Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Bioorg Med Chem ; 110: 117811, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38959684

RESUMO

Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic. Hence, chloroalkene dipeptide isosteres (CADIs) was designed, and their synthetic methods have been developed by us. Briefly, in a CADI an amide bond in peptides is replaced with a chloroalkene structure. CADIs might be superior mimetics of amide bonds because the Van der Waals radii (VDR) and the electronegativity value of a chlorine atom are close to those of the replaced oxygen atom. By a developed method of the "liner synthesis", N-tert-butylsulfonyl protected CADIs can be synthesized via a key reaction involving diastereoselective allylic alkylation using organocopper reagents. On the other hand, by a developed method of the "convergent synthesis", N-fluorenylmethoxycarbonyl (Fmoc)-protected carboxylic acids can be also constructed based on N- and C-terminal analogues from corresponding amino acid starting materials via an Evans syn aldol reaction and the Ichikawa allylcyanate rearrangement reaction involving a [3.3] sigmatropic rearrangement. Notably, CADIs can also be applied for Fmoc-based solid-phase peptide synthesis and therefore introduced into bioactive peptides including as the Arg-Gly-Asp (RGD) peptide and the amyloid ß fragment Lys-Leu-Val-Phe-Phe (KLVFF) peptide, which are correlated with cell attachment and Alzheimer's disease (AD), respectively. These CADI-containing peptidomimetics stabilized the conformation and enhanced the potency of the cyclic RGD peptide and the cyclic KLVFF peptide.

2.
Neurobiol Dis ; 199: 106595, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972360

RESUMO

Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-syn pre-formed fibrils (PFFs) into the striatum induces robust α-syn aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6 J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-syn show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that asymmetric synapses in mice with PFF-induced α-syn aggregates have reduced synaptic vesicle intervesicular distances, similar to a recent study showing phospho-serine-129 α-syn increases synaptic vesicle clustering. Thus, pathologic α-syn causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.

3.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973125

RESUMO

Several strategies, programs and policies have long been developed and implemented to alleviate child malnutrition in sub-Saharan African countries. However, stunting and wasting still persist at an alarming rate, suggesting that alternative strategies are needed to induce faster progress toward the 2030 SDGs targets of reducing malnutrition. Gut microbiota-directed intervention is now being recognized as an unconventional powerful approach to mitigate malnutrition and improve overall child health. In an African setting, manufactured probiotic and synbiotic foods or supplements may not be successful owing to the non-affordability and high attachment of African populations to their food tradition. This review analyses the potential of indigenous fermented cereal-based products including porridges, doughs, beverages, bread- and yoghurt-like products, to be used as microbiota-directed foods for over 6 months children. The discussion includes relevant strategies to effectively enhance the beneficial effects of these products on gut microbiota composition for improved child health and nutrition in sub-Saharan Africa. Characterization of probiotic features and general safety of food processing in sub-Saharan Africa as well as randomized clinical studies are still lacking to fully ascertain the health effects and suitability of these fermented foods in preventing and treating child malnutrition and diarrhea.

