Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int Immunopharmacol ; 138: 112645, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972208

RESUMO

BACKGROUND: Pulmonary fibrosis is a progressive disease with high incidence and poor prognosis. It is urgent to explore new therapeutic methods for pulmonary fibrosis. As a new treatment method, gene therapy has attracted more and more attention. CCDC59 is a transcriptional coactivator of SP-B and SP-C. Our study mainly aims to explore the effect of overexpression of CCDC59 gene in pulmonary fibrosis of mice. METHODS: CCDC59 overexpressing lentivirus was constructed and then concentrated. RT-qPCR, Western blotting, and immunofluorescence assays were used to detect the expression of CCDC59, SP-B and SP-C protein in cell line and lung tissues after infected with lentivirus. Immunohistochemical staining and hematoxylin-eosin staining assays were used to assess the degree of fibrosis and ELISA assay was used to detect the concentrations of inflammatory factors, SP-B, and SP-C in bronchoalveolar lavage fluid of mice. Dynamic changes of mice lung function at various time points were assessed by lung function test assay. HIPPO pathway and proliferation capacity of alveolar type II epithelial cells were evaluated by immunofluorescence staining and Western blotting. RESULTS: Results showed that endotracheal instillation of CCDC59 overexpressed lentivirus significantly alleviated bleomycin-induced inflammation and pulmonary fibrosis in mice. Overexpression of CCDC59 protein in type II alveolar epithelial cells can enhance the expression of SP-B and SP-C. Overexpression of CCDC59 protein significantly protected against pulmonary inflammatory response and improved lung function of mice. Overexpression of CCDC59 protein significantly alleviated the hyperactivation of HIPPO pathway and increased the proliferative capacity of type II alveolar epithelial cells in lung. CONCLUSION: CCDC59 can alleviate inflammation and pulmonary fibrosis in mice by upregulating the expression of SP-B and SP-C in type II alveolar epithelial cells and alleviating the hyperactivation of HIPPO pathway. Our study offers a new potential treatment for pulmonary fibrosis.

2.
Biomedicines ; 12(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255268

RESUMO

Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency is life-threatening, and a lack of SP-C can lead to progressive interstitial lung disease. B-YL (41 amino acids) is a highly surface-active, sulfur-free peptide mimic of SP-B (79 amino acids) in which the four cysteine residues are replaced by tyrosine. Mammalian SP-C (35 amino acids) contains two cysteine-linked palmitoyl groups at positions 5 and 6 in the N-terminal region that override the ß-sheet propensities of the native sequence. Canine SP-C (34 amino acids) is exceptional because it has only one palmitoylated cysteine residue at position 4 and a phenylalanine at position 5. We developed canine SP-C constructs in which the palmitoylated cysteine residue at position 4 is replaced by phenylalanine (SP-Cff) or serine (SP-Csf) and a glutamic acid-lysine ion-lock was placed at sequence positions 20-24 of the hydrophobic helical domain to enhance its alpha helical propensity. AI modeling, molecular dynamics, circular dichroism spectroscopy, Fourier Transform InfraRed spectroscopy, and electron spin resonance studies showed that the secondary structure of canine SP-Cff ion-lock peptide was like that of native SP-C, suggesting that substitution of phenylalanine for cysteine has no apparent effect on the secondary structure of the peptide. Captive bubble surfactometry demonstrated higher surface activity for canine SP-Cff ion-lock peptide in combination with B-YL in surfactant lipids than with canine SP-Csf ion-lock peptide. These studies demonstrate the potential of canine SP-Cff ion-lock peptide to enhance the functionality of the SP-B peptide mimic B-YL in synthetic surfactant lipids.

