Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Cell Mol Med ; 28(11): e18484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842124

RESUMO

As an important protein encoded by hepatitis B virus (HBV), HBV X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). It has been shown that seven in absentia homologue 1 (SIAH1) could regulates the degradation of HBx through the ubiquitin-proteasome pathway. However, as a member of SIAH family, the regulatory effects of SIAH2 on HBx remain unclear. In this study, we first confirmed that SIAH2 could reduce the protein levels of HBx depending on its E3 ligase activity. Moreover, SIAH2 interacted with HBx and induced its K48-linked polyubiquitination and proteasomal degradation. Furthermore, we provided evidence that SIAH2 inhibits HBx-associated HCC cells proliferation by regulating HBx. In conclusion, our study identified a novel role for SIAH2 in promoting HBx degradation and SIAH2 exerts an inhibitory effect in the proliferation of HBx-associated HCC through inducing the degradation of HBx. Our study provides a new idea for the targeted degradation of HBx and may have great huge significance into providing novel evidence for the targeted therapy of HBV-infected HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Vírus da Hepatite B , Neoplasias Hepáticas , Proteínas Nucleares , Proteólise , Transativadores , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias , Humanos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Transativadores/metabolismo , Transativadores/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Linhagem Celular Tumoral , Transdução de Sinais , Células Hep G2
2.
Heliyon ; 10(11): e31487, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828323

RESUMO

Background: Cervical cancer is one of the most common malignancies in women worldwide. As a RING type ubiquitin ligase, SIAH2 has been reported to promote the progression of a variety of tumors by interacting with and targeting multiple chaperones and substrates. The aim of this study was to further identify the role and the related molecular mechanisms involved of SIAH2 in cervical carcinogenesis. Methods and results: Cellular assays in vitro showed that knockdown of SIAH2 inhibited the proliferation, migration and invasion of human cervical cancer cells C33A and SiHa, induced apoptosis, and increased the sensitivity to cisplatin treatment. Knockdown of SIAH2 also inhibited the epithelial-mesenchymal transition and activation of the Akt/mTOR signaling pathway in cervical cancer cells, which were detected by Western blot. Mechanistically, SIAH2, as a ubiquitin ligase, induced the ubiquitination degradation of GSK3ß degradation by using coIP. The results of complementation experiments further demonstrated that GSK3ß overexpression rescued the increase of cell proliferation and invasion caused by SIAH2 overexpression. Specific expression of SIAH2 appeared in precancerous and cervical cancer tissues compared to inflammatory cervical lesions tissues using immunohistochemical staining. The more SIAH2 was expressed as the degree of cancer progressed. SIAH2 was significantly highly expressed in cervical cancer tissues (44/55, 80 %) compared with precancerous tissues (18/69, 26.1 %). Moreover, the expression level of SIAH2 in cervical cancer tissues was significantly correlated with the degree of cancer differentiation, and cervical cancer tissues with higher SIAH2 expression levels were less differentiated. Conclusion: Targeting SIAH2 may be beneficial to the treatment of cervical cancer.

3.
J Virol ; : e0020224, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842318

RESUMO

Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.

4.
Mol Carcinog ; 63(3): 417-429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983722

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer, and chemoresistance is the major determinant of TNBC treatment failure. This study explores the molecular mechanism of TNBC chemoresistance. The Cancer Genome Atlas, breast cancer integrative platform, and GEPIA databases were used to analyze the expression and correlation of YTHDF1 and seven in absentia homology 2 (SIAH2) in breast cancer. Knockdown of YTHDF1 and SIAH2, or overexpression of SIAH2 in vitro and in vivo, was conducted to evaluate the impact of changes in YTHDF1 and SIAH2 expression on TNBC cell proliferation, apoptosis, stemness, drug resistance, and Hippo pathway gene expression. YTHDF1 and SIAH2 were highly expressed in breast cancer patients and TNBC cells. Knockdown of YTHDF1 and SIAH2 significantly inhibited proliferation and stemness and promoted apoptosis and chemosensitivity of TNBC cells. Mechanistically, the knockdown of YTHDF1 inhibited the expression of SIAH2, thereby downregulating the Hippo pathway, which inhibited proliferation and stemness and promoted apoptosis and chemosensitivity of TNBC cells. The current findings revealed the regulatory mechanism of YTHDF1 in TNBC and clarified the role of the YTHDF1/SIAH2 axis in TNBC drug resistance and stemness. This could provide new insights into the vital role of targeting YTHDF1/SIAH2 to suppress drug resistance and stemness in TNBC cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Exp Cell Res ; 426(1): 113513, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780970