4.
Front Cardiovasc Med ; 11: 1407138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911513

RESUMO

Background: There have been conflicting reports about the proarrhythmic risk of p-synephrine (SYN). To address this, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with the microelectrode array (MEA) system have been utilized to assess arrhythmia risks, particularly in the context of adrenomimetic drugs. Aim: This study aims to determine whether MEA recordings from hiPSC-CMs could predict the proarrhythmic risk of adrenomimetic drugs and to investigate the cardiovascular effects and mechanisms of SYN. Materials and methods: We employed MEA recordings to assess the electrophysiological properties of hiPSC-CMs and conducted concentration-response analyses to evaluate the effects of SYN and Isoprenaline (ISO) on beating rate and contractility. A risk scoring system for proarrhythmic risks was established based on hiPSC-CMs in this study. ISO, a classic beta-adrenergic drug, was also evaluated. Furthermore, the study evaluated the risk of SYN and recorded the concentration-response of beating rate, contractility and the change in the presence or absence of selective ß1, ß2 and ß3 adrenergic blockers. Results: Our results suggested that ISO carries a high risk of inducing arrhythmias, aligning with existing literature. SYN caused a 30% prolongation of the field potential duration (FPD) at a concentration of 206.326 µM, a change significantly different from baseline measurements and control treatments. The half maximal effective concentration (EC50) of SYN (3.31 µM) to affect hiPSC-CM beating rate is much higher than that of ISO (18.00 nM). The effect of SYN at an EC50 of 3.31 µM is about ten times more potent in hiPSC-CMs compared to neonatal rat cardiomyocytes (34.12 µM). SYN increased the contractility of cardiomyocytes by 29.97 ± 11.65%, compared to ISO's increase of 50.56 ± 24.15%. ß1 receptor blockers almost eliminated the beating rate increase induced by both ISO and SYN, while neither ß2 nor ß3 blockers had a complete inhibitory effect. Conclusion: The MEA and hiPSC-CM system could effectively predict the risk of adrenomimetic drugs. The study concludes that the proarrhythmia risk of SYN at conventional doses is low. SYN is more sensitive in increasing beating rate and contractility in human cardiomyocytes compared to rats, primarily activating ß1 receptor.

5.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928232

RESUMO

Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Doença de Parkinson , alfa-Sinucleína , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Animais , Transdução de Sinais , Autofagia
6.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892177

RESUMO

Alpha-synuclein seed amplification assays (αSyn-SAAs) have emerged as promising diagnostic tools for Parkinson's disease (PD) by detecting misfolded αSyn and amplifying the signal through cyclic shaking and resting in vitro. Recently, our group and others have shown that multiple biospecimens, including CSF, skin, and submandibular glands (SMGs), can be used to seed the aggregation reaction and robustly distinguish between patients with PD and non-disease controls. The ultrasensitivity of the assay affords the ability to detect minute quantities of αSyn in peripheral tissues, but it also produces various technical challenges of variability. To address the problem of variability, we present a high-yield αSyn protein purification protocol for the efficient production of monomers with a low propensity for self-aggregation. We expressed wild-type αSyn in BL21 Escherichia coli, lysed the cells using osmotic shock, and isolated αSyn using acid precipitation and fast protein liquid chromatography (FPLC). Following purification, we optimized the ionic strength of the reaction buffer to distinguish the fluorescence maximum (Fmax) separation between disease and healthy control tissues for enhanced assay performance. Our protein purification protocol yielded high quantities of αSyn (average: 68.7 mg/mL per 1 L of culture) and showed highly precise and robust αSyn-SAA results using brain, skin, and SMGs with inter-lab validation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/química , alfa-Sinucleína/isolamento & purificação , alfa-Sinucleína/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Concentração Osmolar , Reprodutibilidade dos Testes , Escherichia coli/genética , Escherichia coli/metabolismo
7.
J Autoimmun ; 147: 103256, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788538

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the loss of dopaminergic neurons and neuroinflammation. Recent studies have identified a role of T cells in the pathogenesis of PD. Additionally, these studies suggested that α-synuclein (α-Syn) is related to abnormal T-cell responses and may act as an epitope and trigger autoimmune T-cell responses. However, it is unclear whether the α-Syn-mediated autoimmune response occurs and whether it is related to neuronal cell death and glial cell activation. In this study, we investigated the autoimmune T-cell response induced by α-Syn peptides and evaluated the neurotoxic effect of the α-Syn peptide-mediated autoimmune response. The immunization of mice with α-Syn peptides resulted in enhanced autoimmune responses, such as the peptide recall response, polarization toward Th1/Th17 cells, and regulatory T cell imbalance. Furthermore, the α-Syn autoimmune response led to the death of primary neurons cocultured with splenocytes. Treatment with conditioned media from α-Syn peptide-immunized splenocytes induced microglia and toxic A1-type astrocyte activation. Taken together, our results provide evidence of the potential role of the α-Syn-initiated autoimmune response and its contribution to neuronal cell death and glial cell activation.

