Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.814
Filtrar
1.
Cell Rep Methods ; 4(7): 100803, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959888

RESUMO

High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.


Assuntos
Metabolômica , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Metabolômica/métodos , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem/métodos , Animais , Nanotecnologia/métodos , Espectrometria de Massa com Cromatografia Líquida
2.
Food Chem ; 459: 140431, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39018618

RESUMO

Insight investigation on both edible pulps and inedible parts involving inflorescence axis and shreds of Artocarpus heterophyllus Lam were carried out, a total of 98 VOCs and 201 masses were identified by the combination of HS-SPME-GC-MS and PTR-TOF-MS. Among them, according to the consistency of OAV and results of VIP > 1, p < 0.05, compounds methyl isovalerate (A2), 3-methylbutyl acetate (A5) and octanoic acid, ethyl ester (A21) were recognized as aroma markers to distinguish the pulps, shreds and inflorescence axis. Meanwhile, the inflorescence axis (IC50: 1.82 mg/mL) and shreds (IC50: 16.74 mg/mL) exhibited more excellent antioxidant potency than pulps (IC50: 17.43 mg/mL) in vitro. These findings validated the feasibility of coupling HS-SPME-GC-MS and PTR-TOF-MS for rapid detection of characteristic VOCs of this plant, and offered new prospect of fragrance utilization and waste management of the edible and inedible parts of A. heterophyllus fruit.

3.
Foods ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998629

RESUMO

By employing headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), this study displayed the compositional changes in volatile organic compounds (VOCs) in Tricholoma matsutake samples subjected to hot-air drying (HAD) and vacuum freeze-drying (VFD) processes from their fresh samples. A total of 99 VOCs were detected, including 2 acids, 10 aldehydes, 10 alcohols, 13 esters, 12 ketones, 24 alkanes, 14 olefins, 7 aromatic hydrocarbons, and 7 heterocyclic compounds. Notably, the drying process led to a decrease in most alcohols and aldehydes, but an increase in esters, ketones, acids, alkanes, olefins, aromatic, and heterocyclic compounds. Venn diagram (Venn), principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) analyses enabled an easy and rapid distinction between the VOC profiles of T. matsutake subjected to different drying methods. Among the identified VOCs, 30 were designated as marker VOCs indicative of the employed drying process. And the VFD method was more capable of preserving the VOCs of fresh T. matsutake samples than the HAD method. Benzaldehyde, 1-Octen-3-ol, 3-Octanol, and (E)-2-Octen-1-ol were identified as markers for FRESH T. matsutake. Conversely, (E)-3-Hexene, lavender lactone, and α-Pinene were associated with VFD T. matsutake. For HAD T. matsutake, olefins, pyrazine, and esters, particularly ocimene, 2,5-Dimethyl-pyrazine, and methyl cinnamate, significantly contributed to its particularities. The results from this present study can provide a practical guidance for the quality and flavor control of volatile organic compounds in preciously fungal fruiting bodies by using drying processes.

4.
Food Sci Anim Resour ; 44(4): 934-950, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974721

RESUMO

This study addresses the prevalent issue of meat species authentication and adulteration through a chemometrics-based approach, crucial for upholding public health and ensuring a fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-phase-microextraction-gas chromatography-mass spectrometry. Adulterated meat samples were effectively identified through principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection scores and a Random Forest test, 11 key compounds, including nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat.

5.
Food Chem ; 459: 140276, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38981380

RESUMO

The sensitive detection of polychlorinated biphenyls (PCBs) is crucial for protecting the environment and human health. Herein, we constructed a Materials Institute Lavoisier 88B (MIL-88B)-on-University of Oslo 66 (UiO-66) composite (MIL-on-UiO) with a unique nanoflower morphology, in which highly stable UiO-66 is the precursor, with MIL-88B grown on its surface. MIL-on-UiO was used as a fiber coating for headspace solid-phase microextraction to enrich PCBs. Experimental results demonstrated that MIL-on-UiO provided better enrichment performance for PCBs than single components due to multiple interactions, including π-π stacking, halogen bonding, pore-filling, and steric hindrance effects. The method established using the MIL-on-UiO-based SPME fiber coating provided a good linear relationship in the range of 0.001-50 ng·mL-1, with limits of detection ranging from 0.0002 to 0.002 ng·mL-1 and enrichment factors between 3530 and 7420. In addition, the method was used to detect trace PCBs in water and orange juice achieving satisfactory recoveries (81%-111%).