RESUMO

Previous studies have highlighted the poor prognosis of liver cancer, and treatment effects are overall limited. We aimed to confirm the biological roles of SIAH2 in liver cancer and provide potential therapeutic targets. Differential analysis was conducted based on public datasets and found that SIAH2 expressed lowly in HCC samples relative to normal tissues, which was demonstrated in tumor samples via immunohistochemistry (IHC). Besides, SIAH2 overexpression could significantly suppress HCC proliferation. SIAH2 deficiency induced cell proliferation, migration and self-renewal abilities in vitro and in vivo. Mechanistically, SIAH2 could interact with WNK1, and trigger the ubiquitination and degradation of WNK1 proteins. In addition, low SIAH2 depended on elevated WNK1 proteins to drive HCC malignant features, including proliferation, migration and stemness. Meanwhile, we further found that CBX2 could regulate SIAH2 expressions. CBX2 cooperated with EZH2 to mediate the H3K27me3 enrichment on the promoter region of SIAH2 to suppress its transcriptional levels. High CBX2/EZH2 levels in HCC correlated with poor prognosis of patients. Gene set enrichment analysis (GSEA) further implicated that WNK1 correlates tightly with glycolytic process in HCC samples. WNK1 overexpression was found to notably enhance glycolytic activity, whereas WNK1 deficiency could significantly suppress the HCC glycolysis activity. Lastly, the subcutaneous tumor model further demonstrated that targeting WNK1 was effective to inhibit the in vivo tumor growth of SIAH2low HCC. Collectively, down-regulated SIAH2 expressions induced by CBX2/EZH2 could drive progression and glycolysis via accumulating WNK1 proteins, indicating that CBX2/SIAH2/WNK1 axis is a potential prognostic biomarker and therapeutic vulnerability for human HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Complexo Repressor Polycomb 1/genética
6.
Methods Mol Biol ; 2589: 317-335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255634

RESUMO

Helicobacter pylori infection is one of the leading factors that promotes, among other diseases, gastric cancer (GC). Infection of gastric epithelial cells (GECs) by H. pylori enhances the expression as well as acetylation of the E3 ubiquitin ligase SIAH2 which promotes GC progression. The histone acetyltransferase (HAT) activity of p300 catalyzes SIAH2 acetylation following H. pylori infection. Since reactive oxygen species (ROS) generation in H. pylori-infected GECs accelerates GC progression, acetylation-mediated SIAH2 regulation might be a crucial modifier of ROS generation in the infected GECs. Here, we describe a compendium of methods to evaluate the effects of HAT/lysine acetyl transferase (KAT) inhibitors (HAT/KATi) on SIAH2-mediated ROS regulation in H. pylori-infected GECs.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , Infecções por Helicobacter/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Gástrica/metabolismo , Lisina/metabolismo , Células Epiteliais/metabolismo , Neoplasias Gástricas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Histona Acetiltransferases/metabolismo , Transferases/metabolismo
7.
Elife ; 112022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913115

RESUMO

DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin-proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.


Assuntos
Neoplasias da Mama , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Hipóxia/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Tissue Cell ; 78: 101878, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926257

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the 4th leading cause of cancer-related deaths, although with a dismal prognosis. The SIAH E3 Ubiquitin Protein Ligase 2 (SIAH2) regulates the expression of multiple proteins via ubiquitination and proteasome. However, the biological role of SIAH2 in colorectal cancer tumorigenesis remains controversial. In this work, we found that SIAH2 is an oncogene in colorectal cancer. Moreover, SIAH2 promoted colorectal cancer cell proliferation, migration, invasion, and colony formation. Mechanistically, SIAH2 promoted the PI3K/AKT signaling pathway both in vivo and in vitro. Besides, we discovered that PTEN loss regulates SIAH2-mediated PI3K/AKT signaling pathway activation. In summary, these findings highlight the role of SIAH2 in colorectal cancer progression and provide novel insights for treatment.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Tirosina Quinase da Agamaglobulinemia/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
BMC Cancer ; 22(1): 300, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313831