8.
Sci Rep ; 14(1): 10850, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740861

RESUMO

In Fenwei Basin, most of the tectonic ground fissures show characteristics of growth faults on the section. They continue to destroy the engineering properties of soil at different depths. This has introduced significant security risks to the construction processes of deep underground spaces. However, there are few studies have been conducted on syn-depositional ground fissures. Therefore, in this study, a physical simulation test was used to study the fracture propagation of syn-depositional ground fissures. The characteristics of sections and surface fractures were analyzed. The engineering properties of model soil were divided into bad and poor areas. The syn-depositional ground fissure fracture propagation process was divided into five phases. The results show that soil profile exhibited a composite Y-shaped fracture morphology. Syn-deposition affects the fracture angle and healing state of fractures. The soil strain and surface displacement were positively correlated with the number of deposition layers. The conclusions of this study provide a theoretical geological basis and practical engineering significance for design of deep underground space structures.

9.
Plant Signal Behav ; 19(1): 2350869, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38722963

RESUMO

Fungal pathogens deliver effector proteins into living plant cells to suppress plant immunity and control plant processes that are needed for infection. During plant infection, the devastating rice blast fungus, Magnaporthe oryzae, forms the specialized biotrophic interfacial complex (BIC), which is essential for effector translocation. Cytoplasmic effectors are first focally secreted into BICs, and subsequently packaged into dynamic membranous effector compartments (MECs), then translocated via clathrin-mediated endocytosis (CME) into the host cytoplasm. This study demonstrates that clathrin-heavy chain inhibitors endosidin-9 (ES9) and endosidin-9-17 (ES9-17) blocked the internalization of the fluorescently labeled effectors Bas1 and Pwl2 in rice cells, leading to swollen BICs lacking MECs. In contrast, ES9-17 treatment had no impact on the localization pattern of the apoplastic effector Bas4. This study provides further evidence that cytoplasmic effector translocation occurs by CME in BICs, suggesting a potential role for M. oryzae effectors in co-opting plant endocytosis.


Assuntos
Endocitose , Oryza , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos , Interações Hospedeiro-Patógeno , Transporte Proteico , Proteínas Fúngicas/metabolismo , Clatrina/metabolismo
10.
Adv Mater ; : e2404576, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696266

RESUMO

Although evidence indicates that the abnormal accumulation of α-synuclein (α-syn) in dopamine neurons of the substantia nigra is the main pathological feature of Parkinson's disease (PD), no compounds that have both α-syn antiaggregation and α-syn degradation functions have been successful in treating the disease in the clinic. Here, it is shown that black phosphorus nanosheets (BPNSs) interact directly with α-syn fibrils to trigger their disaggregation for PD treatment. Moreover, BPNSs have a specific affinity for α-syn through van der Waals forces. And BPNSs are found to activate autophagy to maintain α-syn homeostasis, improve mitochondrial dysfunction, reduce reactive oxygen species levels, and rescue neuronal death and synaptic loss in PC12 cells. It is also observed that BPNSs penetrate the blood-brain barrier and protect against dopamine neuron loss, alleviating behavioral disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model and hA53T α-syn transgenic mice. Together, the study reveals that BPNSs have the potential as a novel integrated nanomedicine for clinical diagnosis and treatment of neurological diseases.

11.
Bioorg Med Chem Lett ; 105: 129752, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631541

RESUMO

The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.


Assuntos
Benzotiazóis , Polifenóis , Agregados Proteicos , alfa-Sinucleína , Benzotiazóis/química , Benzotiazóis/farmacologia , Benzotiazóis/síntese química , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/síntese química , Humanos , Agregados Proteicos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
12.
Phytochem Anal ; 35(5): 1197-1206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38572825

