Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Sci Total Environ ; : 175168, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094653

RESUMO

A large fraction of fine particulate matter (PM2.5) and ozone (O3) in the troposphere originates from secondary formation through photochemical processes, which remarkably contributes to the deterioration of regional air quality in China. The photochemical reactions initiated by hydroxyl radicals (OH) play vital roles in secondary PM2.5 and O3 formation. In contrast, the OH levels in polluted areas are underestimated by current chemical transport models (CTMs) because of the strongly unknown daytime sources of tropospheric nitric acid (HONO), which has been recognized as the dominant source of primary OH in polluted areas of China. In this study, the atmospheric HONO levels at two urban sites were found to be significantly underestimated by the WRF-Chem model based on available information on HONO sources. The HONO levels could be well reproduced by the WRF-Chem model after incorporating two new potential HONO sources from the photochemical reactions of NOx, as proposed in our previous study based on chamber experiment results. Comparing the simulations with available information of HONO sources, the simulated levels of atmospheric OH, secondary inorganic and organic aerosols (SIA and SOA), PM2.5 and daily maximum 8-h average (MDA8) O3 were evidently elevated or were closer to the observations over the North China Plain (NCP), with elevation percentages of 0.48-20.1 %, and a decrement percentage of -5.79 % for pNO3-. Additionally, the compensating errors in modeling PM2.5 and the gap in MDA8 O3 levels between observation and simulation in 2 + 26 cities became evidently smaller. The results of this study indicated that the empirical parameterization of two new potential HONO sources through photochemical reactions of NOx improved the model performance in modeling PM2.5 and O3 by narrowing the gap in daytime HONO levels between simulation and observation, although their detailed chemical mechanisms are still unknown and should be further investigated and explicitly parameterized.

2.
Adv Exp Med Biol ; 1445: 129-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967755

RESUMO

Immunoglobulin (Ig) is traditionally believed to be produced solely by B cells. Nonetheless, mounting evidence has demonstrated that various types of Igs are extensively expressed in many cell types. Among them, IgG is found to be highly expressed in cancer cells and is thus labeled as cancer-derived IgG. Cancer-derived IgG shares identical fundamental structures with B cell-derived IgG, but displays several unique characteristics, including restricted variable region sequences and unique glycosylation modifications for those expressed by epithelial cancers. Cancer-derived IgG plays multiple crucial roles in carcinogenesis, including facilitating cancer invasion and metastasis, enhancing cancer stemness, contributing to chemoresistance, and remodeling the tumour microenvironment. Recent studies have discovered that cancer-derived sialylated IgG (SIA-IgG) is extensively expressed in pancreatic cancer cells and is predominantly located in the cytoplasm and on the cell membrane. Cancer-derived IgG expressed by pancreatic cancer presents a restrictive variable region sequence and contains a unique sialylation site of the Fab region. Functionally, cancer-derived IgG participates in pancreatic cancer progression via different mechanisms, such as promoting proliferation, facilitating migration and invasion, resisting apoptosis, inducing inflammation, and modulating the tumour microenvironment. SIA-IgG has shown potential as a clinical biomarker. The expression of SIA-IgG is associated with poor tumour differentiation, metastasis, and chemoresistance in pancreatic cancer. High expression of SIA-IgG can serve as an independent prognostic factor for pancreatic cancer. Additionally, SIA-IgG expression elevated with malignant progression for the precursor lesions of pancreatic cancer. These findings present a prospect of applying cancer-derived IgG as a novel diagnostic and therapeutic target in the management of pancreatic cancer, and aiding in overcoming the challenge in the treatment of this stubborn malignancy.


Assuntos
Imunoglobulina G , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Microambiente Tumoral/imunologia , Glicosilação , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Animais
3.
Adv Exp Med Biol ; 1445: 157-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967758

RESUMO

As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/patologia , Glicosilação , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo , Imunoglobulinas/metabolismo , Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo
4.
Adv Exp Med Biol ; 1445: 169-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967759

RESUMO

Over the past 20 years, increasing evidence has demonstrated that immunoglobulins (Igs) can be widely generated from non B cells, including normal and malignant mammary epithelial cells. In normal breast tissue, the expression of IgG and IgA has been identified in epithelial cells of mammary glands during pregnancy and lactation, which can be secreted into milk, and might participate in neonatal immunity. On the other hand, non B-IgG is highly expressed in breast cancer cells, correlating with the poor prognosis of patients with breast cancer. Importantly, a specific group of IgG, bearing a unique N-linked glycan on the Asn162 site and aberrant sialylation modification at the end of the novel glycan (referred to as sialylated IgG (SIA-IgG)), has been found in breast cancer stem/progenitor-like cells. SIA-IgG can significantly promote the capacity of migration, invasiveness, and metastasis, as well as enhance self-renewal and tumorigenicity in vitro and in vivo. These findings suggest that breast epithelial cells can produce Igs with different biological activities under physiological and pathological conditions. During lactation, these Igs could be the main source of milk Igs to protect newborns from pathogenic infections, while under pathological conditions, they display oncogenic activity and promote the occurrence and progression of breast cancer.


Assuntos
Neoplasias da Mama , Células Epiteliais , Glândulas Mamárias Humanas , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Células Epiteliais/metabolismo , Animais , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Lactação/metabolismo , Gravidez , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Imunoglobulinas/metabolismo
5.
Sci Rep ; 14(1): 11433, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763933

RESUMO

Equilibrium among water, food, energy, and climate actions is necessary for life to exist, quality, and sustainability. This article explored how to ensure sustainability, and equilibrium in the irrigation processes by proposing irrigation equilibrium indicators (IEIs) for sustainable irrigated agriculture (SIA). The primary purpose of IEIs is to achieve a state of sustainable climate and environmental balance. The pressures driving agriculture and irrigation professionals to enhance the irrigation scheme performance are tremendous in all agricultural communities. Monitoring, assessment, and improvement of agriculture practices and irrigation schemes for enhancing the Climate, water, food, and energy (CWFE) nexus is a must. As an auspicious climate action, IEIs were developed to enhance the irrigation scheme's efficiency, within the scope of SIA. Subsequently, water, agricultural, food, and energy productivity could be optimized. Then, the appropriate equilibrium indicators could identify the actual performance of the CWFE nexus as a whole and the performance of each component. The effective irrigation scheme is the backbone of SIA. IEIs could measure the degree of achieving the overall and specific objectives and designated irrigation processes. The ultimate measure of equilibrium is optimizing sustainable agricultural yields and productivity, ensuring environmental balance, strengthening life quality, and maximizing economic returns.

6.
Chemosphere ; 355: 141816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556184

RESUMO

Over the last few decades, measurements of light stable isotope ratios have been increasingly used to answer questions across physiology, biology, ecology, and archaeology. The vast majority analyse carbon (δ13C) and nitrogen (δ15N) stable isotopes as the 'default' isotopes, omitting sulfur (δ34S) due to time, cost, or perceived lack of benefits and instrumentation capabilities. Using just carbon and nitrogen isotopic ratios can produce results that are inconclusive, uncertain, or in the worst cases, even misleading, especially for scientists that are new to the use and interpretation of stable isotope data. Using sulfur isotope values more regularly has the potential to mitigate these issues, especially given recent advancements that have lowered measurement barriers. Here we provide a review documenting case studies with real-world data, re-analysing different biological topics (i.e. niche, physiology, diet, movement and bioarchaeology) with and without sulfur isotopes to highlight the various strengths of this stable isotope for various applications. We also include a preliminary meta-analysis of the trophic discrimination factor (TDF) for sulfur isotopes, which suggest small (mean -0.4 ± 1.7 ‰ SD) but taxa-dependent mean trophic discrimination. Each case study demonstrates how the exclusion of sulfur comes at the detriment of the results, often leading to very different outputs, or missing valuable discoveries entirely. Given that studies relying on carbon and nitrogen stable isotopes currently underpin most of our understanding of various ecological processes, this has concerning implications. Collectively, these examples strongly suggest that researchers planning to use carbon and nitrogen stable isotopes for their research should incorporate sulfur where possible, and that the new 'default' isotope systems for aquatic science should now be carbon, nitrogen, and sulfur.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Isótopos de Nitrogênio , Isótopos de Enxofre
7.
Eur J Pharm Sci ; 196: 106757, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556066