RESUMO

BACKGROUND: Well-differentiated and dedifferentiated liposarcomas are rare soft tissue tumors originating in adipose tissue that share genetic abnormalities but have significantly different metastatic potential. Dedifferentiated liposarcoma (DDLPS) is highly aggressive and has an overall 5-year survival rate of 30% as compared to 90% for well-differentiated liposarcoma (WDLPS). This discrepancy may be connected to their potential to form adipocytes, where WDLPS is adipogenic but DDLPS is adipogenic-impaired. Normal adipogenesis requires Zinc Finger Protein 423 (ZFP423), a transcriptional coregulator of Perixosome Proliferator Activated Receptor gamma (PPARG2) mRNA expression that defines committed preadipocytes. Expression of ZFP423 in preadipocytes is promoted by Seven-In-Absentia Homolog 2 (SIAH2)-mediated degradation of Zinc Finger Protein 521 (ZFP521). This study investigated the potential role of ZFP423, SIAH2 and ZFP521 in the adipogenic potential of WDLPS and DDLPS. METHODS: Human WDLPS and DDLPS fresh and paraffin-embedded tissues were used to assess the gene and protein expression of proadipogenic regulators. In parallel, normal adipose tissue stromal cells along with WDLPS and DDLPS cell lines were cultured, genetically modified, and induced to undergo adipogenesis in vitro. RESULTS: Impaired adipogenic potential in DDLPS was associated with reduced ZFP423 protein levels in parallel with reduced PPARG2 expression, potentially involving regulation of ZFP521. SIAH2 protein levels did not define a clear distinction related to adipogenesis in these liposarcomas. However, in primary tumor specimens, SIAH2 mRNA was consistently upregulated in DDLPS compared to WDLPS when assayed by fluorescence in situ hybridization or real-time PCR. CONCLUSIONS: These data provide novel insights into ZFP423 expression in adipogenic regulation between WDLPS and DDLPS adipocytic tumor development. The data also introduces SIAH2 mRNA levels as a possible molecular marker to distinguish between WDLPS and DDLPS.


Assuntos
Adipogenia/genética , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA , Lipossarcoma/genética , Neoplasias de Tecidos Moles/genética , Dedos de Zinco/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Lipossarcoma/patologia , Proteínas Nucleares/genética , Neoplasias de Tecidos Moles/patologia , Ubiquitina-Proteína Ligases/genética
10.
Heliyon ; 8(3): e09029, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284677

RESUMO

The functionally redundant ubiquitin E3 ligases SIAH1 and SIAH2 have been implicated in the regulation of metabolism and the hypoxic response, while their role in other signal-mediated processes such inflammatory gene expression remains to be defined. Here we have downregulated the expression of both SIAH proteins with specific siRNAs and investigated the functional consequences for IL-1α-induced gene expression. The knockdown of SIAH1/2 modulated the expression of approximately one third of IL-1α-regulated genes. These effects were not due to changes in the NF-κB and MAPK signaling pathways and rather employed further processes including those mediated by the coactivator p300. Most of the proteins encoded by SIAH1/2-regulated genes form a regulatory network of proinflammatory factors. Thus SIAH1/2 proteins function as variable rheostats that control the amplitude rather than the principal activation of the inflammatory gene response.

11.
Front Immunol ; 13: 845193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154166

RESUMO

N6-methyladenosine (m6A) has been reported as an important mechanism of post-transcriptional regulation. Programmed death ligand 1 (PD-L1) is a primary immune inhibitory molecule expressed on tumor cells that promotes immune evasion. In addition, seven in absentia homolog 2 (Siah2), a RING E3 ubiquitin ligase, has been involved in tumorigenesis and cancer progression. However, the role of m6A-METTL14-Siah2-PD-L1 axis in immunotherapy remains to be elucidated. In this study, we showed that METTL14, a component of the m6A methyltransferase complex, induced Siah2 expression in cholangiocarcinoma (CCA). METTL14 was shown to enrich m6A modifications in the 3'UTR region of the Siah2 mRNA, thereby promoting its degradation in an YTHDF2-dependent manner. Furthermore, co-immunoprecipitation experiments demonstrated that Siah2 interacted with PD-L1 by promoting its K63-linked ubiquitination. We also observed that in vitro and in vivo Siah2 knockdown inhibited T cells expansion and cytotoxicity by sustaining tumor cell PD-L1 expression. The METTL14-Siah2-PD-L1-regulating axis was further confirmed in human CCA specimens. Analysis of specimens from patients receiving anti-PD1 immunotherapy suggested that tumors with low Siah2 levels were more sensitive to anti-PD1 immunotherapy. Taken together, our results evidenced a new regulatory mechanism of Siah2 by METTL14-induced mRNA epigenetic modification and the potential role of Siah2 in cancer immunotherapy.