6.
J Chromatogr A ; 1731: 465167, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39033707

RESUMO

A mathematical description and experimental outputs exhibited that an ion chronogram from an in-tube solid-phase microextraction (SPME) device linked with mass spectrometry (in-tube-SPME-MS) generally appears as a right-skew unimodal signal with a heavy right tail. Analogous to liquid chromatography coupled with mass spectrometry (LC-MS), in-tube-SPME-MS can utilize the area under its produced ion chronogram for regression analysis and has been shown to be a potential approach for fast quantification of analyte. Different level of unimodity of signal in the ion chronogram could positively or negatively affect the choice of the area used for quantification and finally impact on analysis sensitivity and time efficiency of in-tube-SPME-MS. In the paper, we showed that different in-tube SPME design choices and elution experimental setups produce ion chronograms with controllable varying unimodal peak shape patterns. An improved mathematical model was built based on the plate theory of chromatography and the Van Deemter equation to quantitatively describe the elution process from in-tube-SPME device. A computer simulation was implemented to predict ion chronograms and the results were compared with experimental ion chronograms to show the effectiveness of the model. An optimization framework was further presented based on the model to identify optimal device designs (length and diameter of device) and experimental parameters (flow rate) to track targeted ion chronograms with "desired" peak shape patterns. Empirical elution experiments with the in-tube SPME devices adopting optimized geometric parameters and optimal experimental setups confirmed the consistency between the experimental ion chronograms and the numerical simulations to a certain level.

7.
Food Chem X ; 23: 101601, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39040150

RESUMO

In this study, E-nose, HS-GC-IMS, and HS-SPME-GC-MS technologies were used to evaluate the flavor characteristics of the pileus and stipe of Boletus edulis from eight origins. 23 key Volatile organic compounds (VOCs) with odor activity values (OAVs) > 1 were identified, and 19 aroma types have been identified in Boletus edulis at the same time. Vegetable and earthy were defined as the dominant aroma types for all pileus and stipe samples. Balsamic and musty were the main and characteristic aroma types for the pileus. The highest concentrations of VOCs in the pileus and stipe were originated from Chuxiong Prefecture and Aba Prefecture, respectively. 19 and 16 key VOCs were detected Chuxiong pileus and Aba stipe, respectively, and Methional was the decisive compound that influenced the vegetable aroma type. The results of this study could be helpful for flavor identification and application of pileus and stipe from Boletus edulis.

8.
Front Microbiol ; 15: 1435765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040905

RESUMO

Introduction: Fengxiangxing Huairang Daqu (FHD) is one of the major types of Daqu in China. However, the relationship between the microbial community structure at different stages, the changes in the sensory characteristics, fermentation characteristics, volatiles, the most critical process point, and the quality formation of FHD is not clear. Methods: Based on microscopic characterization, PacBio SMRT sequencing, and HS-SPME-GC-MS volatile metabolite analysis revealed the relationship between FHD quality formation and the dynamics of Qupi. Results: The results showed that the 12th day of the culture was the most critical process point, highlighting the most significant differences in microbial community structure, sensory characteristics, fermentation characteristics, and flavor substances. Bacillus licheniformis (43.25%), Saccharopolyspora rectivirgula (35.05%), Thermoascus aurantiacus (76.51%), Aspergillus amstelodami (10.81%), and Saccharomycopsis fibuligera (8.88%) were the dominant species in FHD. S. fibuligera, A. amstelodami, and T. aurantiacus were associated with the snow-white color of the FHD epidermis, the yellow color of the interior, and the gray-white color, respectively. The abundance of T. aurantiacus, A. amstelodami, B. licheniformis, and S. rectivirgula was positively associated with the esterifying power and liquefying power of FHD. The abundance of T. aurantiacus and A. amstelodami was positively correlated with the saccharifying power of FHD. The abundance of S. fibuligera was positively related to the fermenting power of FHD. A total of 248 volatiles were detected in Qupi, mainly including alcohols, esters, aldehydes, and ketones. Of them, eleven volatiles had a significant effect on the flavor of Qupi, such as 1-butanol-3-methyl-, hydrazinecarboxamide, ethanol, phenylethyl alcohol, ethyl acetate, 2-octanone, 1-octen-3-ol, formic acid-hexyl ester, (E)-2-octen-1-ol, ethyl hexanoate, and 2(3H)-furanone-dihydro-5-pentyl-. The abundance of B. licheniformis, S. rectivirgula, T. aurantiacus, and S. fibuligera was positively correlated with the alcohols, aromatic compounds, and phenols in FHD. The abundance of S. fibuligera was positively correlated with the acids, esters, and hydrocarbons in FHD. Discussion: These results indicate important theoretical basis and technical support for controllable adjustment of FHD microbial community structure, stable control of FHD quality, and precise, effective, and large-scale guidance of FHD production.