RESUMO

BACKGROUND: Lenvatinib's efficacy as a frontline targeted therapy for radioactive iodine-refractory thyroid carcinoma and advanced hepatocellular carcinoma owes to its inhibition of multiple tyrosine kinases. However, as a CYP3A4 substrate, lenvatinib bears susceptibility to pharmacokinetic modulation by co-administered agents. Schisantherin A (STA) and schisandrin A (SIA) - bioactive lignans abundant in the traditional Chinese medicinal Wuzhi Capsule - act as CYP3A4 inhibitors, engendering the potential for drug-drug interactions (DDIs) with lenvatinib. METHODS: To explore potential DDIs between lenvatinib and STA/SIA, we developed a physiologically-based pharmacokinetic (PBPK) model for lenvatinib and used it to construct a DDI model for lenvatinib and STA/SIA. The model was validated with clinical trial data and used to predict changes in lenvatinib exposure with combined treatment. RESULTS: Following single-dose administration, the predicted area under the plasma concentration-time curve (AUC) and maximum plasma concentrations (Cmax) of lenvatinib increased 1.00- to 1.03-fold and 1.00- to 1.01-fold, respectively, in the presence of STA/SIA. Simulations of multiple-dose regimens revealed slightly greater interactions, with lenvatinib AUC0-t and Cmax increasing up to 1.09-fold and 1.02-fold, respectively. CONCLUSION: Our study developed the first PBPK and DDI models for lenvatinib as a victim drug. STA and SIA slightly increased lenvatinib exposure in simulations, providing clinically valuable information on the safety of concurrent use. Given the minimal pharmacokinetic changes, STA/SIA are unlikely to interact with lenvatinib through pharmacokinetic alterations synergistically but rather may enhance efficacy through inherent anti-cancer efficacy of STA/ SIA.

8.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478993

RESUMO

In this study, the interactions between self-interstitial atoms (SIA) and impurity atoms (Cu and P) in the body-centered cubic (bcc)-Fe matrix have been investigated using the first principles approach. The results show that Cu and P atoms are more prone to segregation on perpendicular and parallel surfaces containing dumbbell atoms, respectively. Next, by combining the charge density difference and considering the electronic structure and lattice distortion, the origin of the binding energy of complexes formed between SIA and impurity atoms was discussed. The results show that as the number of impurity atoms increases, the atomic bonds formed by the interactions between the impurity atoms decrease the binding energy between single impurity atoms and the matrix and reduce the strain field around them, resulting in an increase in the stability of the complexes. Comparison with previous experimental results revealed the reasons for the changes in atomic occupancy during the segregation of Cu and P atoms. The results provide insights into the behavior of impurity atoms in irradiated materials and provide a deeper understanding of the electron level of impurity atomization.

9.
Talanta ; 273: 125897, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484500

RESUMO

A 3D printed device covered with Zn/Co-ZIF-derived carbon allows the on-site extraction of fluoroquinolones (FQs) from wastewater, avoiding the sample transportation to the laboratory, and the subsequent elution, separation and determination using an on-line flow system based on sequential injection analysis (SIA) coupled to HPLC-FL. Several parameters that affect the extraction efficiency and desorption were optimized including the sorption phase immobilization technique on the 3D device, extraction time, pH effect, sample volume as well as the type of eluent, eluent volume, and flow rate. Under optimum conditions, detection limits of 3-9 ng L-1 were achieved for norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin and difloxacin. The precision expressed as relative standard deviation (%RSD, n = 3), showed intraday and interday ranges of 1.5-5.3% and 2.8-5.7%, respectively, demonstrating a good precision of the proposed methodology. To assess matrix effects and accuracy of the proposed method in real samples, recovery studies were performed without and with FQs spiked at different concentrations (0.5-10 µg L-1) to wastewater samples, showing good recoveries in the range of 91-104%. The results allow to confirm the applicability of MOF-derived carbons as adsorbents for on-site extraction, and the satisfactory separation and quantification of FQs by a SIA-HPLC-FL on-line system after their desorption with small eluent volumes.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Químicos da Água/análise , Fluoroquinolonas/análise , Impressão Tridimensional , Zinco/análise , Extração em Fase Sólida/métodos
10.
Acta Ophthalmol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553947