RESUMO

INTRODUCTION: Sicklepod [Cassia obtusifolia L. syn Senna obtusifolia (L.) H.S. Irwin & Barneby, Fabaceae] sprouts are promising ingredients with health-promoting benefits. Notwithstanding, the pharmacologically active compounds in sicklepod sprouts have not been studied or analysed in detail. OBJECTIVE: This study aimed to isolate and structurally identify phytochemicals showing α-glucosidase inhibitory activity in sicklepod sprouts and simultaneously quantify the compounds in the sprouts to determine the optimal cultivation method and germination time to maximise active compounds. METHOD: A simultaneous high-performance liquid chromatography-ultraviolet (HPLC-UV) method with high sensitivity and accuracy was developed and used to analyse time-dependent changes in anthraquinone content during sicklepod germination. RESULTS: Thirteen anthraquinones were isolated and identified, of which six-chrysoobtusin, emodin, 1-O-methyl-2-methoxychrysophanol, 7-O-methylobtusin, chrysophanol, and physcion-showed moderate α-glucosidase inhibitory activity. The maximum content of anthraquinones in a sprout was observed on Day 5 under both light and dark conditions. CONCLUSION: The findings of this study revealed that sicklepod sprouts which are promising functional food materials contain a variety of anthraquinones.


Assuntos
Antraquinonas , Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Antraquinonas/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , alfa-Glucosidases/metabolismo , Cassia/química , Senna/química , Germinação/efeitos dos fármacos
13.
Front Oncol ; 14: 1359725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559556

RESUMO

Effective bladder-preserving therapeutic options are needed for patients with bacillus Calmette-Guérin unresponsive non-muscle-invasive bladder cancer. Nadofaragene firadenovec-vncg (Adstiladrin®) was approved by the US Food and Drug Administration as the first gene therapy in urology and the first intravesical gene therapy indicated for the treatment of adult patients with high-risk bacillus Calmette-Guérin-unresponsive non-muscle-invasive bladder cancer with carcinoma in situ with or without papillary tumors. The proposed mechanism of action underlying nadofaragene firadenovec efficacy is likely due to the pleiotropic nature of interferon-α and its direct and indirect antitumor activities. Direct activities include cell death and the mediation of an antiangiogenic effect, and indirect activities are those initiated through immunomodulation of the innate and adaptive immune responses. The sustained expression of interferon-α that results from this treatment modality contributes to a durable response. This review provides insight into potential mechanisms of action underlying nadofaragene firadenovec efficacy.

14.
Front Neurol ; 15: 1359287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576531

RESUMO

The SYN1 gene encodes synapsin I, variants within the SYN1 gene are linked to X-linked neurodevelopmental disorders with high clinical heterogeneity, with reflex epilepsies (REs) being a representative clinical manifestation. This report analyzes a Chinese pedigree affected by seizures associated with SYN1 variants and explores the genotype-phenotype correlation. The proband, a 9-year-old boy, experienced seizures triggered by bathing at the age of 3, followed by recurrent absence seizures, behavioral issues, and learning difficulties. His elder brother exhibited a distinct clinical phenotype, experiencing sudden seizures during sleep at the age of 16, accompanied by hippocampal sclerosis. Whole exome sequencing (WES) confirmed a pathogenic SYN1 variant, c.1647_1650dup (p. Ser551Argfs*134), inherited in an X-linked manner from their mother. Notably, this variant displayed diverse clinical phenotypes in the two brothers and one previously reported case in the literature. Retrospective examination of SYN1 variants revealed an association between truncating variants and the pathogenicity of REs, and non-truncating variants are more related to developmental delay/intellectual disability (DD/ID). In summary, this study contributes to understanding complex neurodevelopmental disorders associated with SYN1, highlighting the clinical heterogeneity of gene variants and emphasizing the necessity for comprehensive genetic analysis in elucidating the pathogenic mechanisms of such diseases.