3.
Chemosphere ; 345: 140385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839750

RESUMO

Safener mefenpyr-diethyl (MFD) was applied to cereal crops along with herbicides to improve herbicide selectivity for crops and weeds. However, the degradation mechanism of MFD in the environment remains unclear. One MFD-degrading bacterium, Chryseobacterium sp. B6, was isolated from activated sludge. According to Box-Behnken's optimal design, the degradation efficiency of MFD can reach 92% under conditions of pH 7.5, 30 °C, and a MFD concentration of 184 mg L-1. The degradation half-life experiment showed that a high concentration of MFD (300 mg L-1) inhibited the degradation ability of strain B6. Additionally, strain B6 was resistant to Ba2+, Cr3+, Li+, Zn2+, and Cu2+. The MFD degradation products of strain B6 were detected by GC/MS and its degradation pathway was proposed. MFD was first hydrolyzed by a hydrolase to an intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester-3-carboxylic acid, and then further degraded by a decarboxylase to form the intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester, finally, it is completely degraded by strain B6. Furthermore, strain B6 could effectively remove MFD from MFD-contaminated soil, and the half-life of MFD was also significantly reduced in MFD and Cu2+ co-contaminated soil after inoculating strain B6. To our knowledge, strain B6 was the first strain reported to degrade safener MFD, and this study provides a valuable candidate to remediate the co-contaminated soil with MFD and Cu2+.


Assuntos
Chryseobacterium , Herbicidas , Poluentes do Solo , Esgotos , Águas Residuárias , Poluentes do Solo/análise , Microbiologia do Solo , Biodegradação Ambiental , Herbicidas/análise , Ácidos Carboxílicos/metabolismo , Ésteres/metabolismo , Solo
4.
J Matern Fetal Neonatal Med ; 36(2): 2240469, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37527966

RESUMO

Objective: Surfactant protein SP-B, an important protein in pulmonary surfactant, is required for the stabilization of surfactant films in the lung and maintenance of postnatal lung function. Although the association between SP-B polymorphisms and the risk of neonatal respiratory distress syndrome (RDS) has been evaluated, the results have been inconsistent. We investigated the association between SP-B polymorphisms and the risk of neonatal RDS.Methods: Relevant studies were systematically searched in PubMed, EMBASE, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) electronic databases until June 2022. Data were collected independently by two reviewers and converted to odds ratios (ORs) with 95% confidence intervals (CIs). Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias assessment were performed using Stata 12.1 software and Review Manager 5.3.Results: Fourteen studies were included. SP-B C1580T polymorphism was significantly associated with neonatal RDS in five genetic models (T vs. C: OR = 0.70, 95% CI 0.57-0.86, I2 = 78%; TT vs. CC: OR = 0.63, 95% CI 0.53-0.86, I2 = 39%; CT vs. CC: OR = 0.65, 95% CI 0.50-0.84, I2 = 54%; TT + CT vs. CC: OR = 0.62, 95% CI 0.49-0.78, I2 = 59%; TT vs. CC + CT: OR = 0.78, 95% CI 0.67-0.91, I2 = 43%). The CT and TT genotypes may decrease the risk of RDS in neonates. Subgroup analyses revealed that the association of SP-B C1580T polymorphism with neonatal RDS was stable, independent of preterm birth and Hardy-Weinberg equilibrium. In addition, the Han Chinese were more likely to be affected by SP-B C1580T polymorphisms than Caucasians and Finnish.Conclusions: Our findings suggest that SP-B C1580T polymorphism may be a protective factor against neonatal RDS.


Assuntos
Nascimento Prematuro , Surfactantes Pulmonares , Síndrome do Desconforto Respiratório do Recém-Nascido , Feminino , Humanos , Recém-Nascido , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Síndrome do Desconforto Respiratório do Recém-Nascido/genética
5.
Pan Afr Med J ; 44: 158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455866

RESUMO

The incapacity to synthesize certain components of pulmonary surfactant causes a heterogeneous group of rare respiratory diseases called genetic disorders of surfactant dysfunction. We report a female full-term infant with neonatal respiratory distress of early onset due to inherited SP-B deficiency. The infant failed oxygen weaning at multiple trials. Chest computed tomography was performed on the 29th day of life revealing ground-glass opacities, regular interlobular septal thickening and fine interlobular reticulations. Analysis of genomic DNA showed homozygosity for an extremely rare SFTPB gene variant (c.620A>G, p.Tyr207Cys). Both parents were heterozygotes for the mutation. The diagnosis of congenital SP-B deficiency should be suspected whenever an early and acute respiratory failure in a term or near-term infant does not resolve after five days of age: diagnostic confirmation can be easily and rapidly obtained with the analysis of genomic DNA.


Assuntos
Síndrome do Desconforto Respiratório do Recém-Nascido , Lactente , Recém-Nascido , Humanos , Feminino , Síndrome do Desconforto Respiratório do Recém-Nascido/etiologia , Tensoativos , DNA
6.
Sci Total Environ ; 856(Pt 2): 159086, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179826

RESUMO

The pretilachlor has been widely used worldwide and has contaminated the environment for many years. The environmental fate of pretilachlor and its residues removal from the contaminated environment have attracted great concern. Reportedly, pretilachlor could partly be transformed to HECDEPA by Rhodococcus sp. B2. However, the effects of pretilachlor on soil bacterial communities and its complete metabolic pathway remain unknown. Herein, we investigated the mechanism of driving synergistic degradation of pretilachlor by strain B2 in the soil. The results revealed that pretilachlor showed a negative effect on bacterial communities and caused significant variations in the community structure. Strain B2 showed the ability to remediate the pretilachlor-contaminated soils and network analysis revealed that it may drive the enrichment of potential pretilachlor-degrading bacteria from the soil. The soil pretilachlor degradation may be facilitated by the members of the keystone families Comamonadaceae, Caulobacteraceae, Rhodospirillaceae, Chitinophagaceae, and Sphingomonadaceae. Meanwhile, Sphingomonas sp. M6, a member of the Sphingomonadaceae family, has been isolated from the strain B2 inoculation sample soil. The co-culture, comprising strain M6 and B2, could synergistic degrade pretilachlor within 30 h, which is the highest degradation rate. Strain M6 could completely degrade the HECDEPA via CDEPA and DEA. In the soil, a comparable pretilachlor degradation pathway may exist. This study suggested that strain B2 had the potential to drive the remediation of pretilachlor-contaminated soils.


Assuntos
Rhodococcus , Poluentes do Solo , Sphingomonadaceae , Humanos , Biodegradação Ambiental , Rhodococcus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo , Sphingomonadaceae/metabolismo
7.
Am J Transl Res ; 15(12): 6949-6958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186981

RESUMO

BACKGROUND: Viral pneumonias, such as SARS and MERS, have been a recurrent challenge for the public healthcare system. COVID-19 posed an unprecedented global crisis. The primary impact of viral pneumonia is pathologic changes of lung tissue. However, the effect of SP-B site gene polymorphism on alveolar surface tension in viral pneumonia remains unexplored. OBJECTIVE: To explore the molecular mechanism of how the gene polymorphism at SP-B 1580 site regulates the pulmonary surfactant tension of viral pneumonia through the cellular pyroptosis signaling pathway using an in vivo animal experiment and a clinical trial. METHODS: We constructed a genetically modified mouse model of viral pneumonia and administered H5N1 influenza virus through intratracheal injection. After 48 hours, the survival rate of each mouse group was evaluated. Lung tissue, blood, and bronchoalveolar lavage fluid samples were collected for histopathologic analysis. Inflammatory factor concentrations were measured using ELISA. The level of apoptosis was determined using TUNEL assay. Changes in the expression of cell death-related factors were assessed using qRT-PCR and protein blotting. Additionally, blood samples from patients with viral pneumonia were analyzed to detect single nucleotide polymorphisms and explore their correlation with disease severity, inflammatory factor levels, and pulmonary surfactant protein expression. RESULTS: Following H5N1 infection of mice, the model group and hSP-B-C group showed high mortality rates within 24 hours. The survival rates in the blank control group, virus model group, hSP-B-C group, and hSP-B-T group were 100%, 50%, 37.5%, and 75%, respectively. Histologic analysis revealed significant lung tissue damage, congestion, alveolar destruction, and thickened alveolar septa in the model and hSP-B-C groups. However, these pulmonary lesions were significantly alleviated in the hSP-B-T group. Inflammatory factor levels were elevated in the model and hSP-B-C groups but reduced in the hSP-B-T group. TUNEL assay demonstrated a decrease in apoptotic cells in the lungs of the hSP-B-T group. Furthermore, the expression of SP-B and cell death-related proteins was downregulated in all three groups, with the lowest expression observed in the hSP-B-C group. The clinical trial found that patients with severe viral pneumonia exhibited a higher frequency of CC genotype and C allele in, along with increased inflammatory factor levels and decreased SP-B expression compared to those with mild-to-moderate viral pneumonia. CONCLUSION: SP-B polymorphism at the 1580 site regulates lung surfactant tension through the cell pyroptosis signaling pathway, thus affecting the progression of viral pneumonia.

8.
J Proteomics ; 269: 104722, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36108905

RESUMO

The disulfide bonds formed in the SAPA domain of a recombinant version of the NH2-terminal propeptide (SP-BN) from the precursor of human pulmonary surfactant protein B (SP-B) were identified through sequential digestion of SP-BN with GluC/trypsin or thermolysin/GluC, followed by mass spectrometry (MS) analysis. MS spectra allowed identification of disulfide bonds between Cys32-Cys49 and Cys40-Cys55, and we propose a disulfide connectivity pattern of 1-3 and 2-4 within the SAPA domain, with the Cys residues numbered according to their position from the N-terminus of the propeptide sequence. The peaks with m/z âˆ¼ 2136 and âˆ¼ 1780 in the MS spectrum of the GluC/trypsin digest were assigned to peptides 24AWTTSSLACAQGPE37 and 45QALQCR50 linked by Cys32-Cys49 and 38FWCQSLE44 and 51ALGHCLQE58 linked by Cys40-Cys55 respectively. Tandem mass spectrometry (MS/MS) analysis verified the position of the bonds. The results of the series ions, immonium ions and internal fragment ions were all compatible with the proposed 1-3/2-4 position of the disulfide bonds in the SAPA domain. This X-pattern differs from the kringle-type found in the SAPB domain of the SAPLIP proteins, where the first Cys in the sequence links to the last, the second to the penultimate and the third to the fourth one. Regarding the SAPB domain of the SP-BN propeptide, the MS analysis of both digests identified the bond Cys100-Cys112, numbered 7-8, which is coincident with the bond position in the kringle motif. SIGNIFICANCE: The SAPLIP (saposin-like proteins) family encompasses several proteins with homology to saposins (sphingolipids activator proteins). These are proteins with mainly alpha-helical folds, compact packing including well conserved disulfide bonds and ability to interact with phospholipids and membranes. There are two types of saposin-like domains termed as Saposin A (SAPA) and Saposin B (SAPB) domains. While disulfide connectivity has been well established in several SAPB domains, the position of disulfide bonds in SAPA domains is still unknown. The present study approaches a detailed proteomic study to determine disulfide connectivity in the SAPA domain of the precursor of human pulmonary surfactant-associated protein SP-B. This task has been a challenge requiring the combination of different sequential proteolytic treatments followed by MS analysis including MALDI-TOF and tandem mass MS/MS spectrometry. The determination for first time of the position of disulfide bonds in SAPA domains is an important step to understand the structural determinants defining its biological functions.


Assuntos
Surfactantes Pulmonares , Saposinas , Sequência de Aminoácidos , Dissulfetos/análise , Humanos , Peptídeos/química , Fosfolipídeos , Proteômica , Proteína B Associada a Surfactante Pulmonar , Receptores Fc , Esfingolipídeos , Espectrometria de Massas em Tandem , Termolisina , Tripsina
9.
Comput Struct Biotechnol J ; 20: 4984-5000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36097510

RESUMO

Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations' effects on SP-D's binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D's higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D's binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.

10.
Mar Drugs ; 20(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35447927

RESUMO

Alginate is the main component of brown algae, which is an important primary production in marine ecosystems and represents a huge marine biomass. The efficient utilization of alginate depends on alginate lyases to catalyze the degradation, and remains to be further explored. In this study, 354 strains were isolated from the gut of adult abalones, which mainly feed on brown algae. Among them, 100 alginate-degrading strains were gained and the majority belonged to the Gammaproteobacteria, followed by the Bacteroidetes and Alphaproteobacteria. A marine bacterium, Agarivorans sp. B2Z047, had the strongest degradation ability of alginate with the largest degradation circle and the highest enzyme activity. The optimal alginate lyase production medium of strain B2Z047 was determined as 1.1% sodium alginate, 0.3% yeast extract, 1% NaCl, and 0.1% MgSO4 in artificial seawater (pH 7.0). Cells of strain B2Z047 were Gram-stain-negative, aerobic, motile by flagella, short rod-shaped, and approximately 0.7-0.9 µm width and 1.2-1.9 µm length. The optimal growth conditions were determined to be at 30 °C, pH 7.0-8.0, and in 3% (w/v) NaCl. A total of 12 potential alginate lyase genes were identified through whole genome sequencing and prediction, which belonged to polysaccharide lyase family 6, 7, 17, and 38 (PL6, PL7, PL17, and PL38, respectively). Furthermore, the degradation products of nine alginate lyases were detected, among which Aly38A was the first alginate lyase belonging to the PL38 family that has been found to degrade alginate. The combination of alginate lyases functioning in the alginate-degrading process was further demonstrated by the growth curve and alginate lyase production of strain B2Z047 cultivated with or without sodium alginate, as well as the content changes of total sugar and reducing sugar and the transcript levels of alginate lyase genes. A simplified model was proposed to explain the alginate utilization process of Agarivorans sp. B2Z047.


Assuntos
Alteromonadaceae , Phaeophyceae , Alginatos/metabolismo , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Ecossistema , Phaeophyceae/metabolismo , Polissacarídeo-Liases/metabolismo , Cloreto de Sódio , Especificidade por Substrato , Açúcares
11.
Respir Res ; 23(1): 78, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379243

RESUMO

BACKGROUND: Dry powder (DP) synthetic lung surfactant may be an effective means of noninvasive delivery of surfactant therapy to premature infants supported with nasal continuous positive airway pressure (nCPAP) in low-resource settings. METHODS: Four experimental DP surfactant formulations consisting of 70% of phospholipids (DPPC:POPG 7:3), 3% Super Mini-B (SMB) or its sulfur-free derivate B-YL as SP-B peptide mimic, 25% of lactose or trehalose as excipient, and 2% of NaCl were formulated using spray drying. In vitro surface activity was confirmed with captive bubble surfactometry. Surfactant particle size was determined with a cascade impactor and inhaled dose was quantified using a spontaneously breathing premature lamb lung model supported with CPAP. In vivo surfactant efficacy was demonstrated in three studies. First, oxygenation and lung compliance were monitored after intratracheal instillation of resuspended DP surfactant in intubated, ventilated, lavaged, surfactant-deficient juvenile rabbits. In dose-response studies, ventilated, lavaged, surfactant-deficient rabbits received 30, 60, 120 or 240 mg/kg of DP B-YL:Lactose or B-YL:Trehalose surfactant by aerosol delivery with a low flow aerosol chamber via their endotracheal tube. Noninvasive aerosolization of DP B-YL:Trehalose surfactant via nasal prongs was tested in spontaneous breathing premature lambs supported with nCPAP. Intratracheal administration of 200 mg/kg of Curosurf®, a liquid porcine surfactant, was used as a positive control. RESULTS: Mass median aerosol diameter was 3.6 µm with a geometric standard deviation of 1.8. All four experimental surfactants demonstrated high surface efficacy of intratracheal instillation of a bolus of ~ 100 mg/kg of surfactant with improvement of oxygenation and lung compliance. In the dose-response studies, rabbits received incremental doses of DP B-YL:Lactose or B-YL:Trehalose surfactant intratracheally and showed an optimal response in oxygenation and lung function at a dose of 120-240 mg/kg. Aerosol delivery via nasal prongs of 1 or 2 doses of ~ 100 mg/kg of B-YL:Trehalose surfactant to premature lambs supported with nCPAP resulted in stabilization of spontaneous breathing and oxygenation and lung volumes comparable to the positive control. CONCLUSION: These studies confirm the clinical potential of DP synthetic lung surfactant with B-YL peptide as a SP-B mimic to alleviate surfactant deficiency when delivered as a liquid bolus or as an aerosol.


Assuntos
Excipientes , Tensoativos , Aerossóis , Animais , Excipientes/farmacologia , Humanos , Pulmão , Pós/farmacologia , Coelhos , Ovinos , Suínos
12.
AMB Express ; 12(1): 12, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122534

RESUMO

Cold-adapted filamentous fungal strain Geomyces sp. B10I has been reported to decompose polyesters such as poly(e-caprolactone) (PCL), poly(butylene succinate) (PBS) and poly(butylene succinate-co-butylene adipate) (PBSA). Here, we identified the enzymes of Geomyces sp. B10I, which appear to be responsible for its biodegradation activity. We compared their amino acid sequences with sequences of well-studied fungal enzymes. Partial purification of an extracellular mixture of the two enzymes, named hydrGB10I and chitGB10I, using ammonium sulfate precipitation and ionic exchange chromatography gave 14.16-fold purity. The amino acid sequence of the proteins obtained from the MALDI-TOF analysis determined the molecular mass of 77.2 kDa and 46.5 kDa, respectively. Conserved domain homology analysis revealed that both proteins belong to the class of hydrolases; hydrGB10I belongs to the glycosyl hydrolase 81 superfamily, while chitGB10I contains the domain of the glycosyl hydrolase 18 superfamily. Phylogenetic analysis suggests a distinct nature of the hydrGB10I and chitGB10I of Geomyces sp. B10I when compared with other fungal polyester-degrading enzymes described to date.

13.
Bioengineered ; 13(1): 834-843, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898355

RESUMO

The rise of bioinformatics based on computer medicine provides a new method to reveal the complex biological data. This experiment is to explore the impacts of lipopolysaccharide on fetal lung developmental maturity and expressions of lung surfactant protein B (SP-B) and lung surfactant protein C (SP-C) in rats with gestational diabetes mellitus (GDM), thereby discussing the mechanism of developmental disorders in rats. Forty-eight conceived female rats were experimental subjects. Twenty-eight rats were randomly selected to construct the GDM models. All conceived rats underwent section on the 21st day of pregnancy. The ultrastructure of alveolar type II epithelial cells and the morphology of lung tissue were observed under a microscope. The protein localization and expression of SP-B and SP-C were determined by immunohistochemistry; the protein levels of SP-B and SP-C were determined by Western blot. Blood glucose and body weight of the GDM group were higher than those of the control group; the number of alveoli and alveolar area in the GDM group was lower than those in the control group; the alveolar interval in the GDM group was significantly higher than that in the control group (P < 0.05). The average absorbance of SP-B and SP-C in fetal lung tissue was significantly lower in the GDM group than that in the control group (P < 0.01). Changes in fetal lung tissue structure of rats were related to SP-B and SP-C, which was one of the main factors that affected the maturation of fetal lung tissue.


Assuntos
Diabetes Gestacional/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/embriologia , Pulmão/patologia , Peptídeos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Animais , Peso Corporal , Estudos de Casos e Controles , Diabetes Gestacional/sangue , Diabetes Gestacional/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/ultraestrutura , Masculino , Peptídeos/genética , Gravidez , Proteína B Associada a Surfactante Pulmonar/genética , Distribuição Aleatória , Ratos
14.
Respir Med Case Rep ; 34: 101526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703757

RESUMO

A woman with a diagnosis of tuberous sclerosis complex (TSC) presented with TSC2 gene mutation and various manifestations, including epilepsy, renal angiomyolipomas (AML), and pathologically confirmed multifocal micronodular pneumocyte hyperplasia (MMPH). With oral administration of everolimus, a mammalian target of rapamycin (mTOR) inhibitor, MMPH and AML were markedly reduced. Further, after starting treatment with everolimus, serum levels of surfactant protein (SP)-A and SP-D, which reflect type II pneumocyte hyperplasia, decreased to the normal range. At the time of writing of this manuscript, 6 years after starting everolimus, MMPH lesions did not relapse and SP-A/D remained the low levels. This is the first case of everolimus efficacy shown for histologically confirmed MMPH in genetically determined TSC patient, with time course of serum SP-A and SP-D.

15.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668862

RESUMO

The possibility of utilizing lignocellulosic agro-industrial waste products such as cassava peel hydrolysate (CPH) as carbon sources for polyhydroxybutyrate (PHB) biosynthesis and characterization by Amazonian microalga Stigeoclonium sp. B23. was investigated. Cassava peel was hydrolyzed to reducing sugars to obtain increased glucose content with 2.56 ± 0.07 mmol/L. Prior to obtaining PHB, Stigeoclonium sp. B23 was grown in BG-11 for characterization and Z8 media for evaluation of PHB nanoparticles' cytotoxicity in zebrafish embryos. As results, microalga produced the highest amount of dry weight of PHB with 12.16 ± 1.28 (%) in modified Z8 medium, and PHB nanoparticles exerted some toxicity on zebrafish embryos at concentrations of 6.25-100 µg/mL, increased mortality (<35%) and lethality indicators as lack of somite formation (<25%), non-detachment of tail, and lack of heartbeat (both <15%). Characterization of PHB by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), and thermogravimetry (TGA) analysis revealed the polymer obtained from CPH cultivation to be morphologically, thermally, physically, and biologically acceptable and promising for its use as a biomaterial and confirmed the structure of the polymer as PHB. The findings revealed that microalgal PHB from Stigeoclonium sp. B23 was a promising and biologically feasible new option with high commercial value, potential for biomaterial applications, and also suggested the use of cassava peel as an alternative renewable resource of carbon for PHB biosynthesis and the non-use of agro-industrial waste and dumping concerns.

16.
Microb Cell Fact ; 19(1): 157, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738926

RESUMO

BACKGROUND: Maltoheptaose as malto-oligosaccharides with specific degree of polymerization, has wide applications in food, medicine and cosmetics industries. Currently, cyclodextrinase have been applied as prepared enzyme to prepare maltoheptaose. However, the yield and proportion of maltoheptaose was lower, which is due to limited substrate and product specificity of cyclodextrinase (CDase). To achieve higher maltoheptaose yield, cyclodextrinase with high substrate and product specificity should be obtained. RESULTS: In this study, cyclodextrinase derived from Thermococcus sp B1001 (TsCDase) was successfully expressed and characterized in Bacillus subtilis for the first time. The specific activity of TsCDase was 637.95 U/mg under optimal conditions of 90 °C and pH 5.5, which exhibited high substrate specificity for cyclodextrins (CDs). When the concentration of ß-CD was 8%, the yield of maltoheptaose achieved by TsCDase was 82.33% across all reaction products, which exceeded the yields of maltoheptaose in other recent reports. Among malto-oligosaccharides generated as reaction products, maltoheptaose was present in the highest proportion, about 94.55%. CONCLUSIONS: This study provides high substrate and product specificity of TsCDase. TsCDase is able to prepare higher yield of maltoheptaose through conversion of ß-CD in the food industry.


Assuntos
Bacillus subtilis/metabolismo , Glucanos/biossíntese , Glicosídeo Hidrolases/genética , Thermococcus/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Hidrólise , Especificidade por Substrato , Temperatura , Thermococcus/genética
17.
J Mol Biol ; 432(10): 3251-3268, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135191

RESUMO

Surfactant protein B (SP-B) is essential in transferring surface-active phospholipids from membrane-based surfactant complexes into the alveolar air-liquid interface. This allows maintaining the mechanical stability of the surfactant film under high pressure at the end of expiration; therefore, SP-B is crucial in lung function. Despite its necessity, the structure and the mechanism of lipid transfer by SP-B have remained poorly characterized. Earlier, we proposed higher-order oligomerization of SP-B into ring-like supramolecular assemblies. In the present work, we used coarse-grained molecular dynamics simulations to elucidate how the ring-like oligomeric structure of SP-B determines its membrane binding and lipid transfer. In particular, we explored how SP-B interacts with specific surfactant lipids, and how consequently SP-B reorganizes its lipid environment to modulate the pulmonary surfactant structure and function. Based on these studies, there are specific lipid-protein interactions leading to perturbation and reorganization of pulmonary surfactant layers. Especially, we found compelling evidence that anionic phospholipids and cholesterol are needed or even crucial in the membrane binding and lipid transfer function of SP-B. Also, on the basis of the simulations, larger oligomers of SP-B catalyze lipid transfer between adjacent surfactant layers. Better understanding of the molecular mechanism of SP-B will help in the design of therapeutic SP-B-based preparations and novel treatments for fatal respiratory complications, such as the acute respiratory distress syndrome.


Assuntos
Fosfolipídeos/química , Proteína B Associada a Surfactante Pulmonar/química , Proteína B Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/química , Sítios de Ligação , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica
18.
Clin Sci (Lond) ; 133(21): 2159-2169, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31693732