RESUMO

PURPOSE: To evaluate the surgically induced astigmatism over a 6-month follow-up period in patients who underwent scleral IOL fixation using an acrylic single-piece IOL with special haptics designed for sutureless scleral fixation. METHODS: We conducted a prospective longitudinal study at a single site with a single surgeon. We included patients who received transscleral IOL implantation following the Carlevale technique and were followed up post-operatively for 24 weeks. We measured the patient's refraction at baseline, week 12 and week 24 using the best corrected visual acuity at 4 m (EDTRS chart). We performed corneal tomography at every visit using an anterior segment optical coherence tomography (AS-OCT). We evaluated surgically induced astigmatism (SIA) and refraction during each follow-up visit and compared them to baseline. We then assessed changes in SIA over time. RESULTS: In total, 27 eyes of 27 patients consisting of 16 female and 11 male individuals were evaluated. The mean patient age was 71 ± 11.7 years, mean axial length was 24.30 ± 1.47 mm (range: 21.4-27.23) and mean white-to-white distance was 12.07 ± 0.40 mm (range: 11.4-12.7). The mean SIA decreased from 1.78 ± 0.96D at week 1 significantly to 0.80 ± 0.55D at week 12 (p < 0.001) and then stayed unchanged around 0.82 ± 0.72D at week 24 (p = 1.0). CONCLUSIONS: The scleral fixated Carlevale IOL and its implantation procedure were found to result in a predictable SIA of <1D after 24 weeks. However, the axis orientation of the SIA appeared to be random, making it unsuitable for implementation in toric IOL calculations.

11.
Heliyon ; 10(3): e24539, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317966

RESUMO

Oligosaccharides and sialic acids (Sia) are bioactive components in milk that contribute to newborn development and health. Hyperglycemia in pregnancy (HIP) can have adverse effects on both mother and infant. HIP is associated with low-grade systemic inflammation. Inflammation influenced glycan composition, particularly of Sia-containing structures. We hypothesize that HIP and high-fat diet influence milk oligosaccharide composition, particularly sialylated oligosaccharides. Furthermore, we propose that milk Sia content influences pup brain Sia content. To test these hypotheses we (i) characterize mouse milk oligosaccharides and Sia concentrations in mouse milk of a GDM mouse model with dietary fat intake intervention; and (ii) determine Sia levels in offspring brains. The concentrations of oligosaccharides and Sia in mouse milk and offspring's brains were quantified using UPLC-FLD analysis. Analyses were performed on surplus samples from a previous study, where HIP was induced by combining high-fat diet (HF) feeding and low-dose streptozotocin injections in C57Bl/6NTac female mice. The previous study described the metabolic effects of HIP on dams and offspring. We detected 21 mouse milk oligosaccharides, including 9 neutral and 12 acidic structures using UPLC-MS. A total of 8 structures could be quantified using UPLC-FLD. Maternal HIP and HF diet during lactation influenced sialylated oligosaccharide concentrations in mouse milk and total and free sialic acid concentrations. Sia content in offspring brain was associated with total and free Neu5Gc in mouse milk of dams, but no correlations with HIP or maternal diet were observed.