15.
Sci Rep ; 14(1): 8581, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615036

RESUMO

Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and it is characterized by the intracellular and extracellular accumulation of α-synuclein (α-syn) and Tau, which are major components of cytosolic protein inclusions called Lewy bodies, in the brain. Currently, there is a lack of effective methods that preventing PD progression. It has been suggested that the plasminogen activation system, which is a major extracellular proteolysis system, is involved in PD pathogenesis. We investigated the functional roles of plasminogen in vitro in an okadaic acid-induced Tau hyperphosphorylation NSC34 cell model, ex vivo using brains from normal controls and methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, and in vivo in a widely used MPTP-induced PD mouse model and an α-syn overexpression mouse model. The in vitro, ex vivo and in vivo results showed that the administered plasminogen crossed the blood‒brain barrier (BBB), entered cells, and migrated to the nucleus, increased plasmin activity intracellularly, bound to α-syn through lysine binding sites, significantly promoted α-syn, Tau and TDP-43 clearance intracellularly and even intranuclearly in the brain, decreased dopaminergic neurodegeneration and increased the tyrosine hydroxylase levels in the substantia nigra and striatum, and improved motor function in PD mouse models. These findings indicate that plasminogen plays a wide range of pivotal protective roles in PD and therefore may be a promising drug candidate for PD treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Plasminogênio , Animais , Camundongos , alfa-Sinucleína , Modelos Animais de Doenças , Proteínas de Ligação a DNA/metabolismo , Dopamina , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Plasminogênio/metabolismo , Serina Proteases , Proteínas tau/metabolismo , Neurônios Dopaminérgicos/patologia
16.
Exp Neurol ; 377: 114795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657855

RESUMO

Clinical studies have shown that traumatic brain injury (TBI) increases the onset of Parkinson's disease (PD) in later life by >50%. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are the major drivers of both TBI and PD pathologies. We presently evaluated if curtailing oxidative stress and ER stress concomitantly using a combination of apocynin and tert-butylhydroquinone and salubrinal during the acute stage after TBI in mice reduces the severity of late-onset PD-like pathology. The effect of multiple low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on post-TBI neurodegeneration was also evaluated. The combo therapy elevated the level of phosphorylation at serine 129 (pS129) of α-Syn in the pericontusional cortex of male mice at 72 h post-TBI. Motor and cognitive deficits induced by TBI lasted at least 3 months and the combo therapy curtailed these deficits in both sexes. At 3 months post-TBI, male mice given combo therapy exhibited significantly lesser α-Syn aggregates in the SN and higher TH+ cells in the SNpc, compared to vehicle control. However, the aggregate number was not significantly different between groups of female mice. Moreover, TBI-induced loss of TH+ cells was negligible in female mice irrespective of treatment. The MPTP treatment aggravated PD-like pathology in male mice but had a negligible effect on the loss of TH+ cells in female mice. Thus, the present study indicates that mitigation of TBI-induced oxidative stress and ER stress at the acute stage could potentially reduce the risk of post-TBI PD-like pathology at least in male mice, plausibly by elevating pS129-α-Syn level.


Assuntos
Antioxidantes , Lesões Encefálicas Traumáticas , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Feminino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Fosforilação/efeitos dos fármacos , Antioxidantes/farmacologia , Caracteres Sexuais , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Acetofenonas/administração & dosagem , Tioureia/análogos & derivados , Tioureia/farmacologia , Tioureia/uso terapêutico , Tioureia/administração & dosagem , Serina/metabolismo , Hidroquinonas/farmacologia , Hidroquinonas/administração & dosagem , Hidroquinonas/uso terapêutico , Quimioterapia Combinada , Estresse Oxidativo/efeitos dos fármacos
17.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477372

RESUMO

Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.


Assuntos
Lâmina Nuclear , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Células HEK293 , Corpos de Inclusão/metabolismo , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
18.
Theor Chem Acc ; 143(4): 26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495857

RESUMO

The anti (a) to syn (s) isomerization pathway of the deprotonated form of the dimer with two nickel(II) 15-membered octaazamacrocyclic units connected via a carbon-carbon (C-C) σ bond was investigated. For the initial anti (a) structure, a deprotonation of one of the bridging (sp3 hybridized) carbon atoms is suggested to allow for an a to s geometry twist. A 360° scan around the bridging C-C dihedral angle was performed first to find an intermediate geometry. Subsequently, the isomerization pathway was explored via individual steps using a series of mode redundant geometry optimizations (internal coordinates potential energy surface scans) and geometry relaxations leading to the s structure. The prominent geometries (intermediates) of the isomerization pathway are chosen and compared to the a and s structures, and geometry relaxations of the protonated forms of selected intermediates are considered. Supplementary Information: The online version contains supplementary material available at 10.1007/s00214-024-03100-5.