RESUMO

Lung cancer ranks first in both incidence and mortality and is a major health concern worldwide. Upon recognition of specific antigens on tumor cells, complement-dependent cytotoxicity (CDC) is activated, arresting cell growth or inducing apoptosis. However, by overexpressing CD59, a membrane complement regulatory protein (mCRP), lung cancer cells develop resistance to CDC. We previously showed that virus-like particles (VLPs) of human JC polyomavirus (JCPyV) could be used as a gene therapy vector to carry a suicide gene expression plasmid with a lung-specific promoter (SP-B (surfactant protein B)) for lung adenocarcinomas. Herein, we designed a CD59-specific short hairpin RNA (shRNA) expression plasmid driven by SP-B (pSPB-shCD59) to effectively and specifically inhibit CD59 overexpression in lung cancer cells. Treatment of lung cancer cells in vitro with JCPyV VLPs containing pSPB-shCD59 (pSPB-shCD59/VLPs) induces CDC and death of cancer cells. Mice that were subcutaneously injected with human lung cancer cells showed an 87% inhibition in tumor growth after tail vein injection of pSPB-shCD59/VLPs. Moreover, in a mouse model of lung cancer metastasis, a reduction in the lung weight by 39%, compared with the control group, was observed in mice treated with pSPB-shCD59/VLPs after tail vein injection of human lung cancer cells. Furthermore, tissue sectioning showed that the number and size of tumors produced was significantly reduced in the lungs of mice in the treatment group than those of the untreated group, indicating inhibition of metastasis by pSPB-shCD59/VLPs. Together, these results demonstrate the potential of pSPB-shCD59/VLPs as a therapeutic agent for CD59 overexpressed lung cancer.


Assuntos
Adenocarcinoma de Pulmão/terapia , Antígenos CD59/antagonistas & inibidores , Terapia Genética/métodos , Vetores Genéticos/síntese química , Neoplasias Pulmonares/prevenção & controle , Células A549 , Adenocarcinoma de Pulmão/secundário , Animais , Vetores Genéticos/farmacologia , Humanos , Vírus JC , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Plasmídeos/síntese química , Plasmídeos/farmacologia , Regiões Promotoras Genéticas , Proteína B Associada a Surfactante Pulmonar/genética , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398818

RESUMO

Although lung surfactant protein B (SP-B) is an essential protein that plays a crucial role in breathing, the details of its structure and mechanism are not well understood. SP-B forms covalent homodimers, and in this work we use all-atom molecular dynamics simulations to study dimeric SP-B's structure and its behavior in promoting lipid structural transitions. Four initial system configurations were constructed based on current knowledge of SP-B's structure and mechanism, and the protein maintained a helicity consistent with experiment in all systems. Several SP-B-induced lipid reorganization behaviors were observed, and regions of the protein particularly important for these activities included SP-B's "central loop" and "hinge" regions. SP-B dimers with one subunit initially positioned in each of two adjacent bilayers appeared to promote close contact between two bilayers. When both subunits were initially positioned in the same bilayer, SP-B induced the formation of a defect in the bilayer, with water penetrating into the centre of the bilayer. Similarly, dimeric SP-B showed a propensity to interact with preformed interpores in the bilayer. SP-B dimers also promoted bilayer thinning and creasing. This work fleshes out the atomistic details of the dimeric SP-B structures and SP-B/lipid interactions that underlie SP-B's essential functions.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteína B Associada a Surfactante Pulmonar/química , Sequência de Aminoácidos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica , Proteína B Associada a Surfactante Pulmonar/metabolismo , Relação Estrutura-Atividade
20.
J Pharm Biomed Anal ; 174: 625-632, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276983

RESUMO

Calf pulmonary surfactant (CPS), which contains about 98% lipids and 2% hydrophobic surfactant proteins B (SP-B) and C (SP-C), has been used as a surfactant preparation for the clinical replacement therapy of respiratory distress syndrome (RDS). Characterization of SP-B and SP-C in CPS is informative for quality control and the evaluation of their biological activities. However, analysis of SP-B and SP-C is impeded by the high content of lipids in CPS. Here, we describe an integrated method by combining size exclusion chromatography (SEC)-based delipidation, SDS-PAGE separation, in-gel digestion and mass spectrometric analysis for comprehensive characterization and proteoform analysis of the extremely hydrophobic SP-B and SP-C in CPS. This study has shown that 30 proteoforms of SP-C with different truncations and modifications were identified and SP-B was found to be existed as a dimer form in the CPS.


Assuntos
Cromatografia Líquida/métodos , Lipoproteínas/análise , Surfactantes Pulmonares/análise , Espectrometria de Massas em Tandem/métodos , Animais , Líquido da Lavagem Broncoalveolar , Bovinos , Clorofórmio/química , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Lipoilação , Metanol/química , Isoformas de Proteínas , Multimerização Proteica , Controle de Qualidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...