12.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257405

RESUMO

New sequential injection analysis (SIA) methods with optical sensing for the determination of N-acetyl-L-cysteine ethyl ester (NACET) have been developed and optimized. NACET is a potential drug and antioxidant with advantageous pharmacokinetics. The methods involve the reduction of Cu(II) in its complexes with neocuproine (NCN), bicinchoninic acid (BCA), and bathocuproine disulfonic acid (BCS) to the corresponding chromophoric Cu(I) complexes by the analyte. The absorbance of the Cu(I) complexes with NCN, BCA, and BCS was measured at their maximum absorbance wavelengths of 458, 562, and 483 nm, respectively. The sensing manifold parameters and experimental conditions were optimized for each of the Cu(II) complexes used. Under optimal conditions, the corresponding linear calibration ranges, limits of detection, and sampling rates were 8.0 × 10-6-2.0 × 10-4 mol L-1, 5.5 × 10-6 mol L-1, and 60 h-1 for NCN; 6.0 × 10-6-1.0 × 10-4 mol L-1, 5.2 × 10-6 mol L-1, and 60 h-1 for BCA; and 4.0 × 10-6-1.0 × 10-4 mol L-1, 2.6 × 10-6 mol L-1, and 78 h-1 for BCS. The Cu(II)-BCS complex was found to be best performing in terms of sensitivity and sampling rate. Usual excipients in pharmaceutical preparations did not interfere with NACET analysis.

13.
Exp Hematol Oncol ; 12(1): 105, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104151

RESUMO

BACKGROUND: KRASG12C inhibitors (KRASG12Ci) AMG510 and MRTX849 have shown promising efficacy in clinical trials and been approved for the treatment of KRASG12C-mutant cancers. However, the emergence of therapy-related drug resistance limits their long-term potential. This study aimed to identify the critical mediators and develop overcoming strategies. METHODS: By using RNA sequencing, RT-qPCR and immunoblotting, we identified and validated the upregulation of c-Myc activity and the amplification of the long noncoding RNA ST8SIA6-AS1 in KRASG12Ci-resistant cells. The regulatory axis ST8SIA6-AS1/Polo-like kinase 1 (PLK1)/c-Myc was investigated by bioinformatics, RNA fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation. Gain/loss-of-function assays, cell viability assay, xenograft models, and IHC staining were conducted to evaluate the anti-cancer effects of co-inhibition of ST8SIA6-AS1/PLK1 pathway and KRAS both in vitro and in vivo. RESULTS: KRASG12Ci sustainably decreased c-Myc levels in responsive cell lines but not in cell lines with intrinsic or acquired resistance to KRASG12Ci. PLK1 activation contributed to this ERK-independent c-Myc stability, which in turn directly induced PLK1 transcription, forming a positive feedback loop and conferring resistance to KRASG12Ci. ST8SIA6-AS1 was found significantly upregulated in resistant cells and facilitated the proliferation of KRASG12C-mutant cancers. ST8SIA6-AS1 bound to Aurora kinase A (Aurora A)/PLK1 and promoted Aurora A-mediated PLK1 phosphorylation. Concurrent targeting of KRAS and ST8SIA6-AS1/PLK1 signaling suppressed both ERK-dependent and -independent c-Myc expression, synergistically led to cell death and tumor regression and overcame KRASG12Ci resistance. CONCLUSIONS: Our study deciphers that the axis of ST8SIA6-AS1/PLK1/c-Myc confers both intrinsic and acquired resistance to KRASG12Ci and represents a promising therapeutic target for combination strategies with KRASG12Ci in the treatment of KRASG12C-mutant cancers.

14.
Glycoconj J ; 40(6): 621-630, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921922

RESUMO

In this study we observed that human GD1c/GT1a/GQ1b synthase (hST8Sia V) is particularly expressed in human glioblastoma cells. To address the mechanism regulating human glioblastoma-specific gene expression of the hST8Sia V, after the transcription start site (TSS) was identified by the 5'-rapid amplification of cDNA end with total RNA from human glioblastoma U87MG cells, the 5'-flanking region (2.5 kb) of the hST8Sia V gene was isolated and its promoter activity was examined. By luciferase reporter assay, this 5'-flanking region revealed strong promoter activity in only U-87MG cells, but not in other tissue-derived cancer cells. 5'-deletion mutant analysis showed that the region from -1140 to -494 is crucial for transcription of the hST8Sia V gene in U87MG cells. This region contains the activator protein-1 (AP-1) binding site, the main target of the c-Jun N-terminal kinase (JNK) downstream. The AP-1 binding site at -1043/-1037 was proved to be indispensable for the hST8Sia V gene-specific expression in U87MG cells by site-directed mutagenesis. Moreover, the transcriptional activation of hST8Sia V gene in U87MG cells was strongly inhibited by a specific JNK inhibitor, SP600125. These results suggest that the hST8Sia V gene-specific expression in U87MG cells is controlled by JNK/AP-1 signaling pathway.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Fator de Transcrição AP-1/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional
15.
Sci Total Environ ; 905: 167263, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741405

RESUMO

Selective adsorption of phosphorus (P) from the acidic leachate of sludge-incinerated ash (SIA) becomes more attractive due to avoiding removing heavy metals. Especially, layered double hydroxides (LDHs) as an anion adsorbent could be applied into this area owing to their good capacity on P-adsorption and low cost on preparation. Interestingly, SIA contains more aluminum (Al) and iron (Fe) needed to be removed prior to P-recovery, and removed Al and Fe could be utilized to synthesize LDHs, like Mg/Al-LDH and Mg/Fe-LDH. With this study, Mg/Al-LDH-r and Mg/Fe-LDH-r were economically synthesized with Al and Fe removed from SIA, which were similar in their chemical structures to commercial LDHs. The synthesized LDHs had a high P-adsorption capacity, up to 95.0%. The maximal phosphate capacity of the recovered LDHs (Mg/Al-LDH-r and Mg/Fe-LDH-r) was 239.0 and 199.8 mg P/g LDHs, respectively. "NaOH + desalinated brine" as a new desorption solution could achieve a desorption ratio at about 80%, which could reduce the liquid-solid ratio by at least 60%, greatly decreasing the desorption cost. Pot trials demonstrated that the desorbed and precipitated CaP could promote the growth of maize as well as a commercial P-fertilizer. Furthermore, the adsorbed phosphate by LDHs could be directly used as a slow-released P-fertilizer and also improve the pH value of acidic soil, completely deleting the desorption process.

16.
Anal Sci ; 39(12): 2007-2017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632646

RESUMO

A new automated, generic analytical approach for determining the clinical disinfectant o-phthalaldehyde (OPA) is reported in this study. The proposed sequential injection analysis (SIA) is based on the online reaction of the OPA with glycine/N-acetylcysteine (NAC) in a neutral medium (pH = 7.0) to form a highly fluorescent isoindole derivative. All critical flow and reaction variables were investigated, while validation was carried out in the linearity detection range (0.0075-0.02%). As a result, excellent linearity (R2 > 0.99) and precision (1.5-2.4% for repeatability and 0.7-2.2% for reproducibility) were achieved for the reference OPA solutions. Furthermore, reasonable concentration verification of OPA disinfection (0.2-0.6%) in healthcare institutes can be achieved using the developed fluorescent SIA due to its good sensitivity (0.111 V/%) and precision (1.0-2.3% for intermediate precision) around the minimum effective concentration (MEC) of 0.3% for Cidex-OPA disinfectant.


Assuntos
Desinfetantes , o-Ftalaldeído , o-Ftalaldeído/análise , Reprodutibilidade dos Testes , Glutaral , Corantes
17.
Small ; 19(48): e2303907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37571827

RESUMO

Hydrogen peroxide (H2 O2 ) is considered one of the most important chemical products and has a promising future in photocatalytic preparation, which is green, pollution-free, and hardly consumes any non-renewable energy. This study involves the preparation of benzoxazine with Si─O bonds via the Mannich reaction, followed by co-hydrolysis to produce photocatalysts containing benzoxazine with Si─O─Ti bonds. In this study, a benzoxazine photocatalyst with Si─O─Ti bonds is synthesized and characterized using fourier transform infrared spectroscopy, nuclear magnetic resonance, and X-ray photoelectron spectroscopy. The size and elemental distribution of the nanoparticles are confirmed by transmission electron microscopy and scanning electron microscopy. The photocatalytic synthesis of H2 O2 is tested using the titanium salt detection method, and the rate is found to be 7.28 µmol h-1 . Additionally, the catalyst exhibits good hydrolysis resistance and could be reused multiple times. The use of benzoxazine with Si─O─Ti bonds presents a promising experimental and theoretical foundation for the industrial production of H2 O2 through photocatalytic synthesis.

18.
Synth Syst Biotechnol ; 8(3): 509-519, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37502821

RESUMO

N-Acetylneuraminic acid (Neu5Ac), the most common type of Sia, generally acts as the terminal sugar in cell surface glycans, glycoconjugates, oligosaccharides, lipo-oligosaccharides, and polysaccharides, thus exerting numerous physiological functions. The extensive applications of Neu5Ac in the food, cosmetic, and pharmaceutical industries make large-scale production of this chemical desirable. Biosynthesis which is associated with important application potential and environmental friendliness has become an indispensable approach for large-scale synthesis of Neu5Ac. In this review, the physiological roles of Neu5Ac was first summarized in detail. Second, the safety evaluation, regulatory status, and applications of Neu5Ac were discussed. Third, enzyme-catalyzed preparation, whole-cell biocatalysis, and microbial de novo synthesis of Neu5Ac were comprehensively reviewed. In addition, we discussed the main challenges of Neu5Ac de novo biosynthesis, such as screening and engineering of key enzymes, identifying exporters of intermediates and Neu5Ac, and balancing cell growth and biosynthesis. The corresponding strategies and systematic strategies were proposed to overcome these challenges and facilitate Neu5Ac industrial-scale production.

19.
Genes Dis ; 10(3): 1101-1113, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396556

RESUMO

Daily insulin injection is necessary for the treatment of the insulin-dependent diabetes. However, the process is painful and inconvenient. Accordingly, we have made exploratory efforts to establish an alternative method for continuous insulin supply via intramuscular injection of a designed plasmid encoding the single-strand insulin analogue (SIA), which provides safe, effective and prolonged control of insulin-dependent diabetes. To generate a SIA, a short flexible peptide was alternatively introduced into the natural proinsulin to replace its original long and rigid C-peptide. Then, the synthetic promoter SP301 was used to drive potent and specific expression of SIA in skeletal muscle cells. By combining the Pluronic L64 and low-voltage electropulse (L/E), the specialized gene delivery technique was applied to efficiently transfer the constructed plasmid into skeletal muscle cells via intramuscular injection. Through these efforts, a plasmid-based intramuscular gene expression system was established and improved, making it applicable for gene therapy. The plasmid-expressed SIA showed biological functions that were similar to that of natural insulin. A single L/E-pSP301-SIA administration provided sustained SIA expression in vivo for about 1.5 months. In addition, the diabetic mice treated with L/E-pSP301-SIA were much healthier than those with other treatments. This plasmid-based system was safe for the treatment of diabetes and did not cause immune responses or pathological damage. The results confirmed that, in a mouse model, long-term positive effects were achieved by a single intramuscular L/E-pSP301-SIA injection, which consequently provided reliable experimental basis for its clinical application for the treatment of diabetes mellitus with promising prospects.

20.
Chemosphere ; 331: 138758, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37105309

RESUMO

Alkaline soil inorganic amendments (SIAs) have been extensively used to improve acidic soils. In this study, we arranged 9 treatments of low, medium, and high application dosages of silicon calcium magnesium potassium fertilizer, calcium magnesium phosphate fertilizer, and lime in the field to study the mechanism of SIAs in improving acidic soils. The Al sequential extraction experiment showed that the application of SIAs tended to transform from active to stable fractions of Al. By amplicon sequencing, it was observed that the application of SIAs significantly affected microbial community compositions in rhizosphere soils. With the decrease in soil acidity, the microbial function was also enhanced, especially the activity of dehydrogenase. In this study, the acidity-related indicators in soils (pH, exchangeable acid, and exchangeable base cations) were first integrated into an index-AIV (acidity improvement value), which was used to assess the relationship with other soil properties. The redundancy analysis and correlation network between soil chemical and biological indexes indicated that SIAs did not greatly affect the fungi community structure, while greatly increased or decreased the abundance of bacteria, especially Acidobacteria, Nitrospirae, and Crenarchaeota. Our data revealed the SIAs optimized soil environment for rice growth jointly by decreasing Al mobility, improving soil microbial function, and increasing soil fertility.


Assuntos
Microbiota , Oryza , Poluentes do Solo , Solo/química , Fertilizantes/análise , Bactérias/genética , Cálcio/análise , Ácidos , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...