9.
Food Chem ; 457: 140128, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959682

RESUMO

Headspace-solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) and electronic nose (E-nose) technologies were implemented to characterize the volatile profile of aerial part from 40 coriander varieties. A total of 207 volatile compounds were identified and quantified, including aldehydes, alcohols, terpenes, hydrocarbons, esters, ketones, acids, furans, phenols and others. E-nose results showed that W5S and W2W were representative sensors responding to coriander odor. Among all varieties, the number (21-30 species) and content (449.94-1050.55 µg/g) of aldehydes were the highest, and the most abundant analytes were (Z)-9-hexadecenal or (E)-2-tetratecenal, which accounted for approximately one-third of the total content. In addition, 37 components were determined the characteristic constituents with odor activity values (OAVs) ≥ 1, mainly presenting citrusy, fatty, soapy and floral smells. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) could effectively distinguish different varieties. This study provided a crucial theoretical basis for flavor evaluation and quality improvement of coriander germplasm resources.

10.
Food Chem ; 458: 140225, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38970951

RESUMO

Solid Phase Microextraction (SPME) is a commonly used, robust method for characterization of aroma profiles in food matrices. However, challenges such as saturation, swelling, and competition can occur when sampling such complex matrices, resulting in decreased accuracy in the quantitation of polar compounds. In this study, sequential thin film micro-extraction (TFME) was employed to study the aroma profile of sparkling wine, with a focus to evaluate the displacement of polar analytes at extraction times longer than their corresponding equilibrium time. This investigation also describes advancements in the production of TFME devices, specifically the overcoating of hydrophilic-lipophilic balance/polydimethylsiloxane (HLB/PDMS) thin films to increase their matrix compatibility. Sequential thin film micro-extraction and overcoated HLB/PDMS thin films were evaluated for characterization of sparkling wine samples. The results were encouraging, showing that these advancements can decrease competition phenomena and increase the calibration linearity range compared to traditional micro-extraction approaches more commonly used for the characterization of such samples. In addition, multiphase equilibria investigation involving micellar systems enabled by the microextraction technology provides better understanding between wine aroma and its composition.

11.
Sci Total Environ ; 948: 174610, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997033

RESUMO

Among the numerous organochlorines (OCs) applied in the French West Indies (FWI), chlordecone (hydrated form C10Cl10O2H2; CLD) still causes major environmental pollution nowadays. A recent report revealed the unexpected presence in FWI environment of transformation products (TPs) of CLD not routinely monitored due to a lack of commercial standards. Here, we present a method for surface waters and groundwaters to analyze CLD, its main TPs (hydroCLDs, chlordecol (CLDOH), 10-monohydroCLDOH and polychloroindenes) and other OCs. We developed an SPME-GC-SIM/MS method with a PDMS-DVB fiber. Since CLDOH-d commonly used as internal standard (IS) proved unsuitable, we synthesized several IS candidates, and finally identified 10-monohydro-5-methyl-chlordecol as a satisfactory IS for CLDOH and 10-monohydroCLDOH avoiding the use of 13C-labelled analogue. LODs for CLD and its TPs varied from 0.3 to 10 ng/L, equal to or below LODs of the two laboratories, BRGM (the French geological survey) and LDA26 (one of the French Departmental Analytical Laboratories), requested in FWI pollution monitoring that used liquid-liquid extractions and advanced facilities (LLE-GC-MS/MS and LLE-LC-MS/MS methods, respectively). Then, we extended the multi-residue method to 30 OCs (CLD and its TPs, mirex, ß-HCH, lindane, dieldrin, aldrin, HCB, hexachlorobutadiene, TCE, PCE) and applied it to 30 surface and ground waters from FWI. While CLD, 8- and 10-monohydroCLD, CLDOH, 10-monohydroCLDOH, dieldrin, and ß-HCH were detected and quantified, pentachloroindene, another CLD TP, was sporadically found in trace levels. A comparison with BRGM and LDA26 confirmed the interest of the SPME method. Results suggested an underestimation of CLDOH and an overestimation of high CLD concentrations with one of the currently used routine protocol. In light of these findings, previous temporal monitoring of environmental waters in FWI were re-examined and revealed some atypical values, which may indeed be due to analytical bias. These discrepancies call for intensified efforts to reliably quantify CLD and its TPs.

12.
Sci Rep ; 14(1): 16561, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020066

RESUMO

Characteristic volatile organic compounds (VOCs) are anticipated to be used for the identification of lung cancer cells. However, to date, consistent biomarkers of VOCs in lung cancer cells have not been obtained through direct comparison between cancer and healthy groups. In this study, we regulated the glycolysis, a common metabolic process in cancer cells, and employed solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS) combined with untargeted analysis to identify the characteristic VOCs shared by cancer cells. The VOCs released by three types of lung cancer cells (A549, PC-9, NCI-H460) and one normal lung epithelial cell (BEAS-2B) were detected using SPME-GC-MS, both in their resting state and after treatment with glycolysis inhibitors (2-Deoxy-D-glucose, 2-DG/3-Bromopyruvic acid, 3-BrPA). Untargeted analysis methods were employed to compare the VOC profiles between each type of cancer cell and normal cells before and after glycolysis regulation. Our findings revealed that compared to normal cells, the three types of lung cancer cells exhibited three common differential VOCs in their resting state: ethyl propionate, acetoin, and 3-decen-5-one. Furthermore, under glycolysis control, a single common differential VOC-acetoin was identified. Notably, acetoin levels increased by 2.60-3.29-fold in all three lung cancer cell lines upon the application of glycolysis inhibitors while remaining relatively stable in normal cells. To further elucidate the formation mechanism of acetoin, we investigated its production by blocking glutaminolysis. This interdisciplinary approach combining metabolic biochemistry with MS analysis through interventional synthetic VOCs holds great potential for revolutionizing the identification of lung cancer cells and paving the way for novel cytological examination techniques.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Glicólise/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Células A549 , Microextração em Fase Sólida
13.
Food Chem X ; 23: 101543, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022783

RESUMO

Dushan shrimp sour paste (DSSP), a traditional Guizhou condiment, and its unique flavor is determined by the fermentation microbiota. However, the relationship between the microbiota structure and its flavor remains unclear. This study identified 116 volatile flavor compounds using electronic nose and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) techniques, of which 19 were considered as key flavor compounds, mainly consisting of 13 esters and 1 alcohol. High-throughput sequencing technique, the bacterial community structure of nine groups of DSSPs was determined. Further analysis revealed Vagococcus, Lactococcus, and Tepidimicrobium as key bacteria involved in flavor formation. This study contributes to our understanding of the relationship between bacterial communities and the flavor formation, and provides guidance for screening starter culture that enhance the flavor of DSSP in industrial production.

14.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999702

RESUMO

Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.

15.
Anal Chim Acta ; 1312: 342758, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834268

RESUMO

BACKGROUND: The selection of the sample treatment strategy is a crucial step in the metabolomics workflow. Solid phase microextraction (SPME) is a sample processing methodology with great potential for use in untargeted metabolomics of tissue samples. However, its utilization is not as widespread as other standard protocols involving steps of tissue collection, metabolism quenching, homogenization, and extraction of metabolites by solvents. Since SPME allows us to perform all these steps in one action in tissue samples, in addition to other advantages, it is necessary to know whether this methodology produces similar or comparable metabolome and lipidome coverage and performance to classical methods. RESULTS: SPME and homogenization with solid-liquid extraction (Homo-SLE) sample treatment methods were applied to healthy murine kidney tissue, followed by comprehensive metabolomics and lipidomics analyses. In addition, it has been tested whether freezing and storage of the tissue causes alterations in the renal metabolome and lipidome, so the analyses were performed on fresh and frozen tissue samples Lipidomics analysis revealed the exclusive presence of different structural membrane and intracellular lipids in the Homo-SLE group. Conversely, all annotated metabolites were detected in both groups. Notably, the freezing of the sample mainly causes a decrease in the levels of most lipid species and an increase in metabolites such as amino acids, purines, and pyrimidines. These alterations are principally detected in a statistically significant way by SPME methodology. Finally, the samples of both methodologies show a positive correlation in all the analyses. SIGNIFICANCE: These results demonstrate that in SPME processing, as long as the fundamentals of non-exhaustive extraction in a pre-equilibrium kinetic regime, extraction in a tissue localized area, the chemistry of the fiber coating and non-homogenization of the tissue are taken into account, is an excellent method to use in kidney tissue metabolomics; since this methodology presents an easy-to-use, efficient, and less invasive approach that simplifies the different sample processing steps.