Assuntos
Antígeno B7-H1/imunologia , Colangiocarcinoma/imunologia , Proteínas Nucleares/imunologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/imunologia , Adenosina/análogos & derivados , Adenosina/imunologia , Linhagem Celular , Colangiocarcinoma/terapia , Humanos , Imunoterapia , Metiltransferases/imunologia , RNA Mensageiro/imunologia
12.
Cancer Res Commun ; 2(12): 1693-1710, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36846090

RESUMO

Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells. We discovered that proteasome inhibitors reduce the turnover of DNA-associated proteins and repress genes necessary for proliferation through epigenetic silencing. Specifically, proteasome inhibition results in the localized accumulation of histone deacetylase 3 (HDAC3) at defined genomic sites, which reduces H3K27 acetylation and increases chromatin condensation. The loss of active chromatin at super-enhancers critical for MM, including the super-enhancer controlling the proto-oncogene c-MYC, reduces metabolic activity and cancer cell growth. Epigenetic silencing is attenuated by HDAC3 depletion, suggesting a tumor-suppressive element of this deacetylase in the context of proteasome inhibition. In the absence of treatment, HDAC3 is continuously removed from DNA by the ubiquitin ligase SIAH2. Overexpression of SIAH2 increases H3K27 acetylation at c-MYC-controlled genes, increases metabolic output, and accelerates cancer cell proliferation. Our studies indicate a novel therapeutic function of proteasome inhibitors in MM by reshaping the epigenetic landscape in an HDAC3-dependent manner. As a result, blocking the proteasome effectively antagonizes c-MYC and the genes controlled by this proto-oncogene.


Assuntos
Cromatina , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Genes myc
13.
Gene ; 809: 146028, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34687788

RESUMO

Seven in absentia homolog 2 (Siah2), an RING E3 ubiquitin ligases, has been characterized to play the vital role in tumorigenesis and cancer progression. Numerous studies have determined that Siah2 promotes tumorigenesis in a variety of human malignancies such as prostate, lung, gastric, and liver cancers. However, several studies revealed that Siah2 exhibited tumor suppressor function by promoting the proteasome-mediated degradation of several oncoproteins, suggesting that Siah2 could exert its biological function according to different stages of tumor development. Moreover, Siah2 is subject to complex regulation, especially the phosphorylation of Siah2 by a variety of protein kinases to regulate its stability and activity. In this review, we describe the structure and regulation of Siah2 in human cancer. Moreover, we highlight the critical role of Siah2 in tumorigenesis. Furthermore, we note that the potential clinical applications of targeting Siah2 in cancer therapy.


Assuntos
Neoplasias/patologia , Neoplasias/terapia , Proteínas Nucleares/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Masculino , Terapia de Alvo Molecular/métodos , Proteínas Nucleares/química , Ubiquitina-Proteína Ligases/química
15.
Front Oncol ; 11: 637040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937036

RESUMO

Siah2 is an E3 ubiquitin ligase that targets androgen receptor (AR) and plays an important role in the development of castration-resistant prostate cancer (CRPC). However, the regulation of Siah2 in prostate cancer (PCa) is largely unknown. In this study, we used AR-dependent and -independent cells lines to investigate the cellular roles of AR and androgen deprivation therapy (ADT) on Siah2 protein levels and E3 ligase activity using Western blotting and co-immunoprecipitation. We also validated our findings using patient samples taken before and after ADT. Finally, we used xenograft tumor models to test the effects of ADT combined with vitamin K3 (Vit K3) on tumor growth in vivo. Our results showed that AR stabilizes Siah2 protein by attenuating its self-ubiquitination and auto-degradation, likely by blocking its E3 ubiquitin ligase activity. Conversely, ADT decreased Siah2 protein expression but enhanced its E3 ligase activity in PCa cells. Notably, the findings that ADT decreasing Siah2 protein expression were verified in a series of paired PCa samples from the same patient. Additionally, we found that ADT-induced Siah2 activation could be abolished by Vit K3. Strikingly, ADT combined with Vit K3 treatment delayed the occurrence of CRPC and dramatically inhibited the growth of tumor xenografts compared with ADT treatment alone. AR is an inhibitor of Siah2 in PCa, and ADT leads to the continuous activation of Siah2, which may contribute to CRPC. Finally, ADT+Vit K3 may be a potential approach to delay the occurrence of CRPC.