19.
J Integr Neurosci ; 23(3): 61, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538223

RESUMO

BACKGROUND: Tanshinone IIA (TSIIA) is an element of the effective ingredients of Salvia miltiorrhiza Bunge (Labiatae), exhibits a significant therapeutic effect in brain neuroprotection. The focus of this study was the examination of synaptic plasticity of in Mg2+-free-induced epileptic hippocampus neurons and how TSIIA protects against it. METHODS: The purity of the primary hippocampal neurons extracted from Sprague Dawley rats was assessed within 24 hours by microtubule-associated protein (MAP2) immunofluorescence staining. A hippocampal neuron model for Mg2+-free-induced spontaneous recurrent epileptiform discharge was developed, five experimental groups were then randomized: blank (Blank), model (Model), TSIIA (TSIIA, 20 µM), LY294002 (LY294002, 25 µM), and TSIIA+LY294002 (TSIIA+LY294002, 20 µM+25 µM). FIJI software was used to examine variations of neurite complexity, total length of hippocampal neurons, number of primary dendrites and density of dendritic spines. Developmental regulation brain protein (Drebrin) and brain-derived neurotrophic factor (BDNF) expression was evaluated using immunofluorescence staining and the relative expression of phospho-protein kinase B (p-Akt)/Akt, BDNF, synaptophysin (SYN) and postsynaptic density 95 (PSD-95) determined by Western blot. RESULTS: In contrast to the model group, TSIIA drastically reduced damage to synaptic plasticity of hippocampal neurons caused by epilepsy (p < 0.05). The TSIIA group showed a significant increase in the relative expression of PSD-95, SYN, BDNF, and p-Akt/Akt (p < 0.01). CONCLUSIONS: TSIIA was effective in reducing harm to the synaptic plasticity of hippocampal neurons induced by persistent status epilepticus, with the possible mechanism being regulation of the phosphatidylinositol 3-kinase 56 (PI3K)/Akt signaling pathway.


Assuntos
Abietanos , Epilepsia , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Abietanos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
20.
Planta ; 259(5): 102, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549005

RESUMO

MAIN CONCLUSION: Hydroxy(phenyl)pyruvic acid reductase from Actaea racemosa catalyzes dual reactions in reducing 4-hydroxyphenylpyruvic acid as well as ß-hydroxypyruvic acid. It thus qualifies to be part of fukinolic and cimicifugic acid biosynthesis and also photorespiration. The accumulation of fukinolic acid and cimicifugic acids is mainly restricted to Actaea racemosa (Ranunculaceae) and other species of the genus Actaea/Cimicifuga. Cimicifugic and fukinolic acids are composed of a hydroxycinnamic acid part esterified with a benzyltartaric acid moiety. The biosynthesis of the latter is unclear. We isolated cDNA encoding a hydroxy(phenyl)pyruvic acid reductase (GenBank OR393286) from suspension-cultured material of A. racemosa (ArH(P)PR) and expressed it in E. coli for protein production. The heterologously synthesized enzyme had a mass of 36.51 kDa and catalyzed the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvic acid to 4-hydroxyphenyllactic acid or ß-hydroxypyruvic acid to glyceric acid, respectively. The optimal temperature was at 38 °C and the pH optimum at pH 7.5. NADPH is the preferred cosubstrate (Km 23 ± 4 µM). Several substrates are accepted by ArH(P)PR with ß-hydroxypyruvic acid (Km 0.26 ± 0.12 mM) followed by 4-hydroxyphenylpyruvic acid (Km 1.13 ± 0.12 mM) as the best ones. Thus, ArH(P)PR has properties of ß-hydroxypyruvic acid reductase (involved in photorespiration) as well as hydroxyphenylpyruvic acid reductase (possibly involved in benzyltartaric acid formation).


Assuntos
Ácidos Cafeicos , Cimicifuga , Fenilacetatos , Ácidos Fenilpirúvicos , Piruvatos , Cimicifuga/química , Ácido Pirúvico , Oxirredutases , Escherichia coli/genética , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...