Assuntos
Rim , Metabolômica , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Animais , Metabolômica/métodos , Rim/metabolismo , Rim/química , Camundongos , Extração Líquido-Líquido/métodos , Metaboloma , Masculino , Camundongos Endogâmicos C57BL
16.
Nat Prod Res ; : 1-9, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934732

RESUMO

The chemical composition of the flowered aerial parts of four samples of Helichrysum microphyllum subsp. tyrrhenicum collected in South-West Sardinia was investigated with a combined focus on volatile constituents and phloroglucinols to find a possible correlation with the presence of arzanol endowed with the major anti-inflammatory activity. The volatile constituents were analysed by GC-MS as EO-HD and with HS-SPME identifying a total of 95 compounds of which 70 and 77 by EO-HD and HS-SPME respectively. The profile of the non-volatile phloroglucinols was investigated by HPLC-MS/MS. Arzanol concentrations ranged from 2.79 to 21.87 mg/g, helipyrone showed the same trend but in lower concentration. Surprisingly, leaves and stems contain higher concentration of phloroglucinols than the flowers. The concentration of arzanol was positively correlated to the one of γ-curcumene and ethylpyrone in the EO, while a negative correlation was observed with the monoterpene limonene and linalool as well as with the sesquiterpene 5-eudesmen-11-ol.

17.
Food Chem ; 455: 139931, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850976

RESUMO

In this study, we characterized the aroma profiles of different Rougui Wuyi rock tea (RGWRT) aroma types and identified the key aroma-active compounds producing these differences. The roasting process was found to have a considerable effect on the aroma profiles. Eleven aroma compounds, including linalool, ß-ionone, geraniol, indole, and (E)-nerolidol, strongly affected the aroma profiles. An RGWRT aroma wheel was constructed. The rich RGWRT aroma was found to be dominated by floral, cinnamon-like, and roasty aromas. Human olfaction was correlated with volatile compounds to determine the aromatic characteristics of these compounds. Most key aroma-active compounds were found to have floral, sweet, and herbal aromas (as well as some other aroma descriptors). The differences in key compounds of different aroma types were found to result from the methylerythritol phosphate, mevalonic acid and shikimate metabolic pathways and the Maillard reaction. Linalool, geraniol, and (E,E)-2,4-heptadienal were found to spontaneously bind to olfactory receptors.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Odorantes/análise , Humanos , Chá/química , Olfato , Cromatografia Gasosa-Espectrometria de Massas , Camellia sinensis/química
18.
Food Chem X ; 22: 101399, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38840722

RESUMO

The aim of this study deals with characterize the volatile profiles of gluten free flours and bakery products. An appropriate HS-SPME/GC-MS methods for the quantification analyses was performed and corn starch solid as standards was used. 34 different samples were analysed, and 127 compounds distributed in 4 classes (alcohols, aldehydes and ketones, heterocyclic compounds, and terpenes), that make up the aroma of these gluten free, were identified. The developed method is characterized by detection limits of 0.0004 and 0.0047 mg/kg for camphor and pyrazine, respectively, and linearity of quantification standards were between 0.990 and 0.998 for a range of 3-50 mg/kg.

19.
Food Chem X ; 22: 101505, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38883915

RESUMO

In this study, we investigated the volatile flavor compounds and sensory perceptions of Yanbian-style sauced beef prepared from raw meats subjected to different treatments (hot fresh, chilled, and frozen beef). The results indicated that the treatment of raw beef significantly impacted the quality and flavor of sauced beef. Sauced chilled beef (CRSB) exhibited the highest content of fatty acids and total amino acids. A total of 48 volatile compounds were identified. Moreover, a relative odor activity value analysis identified hexanal, nonanal, heptanal, 1-octen-3-ol, and 2,3-octanedione as the characteristic flavor compounds in Yanbian-style sauced beef. The sensory evaluation demonstrated that CRSB was the most palatable and flavorful. Additionally, correlation loading plot analysis indicated strong correlations between sensory evaluation, fatty acids, amino acids, and volatile flavor compounds. These results suggest that chilled beef meat is the best raw material for the production of Yanbian-style sauced beef.

20.
Food Chem X ; 22: 101438, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38846796

RESUMO

This study explored the effects of steam explosion-modified rice bran dietary fiber (S-RBDF) on red date-flavored naan quality and flavor characteristics. The results revealed that the rheological properties of the dough were improved with the incremental addition of S-RBDF (0-5%). The microstructure revealed that adding an appropriate amount of S-RBDF (1-5%) enabled more starch granules to be embedded in the dough network. Notably, the addition of 5% S-RBDF resulted in naan with an optimum specific volume and texture, which consumers preferred. Additionally, gas chromatography-mass spectrometry analysis showed that adding S-RBDF to naan contributed to the retention and sustained release of pleasant volatile compounds (e.g. red date flavor, etc.), while inhibiting the development of unpleasant volatile compounds by delaying the oxidation and decomposition of lipids and preserving the antioxidant phenolic compounds, thus contributing to flavor maintenance of naan during storage. Overall, these results provided a foundation for developing high-quality flavored naan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...