16.
Front Cell Dev Biol ; 9: 646687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842469

RESUMO

The cellular response to hypoxia is a key biological process that facilitates adaptation of cells to oxygen deprivation (hypoxia). This process is critical for cancer cells to adapt to the hypoxic tumor microenvironment resulting from rapid tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor and a master regulator of the cellular response to hypoxia. The activity of HIF-1 is dictated primarily by its alpha subunit (HIF-1α), whose level and/or activity are largely regulated by an oxygen-dependent and ubiquitin/proteasome-mediated process. Prolyl hydroxylases (PHDs) and the E3 ubiquitin ligase Von Hippel-Lindau factor (VHL) catalyze hydroxylation and subsequent ubiquitin-dependent degradation of HIF-1α by the proteasome. Seven in Absentia Homolog 2 (SIAH2), a RING finger-containing E3 ubiquitin ligase, stabilizes HIF-1α by targeting PHDs for ubiquitin-mediated degradation by the proteasome. This SIAH2-HIF-1 signaling axis is important for maintaining the level of HIF-1α under both normoxic and hypoxic conditions. A number of protein kinases have been shown to phosphorylate SIAH2, thereby regulating its stability, activity, or substrate binding. In this review, we will discuss the regulation of the SIAH2-HIF-1 axis via phosphorylation of SIAH2 by these kinases and the potential implication of this regulation in cancer biology and cancer therapy.

17.
Cell Cycle ; 19(19): 2460-2471, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32840137

RESUMO

This study aimed to reveal the mechanism of miR-146b-5p in the differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from children with aplastic anemia (AA). Here, we found that miR-146b-5p was highly expressed in BMSCs from children with AA, and the BMSCs surface markers expressions in BMSCs derived from children with AA and the healthy controls exerted no significant differences. Besides, the overexpression of miR-146b-5p in normal human-derived BMSCs promoted the adipogenic differentiation of BMSCs. Furthermore, miR-146b-5p negatively regulated SIAH2 luciferase activity, and the interference with miR-146b-5p reduced the stability of PPARγ protein and inhibited SIAH2-mediated ubiquitination of PPARγ protein. Besides, the interference with miR-146b-5p was beneficial for ameliorating AA in a mouse model of AA. Overall, our results found that miR-146b-5p was highly expressed in BMSCs from children with AA, and our further studies indicated that miR-146b-5p improved AA via promoting SIAH2-mediated ubiquitination of PPARγ protein.


Assuntos
Adipogenia , Anemia Aplástica/metabolismo , Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Anemia Aplástica/induzido quimicamente , Anemia Aplástica/genética , Anemia Aplástica/patologia , Animais , Benzeno , Células da Medula Óssea/patologia , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas Nucleares/genética , PPAR gama/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
18.
Theranostics ; 10(8): 3366-3381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206096

RESUMO

Rationale: Androgen receptor splice variant 7 (AR-V7) is a leading cause of the development of castration-resistant prostate cancer (CRPC). However, the regulation and function of AR-V7 at levels of post-translational modifications in prostate cancer therapy remain poorly understood. Here, we conducted a library screen of natural products to identify potential small molecules responsible for AR-V7 protein degradation in human prostate cancer cell lines. Methods: A natural product library was used to screen the inhibitor of AR-V7. Co-IP and biomass spectrum assays were used to identify the AR-V7-interacting proteins, whereas western blot, confocal microscopy, RNA interfering, and gene transfection were used to validate these interactions. Cell viability, EDU staining, and colony formation assays were employed to detect cell growth and proliferation. Flowcytometry assays were used to detect the distribution of cell cycle. Mouse xenograft models were used to study the anti-CRPC effects in vivo. Results: This screen identified rutaecarpine, one of the major components of the Chinese medicine Evodia rutaecarpa, as a novel chemical that selectively induces AR-V7 protein degradation via K48-linked ubiquitination. Mechanically, this effect relies on rutaecarpine inducing the formation of a GRP78-AR-V7 protein complex, which further recruits the E3 ligase SIAH2 to directly promote the ubiquitination of AR-V7. Consequently, the genetic and pharmacological activation of the GRP78-dependent AR-V7 protein degradation restores the sensitivity of castration-resistant prostate cancer to anti-androgen therapy in cell culture and animal models. Conclusions: These findings not only provide a new approach for overcoming castration-resistance in prostate cancer therapy, but also increase our understanding about the interplay between molecular chaperones and ubiquitin ligase in shaping protein stability.


Assuntos
Alcaloides/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Proteínas de Choque Térmico/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Animais , Castração , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Receptores Androgênicos/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Calcium ; 87: 102193, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32193001

RESUMO

Mitochondria are highly dynamic organelles extremely important for cell survival. Their structure resembles that of prokaryotic cells since they are composed with two membranes, the inner (IMM) and the outer mitochondrial membrane (OMM) delimitating the intermembrane space (IMS) and the matrix which contains mitochondrial DNA (mtDNA). This structure is strictly related to mitochondrial function since they produce the most of the cellular ATP through the oxidative phosphorylation which generate the electrochemical gradient at the two sides of the inner mitochondrial membrane an essential requirement for mitochondrial function. Cells of highly metabolic demand like those composing muscle, liver and brain, are particularly dependent on mitochondria for their activities. Mitochondria undergo to continual changes in morphology since, they fuse and divide, branch and fragment, swell and extend. Importantly, they move throughout the cell to deliver ATP and other metabolites where they are mostly required. Along with the capability to control energy metabolism, mitochondria play a critical role in the regulation of many physiological processes such as programmed cell death, autophagy, redox signalling, and stem cells reprogramming. All these phenomena are regulated by Ca2+ ions within this organelle. This review will discuss the molecular mechanisms regulating mitochondrial calcium cycling in physiological and pathological conditions with particular regard to their impact on mitochondrial dynamics and function during ischemia. Particular emphasis will be devoted to the role played by NCX3 and AKAP121 as new molecular targets for mitochondrial function and dysfunction.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Trocador de Sódio e Cálcio/metabolismo , Animais , Hipóxia Celular , Humanos
20.
Cell Commun Signal ; 18(1): 42, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164721

RESUMO

BACKGROUND: Na+/Ca2+ exchanger isoform 3 (NCX3) regulates mitochondrial Ca2+ handling through the outer mitochondrial membrane (OMM) and promotes neuronal survival during oxygen and glucose deprivation (OGD). Conversely, Seven In-Absentia Homolog 2 (Siah2), an E3-ubiquitin ligase, which is activated under hypoxic conditions, causes proteolysis of mitochondrial and cellular proteins. In the present study, we investigated whether siah2, upon its activation during hypoxia, interacts with NCX3 and whether such interaction could regulate the molecular events underlying changes in mitochondrial morphology, i.e., fusion and fission, and function, in neurons exposed to anoxia and anoxia/reoxygenation. METHODS: To answer these questions, after exposing cortical neurons from siah2 KO mice (siah2 -/-) to OGD and OGD/Reoxygenation, we monitored the changes in mitochondrial fusion and fission protein expression, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium concentration ([Ca2+]m) by using specific fluorescent probes, confocal microscopy, and Western Blot analysis. RESULTS: As opposed to congenic wild-type neurons, in neurons from siah2-/- mice exposed to OGD, form factor (FF), an index of the complexity and branching aspect of mitochondria, and aspect ratio (AR), an index reflecting the "length-to-width ratio" of mitochondria, maintained low expression. In KO siah2 neurons exposed to OGD, downregulation of mitofusin 1 (Mfn1), a protein involved in mitochondrial fusion and upregulation of dynamin-related protein 1 (Drp1), a protein involved in the mitochondrial fission, were prevented. Furthermore, under OGD conditions, whereas [Ca2+]m was reduced, ΔΨm, mitochondrial oxidative capacity and ATP production were improved. Interestingly, our immunoprecipitation assay revealed that Siah2 interacted with NCX3. Indeed, siah2 knock-out prevented NCX3 degradation in neurons exposed to OGD. Finally, when siah2-/- neurons were exposed to OGD/reoxygenation, FF, AR, and Mfn1 expression increased, and mitochondrial function improved compared to siah2+/+ neurons. CONCLUSIONS: Collectively, these findings indicate that hypoxia-induced SIAH2-E3 ligase activation influences mitochondrial fusion and fission, as well as function, by inducing NCX3 degradation. Video Abstract.


Assuntos
Hipóxia-Isquemia Encefálica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios , Trocador de Sódio e Cálcio/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Hipóxia Celular , Células Cultivadas , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...