Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39062485

RESUMO

The peptide/histidine transporter PHT1 (SLC15A4) is expressed in the lysosomal membranes of immune cells where it plays an important role in metabolic and inflammatory signaling. PHT1 is an H+-coupled/histidine symporter that can transport a wide range of oligopeptides, including a variety of bacterial-derived peptides. Moreover, it enables the scaffolding of various metabolic signaling molecules and interacts with key regulatory elements of the immune response. Not surprisingly, PHT1 has been implicated in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Unfortunately, the pharmacological development of PHT1 modulators has been hampered by the lack of suitable transport assays. To address this shortcoming, a novel transport assay based on solid-supported membrane-based electrophysiology (SSME) is presented. Key findings of the present SSME studies include the first recordings of electrophysiological properties, a pH dependence analysis, an assessment of PHT1 substrate selectivity, as well as the transport kinetics of the identified substrates. In contrast to previous work, PHT1 is studied in its native lysosomal environment. Moreover, observed substrate selectivity is validated by molecular docking. Overall, this new SSME-based assay is expected to contribute to unlocking the pharmacological potential of PHT1 and to deepen the understanding of its functional properties.


Assuntos
Lisossomos , Humanos , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Eletrofisiologia/métodos , Fenômenos Eletrofisiológicos , Histidina/metabolismo , Histidina/química , Cinética
2.
Genomics ; 116(5): 110877, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852876

RESUMO

Adenomyosis (ADS) is a common gynecological disorder, and its pathogenesis remains unclear. This study explores the functions of circRNAs in the eutopic endometrium of ADS and their diagnostic efficacy for ADS. High-throughput RNA sequencing was performed on 12 eutopic endometrial samples from ADS patients and 3 control endometrial samples. Additionally, circRNAs were analyzed in conjunction with clinical features. A competitive endogenous RNA network was established based on bioinformatics analysis, comprising 3 circRNAs, 1 miRNA, and 13 mRNAs. In the ADS group, the expression levels of hsa_circ_0008959 and SLC15A4 were significantly reduced, while hsa-miR-124-3p expression was increased. SLC15A4 was associated with cell proliferation and invasion. Decreased expression of hsa_circ_0008959 and SLC15A4, along with high VAS scores and elevated hsa-miR-124-3p levels, were identified as risk factors for ADS development. The combination of hsa_circ_0008959 and VAS scores demonstrated the highest diagnostic value for ADS.


Assuntos
Adenomiose , Endométrio , Redes Reguladoras de Genes , MicroRNAs , RNA Circular , RNA Mensageiro , Humanos , Feminino , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adenomiose/metabolismo , Adenomiose/genética , Endométrio/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Adulto , Pessoa de Meia-Idade , Biomarcadores/metabolismo
3.
Cell Rep ; 42(8): 112916, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37527038

RESUMO

Endolysosomal Toll-like receptors (TLRs) play crucial roles in immune responses to pathogens, while aberrant activation of these pathways is associated with autoimmune diseases, including systemic lupus erythematosus (SLE). The endolysosomal solute carrier family 15 member 4 (SLC15A4) is required for TLR7/8/9-induced responses and disease development in SLE models. SLC15A4 has been proposed to affect TLR7-9 activation through its transport activity, as well as by assembling an IRF5-activating complex with TASL, but the relative contribution of these functions remains unclear. Here, we show that the essential role of SLC15A4 is to recruit TASL to endolysosomes, while its transport activity is dispensable when TASL is tethered to this compartment. Endolysosomal-localized TASL rescues TLR7-9-induced IRF5 activation as well as interferon ß and cytokine production in SLC15A4-deficient cells. SLC15A4 acts as signaling scaffold, and this function is essential to control TLR7-9-mediated inflammatory responses. These findings support targeting the SLC15A4-TASL complex as a potential therapeutic strategy for SLE and related diseases.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Fatores Reguladores de Interferon/metabolismo , Imunidade Inata , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
4.
Pharm Res ; 40(11): 2533-2540, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37308743

RESUMO

This mini-review describes the role of the solute carrier (SLC)15 family of proton-coupled oligopeptide transporters (POTs) and particularly Pept2 (Slc15A2) and PhT1 (Slc15A4) in the brain. That family transports endogenous di- and tripeptides and peptidomimetics but also a number of drugs. The review focuses on the pioneering work of David E. Smith in the field in identifying the impact of PepT2 at the choroid plexus (the blood-CSF barrier) as well as PepT2 and PhT1 in brain parenchymal cells. It also discusses recent findings and future directions in relation to brain POTs including cellular and subcellular localization, regulatory pathways, transporter structure, species differences and disease states.


Assuntos
Simportadores , Simportadores/metabolismo , Prótons , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Encéfalo/metabolismo
5.
Front Lupus ; 12023.
Artigo em Inglês | MEDLINE | ID: mdl-38317862

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic basis. Despite the identification of several single nucleotide polymorphisms (SNPs) near the SLC15A4 gene that are significantly associated with SLE across multiple populations, specific causal SNP(s) and molecular mechanisms responsible for disease susceptibility are unknown. To address this gap, we employed bioinformatics, expression quantitative trait loci (eQTLs), and 3D chromatin interaction analysis to nominate a likely functional variant, rs35907548, in an active intronic enhancer of SLC15A4. Through luciferase reporter assays followed by chromatin immunoprecipitation (ChIP)-qPCR, we observed significant allele-specific enhancer effects of rs35907548 in diverse cell lines. The rs35907548 risk allele T is associated with increased regulatory activity and target gene expression, as shown by eQTLs and chromosome conformation capture (3C)-qPCR. The latter revealed long-range chromatin interactions between the rs35907548 enhancer and the promoters of SLC15A4, GLTLD1, and an uncharacterized lncRNA. The enhancer-promoter interactions and expression effects were validated by CRISPR/Cas9 knock-out (KO) of the locus in HL60 promyeloblast cells. KO cells also displayed dramatically dysregulated endolysosomal pH regulation. Together, our data show that the rs35907548 risk allele affects multiple aspects of cellular physiology and may directly contribute to SLE.

