ventricular dysfunction in a young patient, we discuss the clinical presentation of this rare condition and its clinical management, as well as its genetic substrate.

18.
JACC Case Rep ; 29(5): 102223, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38464806

RESUMO

Multifocal ectopic Purkinje-related premature contraction (MEPPC) is an autosomal dominant SCN5A channelopathy characterized by frequent multiform premature ventricular contractions originating from the His-Purkinje system. We present a patient with an MEPPC phenotype whose genetic testing identified a pathogenic SCN5A (HGNC:10593) variant amenable to precision antiarrhythmic therapy with flecainide.

19.
J Cardiovasc Electrophysiol ; 35(4): 708-714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348526

RESUMO

BACKGROUND: Brugada syndrome (BrS) is characterized by ST-segment elevation in the right precordial leads, which is not explained by ischemia, electrolyte disturbances, or obvious structural heart disease. AIM: In present study, we aim to evaluate presentation, long-term outcome, genetic findings, and therapeutic interventions in patients with BrS. METHODS: Between September 2001 and June 2022, all consecutive patients with diagnosis of BrS were enrolled in the present study. All patients gave written informed consent for the procedure, and the local ethical committee approved the study. RESULTS: Of the 76 cases, 79% were proband and 21% were detected during screening after diagnosis of BrS in a family member. Thirty-three (43%) patients had a typical spontaneous electrocardiogram (ECG) pattern. Thirty percent of the patients were symptomatic; symptomatic patients were more likely to have spontaneous type 1 Brugada ECG pattern in their ECGs (p = .01), longer PR interval (p = .03), and SCN5A mutation (p = .01) than asymptomatic patients. The mean PR interval was considerably longer in men than women (p = .034). SCN5A mutation was found in 9 out of 50 (18%) studied patients. Fifteen percent received appropriate implantable cardioverter-defibrillator (ICD) therapy and inappropriate ICD interventions were observed in 17%. Presentation with aborted SCD or arrhythmic syncope was the only predictor of adverse outcome in follow-up (odds ratio: 3.1, 95% confidence interval: 0.7-19.6, p = .001). CONCLUSIONS: Symptomatic patients with BrS are more likely to present with spontaneous type 1 Brugada ECG pattern, longer PR interval, and pathogenic mutation in SCN5A gene. Appropriate ICD interventions are more likely in symptomatic patients and those with SCN5A mutation.


Assuntos
Síndrome de Brugada , Desfibriladores Implantáveis , Masculino , Humanos , Feminino , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Síndrome de Brugada/terapia , Estudos Longitudinais , Irã (Geográfico) , Eletrocardiografia/métodos
20.
Genes (Basel) ; 15(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397190

RESUMO

Several mutations in this gene for the α subunit of the cardiac sodium channel have been identified in a heterogeneous subset of cardiac rhythm syndromes, including Brugada syndrome, progressive cardiac conduction defect, sick sinus node syndrome, atrial fibrillation and dilated cardiomyopathy. The aim of our study was to associate some SCN5A polymorphic variants directly with confirmed coronary stenoses in patients with non-LQTS ventricular fibrillation/flutter treated by an implantable cardioverter defibrillator. MATERIALS AND METHODS: A group of 32 unrelated individuals, aged 63 ± 12 years, was included in the study. All the patients were examined, diagnosed and treated with an implantable cardioverter defibrillator at the Department of Internal Cardiology Medicine, Faculty Hospital Brno. The control group included 87 persons of similar age without afflicted coronary circulation, which was confirmed coronagraphically. Genomic DNA was extracted from samples of peripheral blood according to the standard protocol. Two SCN5A polymorphisms-IVS9-3C/A (rs41312433) and A1673G (rs1805124, H558R)-were examined in association with coronary artery stenosis in the patients. RESULTS: In the case-control study, no significant differences in genotype distribution/allelic frequencies were observed for IVS9-3c>a and A1673G gene polymorphisms between patients with severe arrhythmias and healthy persons. The distribution of SCN5A double genotypes was not significantly different among different types of arrhythmias according to their ejection fraction in arrhythmic patients (p = 0.396). The ventricular arrhythmias with an ejection fraction below 40% were found to be 10.67 times more frequent in patients with multiple coronary stenosis with clinically valid sensitivity, specificity and power tests. In the genotype-phenotype study, we observed a significant association of both SCN5A polymorphisms with the stenosis of coronary vessels in the patients with severe arrhythmia. The double genotype of polymorphisms IVS9-3C/A together with A1673G (CCAA) as well as their simple genotypes were associated with significant multiple stenosis of coronary arteries (MVS) with high sensitivity and specificity (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.70; specificity 0.682; power test 0.359) Moreover, when a concrete stenotic coronary artery was associated with SCN5A genotypes, the CCAA double genotype was observed to be five times more frequent in patients with significant stenosis in the right coronary artery (RCA) compared to those without affliction of this coronary artery (p = 0.05; OR = 5 (95% CI 0.99-23.34); sensitivity 0.682; specificity 0.700; power test 0.359). The CCAA genotype was also more frequent in patients without RCA affliction with MVS (p = 0.008); in patients with ACD affliction but without MVS (p = 0.008); and in patients with both ACD affliction and MVS compared to those without ACD affliction and MVS (p = 0.005). CONCLUSIONS: Our study presents a highly sensitive and specific association of two polymorphisms in SCN5A with significant coronary artery stenoses in patients with potentially fatal ventricular arrhythmias. At the same time, these polymorphisms were not associated with arrhythmias themselves. Thus, SCN5A gene polymorphic variants may form a part of germ cell gene predisposition to ischemia.


Assuntos
Fibrilação Atrial , Vasos Coronários , Humanos , Estudos de Casos e Controles , Constrição Patológica , Fenótipo , Fibrilação Atrial/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...