6.
J Inflamm Res ; 15: 6607-6616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510495

RESUMO

Background: Plasmacytoid dendritic cells (pDCs) are the main producers of type I interferon (IFN-I), and the excessive production of IFN-I is a hallmark of systemic lupus erythematosus (SLE). Both SLC15A4 and miR-31-5p are SLE susceptibility-related genes, and SLC15A4 has been implicated an important role in endolysosomal toll-like receptor (TLR) activation in pDCs. However, whether miR-31-5p exerts a regulating effect on SLC15A4 expression in pDCs is unclear. Methods: The expression of SLC15A4 and miR-31-5p in peripheral blood mononuclear cells (PBMCs) of SLE patients was measured by RT-qPCR analyses. The quantitative analysis of IFN-α secretion in the patients' serum was performed by ELISA assay. Luciferase-reporter assay was applied to confirm the interaction between miR-31-5p and SLC15A4. The expression of miR-31-5p, SLC15A4 and IFN-stimulated genes (ISGs, such as MX1, OAS1 and IFIT3) was detected by Western blot and RT-qPCR assays and further IRF5 phosphorylation was evaluated by immunofluorescence after transfected with miR-31-5p mimics or inhibitor in THP-1 and CAL-1 cells. Results: The expression of miR-31-5p was downregulated and negatively correlated with the overexpression of SLC15A4 in PBMCs of SLE patients. In addition to this, the secretion of IFN-α was overexpressed in sera of SLE and positively correlated with SLC15A4 level. We found that miR-31-5p directly targeted SLC15A4 and negatively regulated the expression of SLC15A4 in THP-1 and CAL-1 cells. In vitro inhibition of miR-31-5p increased the phosphorylation of IRF5 and the induction of ISGs stimulated by R848, overexpression of miR-31-5p get the reverse results. Conclusion: miR-31-5p might involve in SLE pathogenesis through regulating IFN-I expression by negatively regulating SLC15A4 to increase the levels of IFN-α and ISGs in pDCs.

7.
Int J Mol Sci ; 23(21)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361959

RESUMO

SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial layer, as in the multifactorial pathophysiology of inflammatory bowel disease (IBD), is poorly investigated. Here, the first identification of SLC15A4/PHT1 gene products in human colonic epithelium of ulcerative colitis (UC) patients is reported, showing protein primarily localized in intracellular vesicle-like compartments. Qualitative and quantitative immunohistochemical analyses of colon biopsies revealed overexpression of SLC15A4/PHT1 protein product in the epithelial layer of UC patients. Results were successfully mirrored in vitro, in spontaneously differentiated enterocyte-like monolayers of Caco-2 cells specifically exposed to DSS (dextran sodium sulphate) to mimic IBD inflammatory onsets. SLC15A4/PHT1 expression and cellular localization were characterized confirming its (dys)regulation traits in inflamed vs. healthy epithelia, strongly hinting the hypothesis of SLC15A4/PHT1 increased function associated with epithelial inflammation in IBD patients.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Proteínas de Membrana Transportadoras , Humanos , Células CACO-2 , Colite/patologia , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Regulação para Cima
8.
EMBO J ; 41(20): e111161, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36031853

RESUMO

Phagocytosis is the necessary first step to sense foreign microbes or particles and enables activation of innate immune pathways such as inflammasomes. However, the molecular mechanisms underlying how phagosomes modulate inflammasome activity are not fully understood. We show that in murine dendritic cells (DCs), the lysosomal histidine/peptide solute carrier transporter SLC15A4, associated with human inflammatory disorders, is recruited to phagosomes and is required for optimal inflammasome activity after infectious or sterile stimuli. Dextran sodium sulfate-treated SLC15A4-deficient mice exhibit decreased colon inflammation, reduced IL-1ß production by intestinal DCs, and increased autophagy. Similarly, SLC15A4-deficient DCs infected with Salmonella typhimurium show reduced caspase-1 cleavage and IL-1ß production. This correlates with peripheral NLRC4 inflammasome assembly and increased autophagy. Overexpression of constitutively active mTORC1 rescues decreased IL-1ß levels and caspase1 cleavage, and restores perinuclear inflammasome positioning. Our findings support that SLC15A4 couples phagocytosis with inflammasome perinuclear assembly and inhibition of autophagy through phagosomal content sensing. Our data also reveal the previously unappreciated importance of mTORC1 signaling pathways to promote and sustain inflammasome activity.


Assuntos
Células Dendríticas , Inflamassomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana Transportadoras , Animais , Autofagia , Caspase 1/metabolismo , Células Dendríticas/metabolismo , Dextranos/metabolismo , Histidina , Humanos , Interleucina-1beta/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fagossomos/metabolismo
9.
Mol Genet Genomics ; 297(4): 965-979, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35562597

RESUMO

About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic inheritance of familial CRC.


Assuntos
Neoplasias Colorretais , Mutação em Linhagem Germinativa , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Predisposição Genética para Doença , Células Germinativas/patologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas do Tecido Nervoso/genética , Linhagem , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA