Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 594
Filtrar
1.
Fish Shellfish Immunol ; : 109750, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969153

RESUMO

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg kg-1. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.

2.
Eur J Pharmacol ; 977: 176741, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880221

RESUMO

BACKGROUND: Voltage-gated potassium (Kv) channel growth is strongly associated with the development of arrhythmia. Salidroside (Sal), an active component from Rhodiola crenulata, has been shown to exert protective effects against heart disease. The present study was conducted to investigate the effects of Sal on Kv2.1 channel, and to explore the ionic mechanism of anti-arrhythmic. METHODS: In this study, we utilized cisapride (Cis., A stimulant that prolongs the QT interval and causes cardiac arrhythmias) by intravenous injection to establish an arrhythmia model, and detected the effects of Sal on electrocardiography (ECG) and pressure volume loop (P-V loop) in SD rats. The effect of Sal on ECG of citalopram (Cit., a Kv2 channel inhibition)-evoked arrhythmia rat models was further evaluated by monitoring the dynamic changes of multiple indicators of ECG. Then, we detected the effect of Sal on the viability of hypoxic H9c2 cells using CCK-8 assay. After that, the effect of Sal on Kv channel currents (IKv) and Kv2.1 channel currents (IKv2.1) in H9c2 cells under normal and hypoxic conditions was examined using whole-cell patch clamp technique. In addition, the effect of Sal on IKv and IKv2.1 in H9c2 cells was determined under the inhibition of Kv and Kv2.1 channels. HEK293 cells stably transfected with Kv2.1 plasmids were also used to investigate the IKv2.1 changes under Sal pre-treated and co-incubated conditions. In addition, potential interactions of Sal with Kv2.1 protein were predicted and tested by molecular docking, molecular dynamics simulation (MDS), localized surface plasmon resonance (LSPR), and cellular thermal shift assay (CETSA) techniques, respectively. Furthermore, gene and protein levels of Kv2.1 in Sal-treated H9c2 cell were estimated by qRT-PCR, Western blot (WB) and immunofluorescence (IF) analysis. RESULTS: Sal shortened the prolongated QT interval and ameliorated the cardiac impairment associated with arrhythmia in SD rats caused by Cis., as reflected in the ECG and P-V loop data. And Sal was also protective against arrhythmia in rats caused by Kv2 channel inhibition. At the cellular level, Sal increased cell viability after CoCl2-induced hypoxic injury in H9c2 cells. Whole-cell patch clamp assay confirmed that Sal inhibited both IKv and IKv2.1 in normal H9c2 cells, while enhanced IKv and IKv2.1 in cardiomyocytes after hypoxic injury. And Sal enhanced IKv inhibited by 1.5 mM 4-AP and upregulated all inhibition of Kv2 channels induced by 20 mM 4-AP administration, antagonized the IKv2.1 inhibitory effect of Cit. Moreover, Sal pre-administration for 24 h and immediate administration increased IKv2.1 in HEK293 cells stably transfected with Kv2.1 plasmids. Molecular docking demonstrated the potential binding of Sal to the Kv2.1 protein, with calculated binding energy of -5.4 kcal/mol. MDS test illustrated that the average hydrogen bonding of the Sal-Kv2.1 complexes was 30.89%. LSPR results verified the potential binding of Sal to Kv2.1 protein with an affinity value of 9.95 × 10-4 M. CETSA assay confirmed Sal can enhance the expression of Kv2.1 protein in H9c2 cells treated with heat, which suggests that Sal may bind to Kv2.1 protein. The results of WB, qRT-PCR, and IF further argued that Sal pre-administration for 24 h enhanced the levels of the Kv2.1 gene and protein (with no effects on the Kv2.1 gene and protein for H9c2 cells co-incubated with Sal for 6 h and 12 h). CONCLUSION: Overall, our findings indicate that Sal can resist drug-induced arrhythmias in SD rats, partially by modulating repolarization through stimulating Kv2.1.


Assuntos
Glucosídeos , Fenóis , Ratos Sprague-Dawley , Canais de Potássio Shab , Animais , Canais de Potássio Shab/metabolismo , Canais de Potássio Shab/genética , Fenóis/farmacologia , Ratos , Glucosídeos/farmacologia , Masculino , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/induzido quimicamente , Linhagem Celular , Simulação de Acoplamento Molecular , Humanos , Antiarrítmicos/farmacologia , Células HEK293 , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Eletrocardiografia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos
3.
Biomed Pharmacother ; 177: 116968, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901199

RESUMO

OBJECTIVE: To delve into the underlying mechanism of Salidroside (Sal) on the improvement of cognitive function in Parkinson's Disease (PD). METHODS: The experimental mice were divided into Control group, Model group [injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], and Model+Sal (low concentration, high concentration) group. Mouse hippocampal tissues were extracted for RNA sequencing to obtain the core pathway and core gene. Mouse plasma was prepared and analyzed by LC-MS to obtain differential metabolites. In vitro experiments were verified by immunofluorescence and lentiviral transduction. RESULTS: ELISA signaled that Sal facilitated the reduction of neuronal damage and inflammatory reaction in mice. MPTP_Sal_Low and MPTP_Sal_High groups had high levels of glial cell derived neurotrophie factor (GDNF) expression. Differentially expressed genes (DEGs) in control group, MPTP group and MPTP_Sal_High group were identified by transcriptomic, which were classified to the mitogen-activated protein kinase (MAPK) signaling pathway, and the core gene Braf was obtained. Metabolomics manifested that the differential metabolites involved DL-tyrosine, adenosine, phosphoenolpyruvate, and L-tryptophan. In vitro experiments verified that Sal treatment inhibited the up-regulation of p-p38, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal-regulated kinase (ERK) expression, and growth of neuronal protrusions. The OE-Braf group showed a significant up-regulation of the GDNF expression, a decrease in the expression of p-p38, p-JNK, and p-ERK, and a significant growth of neuronal protrusions. CONCLUSION: Sal may exert its effects in PD through the Braf-mediated MAPK signaling pathway, which can increase GDNF expression and promote neuronal protrusion growth for the protection of neurological function and the improvement of cognitive function.

4.
BMC Plant Biol ; 24(1): 489, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825671

RESUMO

BACKGROUND: The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS: In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS: These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.


Assuntos
Frutas , Ligustrum , Metaboloma , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/química , Ligustrum/genética , Ligustrum/metabolismo , Ligustrum/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
5.
Carbohydr Res ; 542: 109174, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38865798

RESUMO

A series of derivatives of salidroside with mirror isomer glucose and different phenyl moieties were synthesized by Schmidt glycosylation in satisfactory yields, and their antioxidant and anti-inflammatory activities were evaluated by using LPS-induced RAW264.7 cells. One of the synthesized derivatives ʟ-Sal-4, bearing ʟ-glycosyl and -OMe modification at the phenyl ring, exhibited high activity in inhibiting the production of pro-inflammatory cytokines and oxidative stress biomarker MDA as well as in enhancing the activity of SOD enzyme, compared with the natural product and its corresponding ᴅ-enantiomer. Further proteomic analysis suggested that ʟ-Sal-4 exerted its anti-inflammatory activity through metabolic reprogramming. The in vitro activity showed that ʟ-Sal-4 is a potent antioxidant and anti-inflammatory agent. Our finding indicated that the ʟ-glucose-derived salidroside might be a promising lead compound in the development of salidroside derivatives as therapeutic agents.

6.
Heliyon ; 10(9): e30433, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737233

RESUMO

Salidroside (SAL), belonging to a kind of the main active ingredient of Rhodiola rosea, is extensively utilized for anti-hypoxia and prevention of altitude sickness in the plateau region of China. However, the research on the systemic changes induced by SAL at intracellular protein level is still limited, especially at protein phosphorylation level. These limitations hinder a comprehensive understanding of the regulatory mechanisms of SAL. This study aimed to investigate the potential molecular mechanism of SAL in ameliorating the acute myocardial hypoxia induced by cobalt chloride using integrated proteomics and phosphoproteomics. We successfully identified 165 differentially expressed proteins and 266 differentially expressed phosphosites in H9c2 cells following SAL treatment under hypoxic conditions. Bioinformatics analysis and biological experiment validation revealed that SAL significantly antagonized CoCl2-mediated cell cycle arrest by downregulating CCND1 expression and upregulating AURKA, AURKAB, CCND3 and PLK1 expression. Additionally, SAL can stabilize the cytoskeleton through upregulating the Kinesin Family (KIF) members expression. Our study systematically revealed that SAL had the ability to protect myocardial cells against CoCl2-induced hypoxia through multiple biological pathways, including enhancing the spindle stability, maintaining the cell cycle, relieving DNA damage, and antagonizing cell apoptosis. This study supplies a comprehension perspective on the alterations at protein and protein phosphorylation levels induced by SAL treatment, thereby expanded our knowledge of the anti-hypoxic mechanisms of SAL. Moreover, this study provides a valuable resource for further investigating the effects of SAL.

7.
Front Pharmacol ; 15: 1377836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818379

RESUMO

Testicular torsion is a critical urologic condition for which testicular detorsion surgery is considered irreplaceable as well as the golden method of reversal. However, the surgical treatment is equivalent to a blood reperfusion process, and no specific drugs are available to treat blood reperfusion injuries. Salidroside (SAL) is one of the main effective substances in rhodiola, which has been shown to have antioxidant and antiapoptosis activities. This study was designed to determine whether SAL exerted a protective effect on testicular ischemia-reperfusion (I/R) injury. In this study, the I/R injury model of the testes and reoxygenation (OGD/R) model were used for verification, and SAL was administered at doses of 100 mg/kg and 0.05 mmol/L, respectively. After the experiments, the testicular tissue and TM4 Sertoli cells were collected for histopathologic and biochemical analyses. The results revealed that SAL improves the structure of testicular tissue and regulates the oxidation-antioxidation system. To further understand the molecular mechanisms of SAL in treating testicular I/R injuries, transcriptomics and metabonomics analyses were integrated. The results show that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway is enriched significantly, indicating that it may be the main regulatory pathway for SAL in the treatment of testicular I/R injuries. Thereafter, transfection with Nrf2 plasmid-liposome was used to reverse verify that the Nfr2/HO-1/GPX4/ferroptosis signaling pathway was the main pathway for SAL anti-testicular I/R injury treatment. Thus, it is suggested that SAL can protect against testicular I/R injuries by regulating the Nfr2/HO-1/GPX4 signaling pathway to inhibit ferroptosis and that SAL may be a potential drug for the treatment of testicular I/R injuries.

8.
Front Pharmacol ; 15: 1396023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808258

RESUMO

Salidroside (SAL), a phenylpropanoid bioactive compound, has various pharmacological properties, including antioxidant, anti-inflammatory, and hepatoprotective effects. However, the pharmacological effects and mechanisms of action of SAL on cholestatic liver injury are unclear. This study investigated the mechanism and effects of salidroside (SAL) on intestinal flora distribution and hepatic stellate cell (HSC) activation in cholestatic hepatic fibrosis. Bile duct ligation was used to cause cholestasis BALB/c mice. The therapeutic efficacy of SAL in liver fibrosis was assessed via serum/tissue biochemical analyses and liver tissue hematoxylin and eosin and Masson staining. Inflammation and oxidative stress were analyzed using enzyme-linked immunosorbent assay and western blotting. HSC were activated in vitro using lipopolysaccharide, and the effects of SAL on HSC migration and inflammatory factor expression were detected via scratch, transwell, and western blotting assays. The effects of SAL on the PI3K/AKT/GSK-3ß pathway in vivo and in vitro were detected using western blotting. 16sRNA sequencing was used to detect the effect of SAL on the diversity of the intestinal flora. Ileal histopathology and western blotting were used to detect the protective effect of SAL on the intestinal mucosal barrier. SAL reduces liver inflammation and oxidative stress and protects against liver fibrosis with cholestasis. It inhibits HSC activation and activates the PI3K/AKT/GSK-3ß pathway in vitro and in vivo. Additionally, SAL restores the abundance of intestinal flora, which contributes to the repair of the intestinal mucosal barrier, inhibits endotoxin translocation, and indirectly inhibits HSC activation, reversing the course of cholestatic liver fibrosis. SAL inhibits HSC activation through the PI3K/AKT/GSK-3ß pathway and improves intestinal flora distribution, thereby protecting and reversing the progression of hepatic fibrosis.

9.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727159

RESUMO

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Assuntos
Glucosídeos , Lesão Pulmonar , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenóis , Sirtuína 1 , Animais , Camundongos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Tamanho da Partícula , Material Particulado/toxicidade , Material Particulado/efeitos adversos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 833-843, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38716542

RESUMO

Acute rejection is an important factor affecting the survival of recipients after liver transplantation. Salidroside has various properties, including anti-inflammatory, antioxidant, and hepatoprotective properties. This study aims to investigate whether salidroside can prevent acute rejection after liver transplantation and to examine the underlying mechanisms involved. An in vivo acute rejection model is established in rats that are pretreated with tacrolimus (1 mg/kg/d) or salidroside (10 or 20 mg/kg/d) for seven days after liver transplantation. In addition, an in vitro experiment is performed using neutrophils incubated with salidroside (1, 10, 50 or 100 µM). Hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, immunosorbent assays, immunofluorescence analysis, Evans blue staining, and western blot analysis are performed to examine the impact of salidroside on NET formation and acute rejection in vitro and in vivo. We find that Salidroside treatment reduces pathological liver damage, serum aminotransferase level, and serum levels of IL-1ß, IL-6, and TNF-α in vivo. The expressions of proteins associated with the HMGB1/TLR-4/MAPK signaling pathway (HMGB1, TLR-4, p-ERK1/2, p-JNK, p-P38, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, IL-1ß, TNF-α, and IL-6) are also decreased after salidroside treatment. In vitro experiments show that the release of HMGB1/TLR-4/MAPK signaling pathway-associated proteins from neutrophils treated with lipopolysaccharide is decreased by salidroside. Moreover, salidroside inhibits NETosis and protects against acute rejection by regulating the HMGB1/TLR-4/MAPK signaling pathway. Furthermore, salidroside combined with tacrolimus has a better effect than either of the other treatments alone. In summary, salidroside can prevent acute liver rejection after liver transplantation by reducing neutrophil extracellular trap development through the HMGB1/TLR-4/MAPK signaling pathway.


Assuntos
Armadilhas Extracelulares , Glucosídeos , Rejeição de Enxerto , Proteína HMGB1 , Transplante de Fígado , Neutrófilos , Fenóis , Receptor 4 Toll-Like , Animais , Fenóis/farmacologia , Glucosídeos/farmacologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/patologia , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/metabolismo , Proteína HMGB1/metabolismo , Receptor 4 Toll-Like/metabolismo , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Ratos , Ratos Sprague-Dawley , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Apoptose/efeitos dos fármacos
11.
Food Chem X ; 22: 101406, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38707782

RESUMO

We aimed to explore the effect of salidroside (SAL) on meat quality, antioxidant capacity, and lipid metabolism in broilers. The results demonstrated that SAL significantly reduced the yellowness (b*), shear force, cooking loss, drip loss, MDA, TBARS, and carbonyl content in breast (P < 0.05), while increasing the pH value (P < 0.05), suggesting an improvement in meat quality. SAL lowered the lipid contents in liver and serum (P < 0.05), while increasing the proportion of unsaturated fatty acids in breast (P < 0.05), indicating effective regulation of lipid metabolism by SAL. SAL increased the activity of antioxidant enzymes and the expression of antioxidant genes in both liver and muscle (P < 0.05). Additionally, SAL improved the meat quality and antioxidant capacity of breast subjected to repeated freeze-thaw treatment. SAL may enhance meat quality by improving antioxidative stability and regulating lipid metabolism, potentially serving as a dietary supplement for broilers.

12.
Biochem Biophys Res Commun ; 722: 150132, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788354

RESUMO

OBJECTIVE: The present study aims to investigate the protective potential of salidroside in both lung ischemia/reperfusion injury (LIRI) mice model and cell hypoxia/reoxygenation (H/R)model and the involvement of ferroptosis and JAK2/STAT3 pathway. MATERIALS AND METHODS: After we established the IR-induced lung injury model in mice, we administered salidroside and the ferroptosis inhibitor, ferrostatin-1, then assessed the lung tissue injury, ferroptosis (levels of reactive oxygen species level, malondialdehyde and glutathione), and inflammation in lung tissues. The levels of ferroptosis-related proteins (glutathione peroxidase 4, fibroblast-specific protein 1, solute carrier family 1 member 5 and glutaminase 2) in the lung tissue were measured with Western blotting. Next, BEAS-2B cells were used to establish an H/R cell model and treated with salidroside or ferrostatin-1 before the cell viability and the levels of lactate dehydrogenase (LDH), inflammatory factor, ferroptosis-related proteins were measured. The activation of the JAK2/STAT3 signaling pathway was measured with Western blotting, then its role was confirmed with STAT3 knockdown. RESULTS: Remarkably, salidroside was found to alleviate ferroptosis, inflammation, and lung injury in LIRI mice and the cell injury in H/R cell model. Severe ferroptosis were observed in LIRI mice models and H/R-induced BEAS-2B cells, which was alleviated by salidroside. Furthermore, salidroside could inhibit JAK2/STAT3 activation induced by LIRI. STAT3 knockdown could enhance the effect of salidroside treatment on H/R-induced cell damage and ferroptosis in vitro. CONCLUSIONS: Salidroside inhibits ferroptosis to alleviate lung ischemia reperfusion injury via the JAK2/STAT3 signaling pathway.


Assuntos
Ferroptose , Glucosídeos , Janus Quinase 2 , Fenóis , Traumatismo por Reperfusão , Fator de Transcrição STAT3 , Transdução de Sinais , Fenóis/farmacologia , Fenóis/uso terapêutico , Animais , Ferroptose/efeitos dos fármacos , Janus Quinase 2/metabolismo , Glucosídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Linhagem Celular , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia
13.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2188-2196, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812234

RESUMO

This study aims to investigate the protective effect of salidroside(SAL) on renal damage in diabetic nephropathy(DN) mice based on the receptor for advanced glycation end products/janus activated kinase 1/signal transduction and activator of transcription 3(RAGE/JAK1/STAT3) signaling pathway. The mouse DN model was established by high-fat/high-sucrose diets combined with intraperitoneal injection of streptozocin(STZ). Mice were randomly divided into normal group, model group, low-dose SAL group(20 mg·kg~(-1)), high-dose SAL group(100 mg·kg~(-1)), and metformin group(140 mg·kg~(-1)), with 12 mice in each group. After establishing the DN model, mice were given drugs or solvent intragastrically, once a day for consecutive 10 weeks. Body weight, daily water intake, and fasting blood glucose(FBG) were measured every two weeks. After the last dose, the glucose tolerance test was performed, and the samples of 24-hour urine, serum, and kidney tissue were collected. The levels of 24 hours urinary total protein(24 h-UTP), serum creatinine(Scr), blood urea nitrogen(BUN), triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-C), and high density lipoprotein cholesterol(HDL-C) were detected by biochemical tests. Periodic acid-schiff(PAS) staining was used to observe the pathological changes in the kidney tissue. The protein expressions of α-smooth muscle actin(α-SMA), vimentin, and advanced glycation end products(AGEs) in kidneys were detected by immunohistochemical staining. The activities of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GSH-PX), and the level of malondialdehyde(MDA) in kidneys were detected by using a corresponding detection kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of AGEs, carboxymethyllysine(CML), and carboxyethyllysine(CEL) in serum. The protein expressions of RAGE and the phosphorylation level of JAK1 and STAT3 in kidneys were detected by Western blot. Compared with the normal group, the levels of FBG, the area under the curve of glucose(AUCG), water intake, kidney index, 24 h-UTP, tubular injury score, extracellular matrix deposition ratio of the renal glomerulus, the serum levels of Scr, BUN, TG, LDL-C, AGEs, CEL, and CML, the level of MDA, the protein expressions of α-SMA, vimentin, AGEs, and RAGE, and the phosphorylation level of JAK1 and STAT3 in kidney tissue were increased significantly(P<0.01), while the level of HDL-C in serum and the activity of SOD, CAT, and GSH-PX in kidney tissue were decreased significantly(P<0.01). Compared with the model group, the above indexes of the high-dose SAL group were reversed significantly(P<0.05 or P<0.01). In conclusion, this study suggests that SAL can alleviate oxidative stress and renal fibrosis by inhibiting the activation of AGEs-mediated RAGE/JAK1/STAT3 signaling axis, thus playing a potential role in the treatment of DN.


Assuntos
Nefropatias Diabéticas , Glucosídeos , Janus Quinase 1 , Rim , Fenóis , Receptor para Produtos Finais de Glicação Avançada , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Glucosídeos/farmacologia , Glucosídeos/administração & dosagem , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais/efeitos dos fármacos , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fenóis/farmacologia , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Humanos , Camundongos Endogâmicos C57BL , Glicemia/metabolismo , Glicemia/efeitos dos fármacos
14.
Neurosci Lett ; 832: 137787, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38641312

RESUMO

BACKGROUND: Salidroside (Sal) has been found to protect against multiple impairments caused by diabetes, and we designed this study to investigate the effect of Sal on gestational hypertension (GHP)-induced impairment of offspring learning and memory. METHODS: We established a GHP rat model by intraperitoneal injection of NG-nitro-L-arginine methyl ester (L-NAME), and treated with Sal by daily gavage. We used Morris Water Maze test to evaluate the learning and memory ability of offspring rats. HE staining was used to measured the pathological changes in hippocampus of offspring. Immunohistochemistry, cellular immunofluorescence and western blot were used to detect the protein expression. RESULTS: The learning and memory abilities of GHP offspring rats were significantly lower than those of normal rat offspring, while Sal treatment could significantly improve the learning and memory abilities of GHP offspring rats. HE staining did not reveal pathological differences in the hippocampus of normal rats, GHP rats and Sal-treated GHP offspring rats. However, Sal treatment can significantly increase the expression of Wnt1 and Skp2 protein, and decrease the expression of P27kiwf and P21waf1 protein in the hippocampus of GHP offspring rats. In vitro, Sal significantly promoted the proliferation and differentiation on neural stem cell, while Wnt1 knockdown could reverse these promotions by Sal. In the hippocampus of GHP offspring rats, Sal treatment significantly increased the expression of Tuj1, SOX2, Ki67 and DCX protein. CONCLUSION: Salidroside significantly improves the learning and memory impairment of offspring caused by GHP, and its mechanism may be related to the fact that Salidroside promotes the proliferation and differentiation of neural stem cells by activating the Wnt1/Skp2 signaling pathway.


Assuntos
Glucosídeos , Hipocampo , Hipertensão Induzida pela Gravidez , Fenóis , Ratos Sprague-Dawley , Via de Sinalização Wnt , Animais , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Fenóis/farmacologia , Gravidez , Feminino , Ratos , Via de Sinalização Wnt/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/prevenção & controle , Memória/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Proteína Duplacortina , Transtornos da Memória/prevenção & controle , Transtornos da Memória/metabolismo , Transtornos da Memória/tratamento farmacológico , Masculino
15.
Exp Cell Res ; 438(1): 114034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588875

RESUMO

Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.


Assuntos
Proliferação de Células , Ferroptose , Glucosídeos , Melanoma , Mitocôndrias , Fenóis , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Fenóis/farmacologia , Glucosídeos/farmacologia , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos
16.
Biochem Biophys Res Commun ; 712-713: 149942, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642492

RESUMO

Metabolic engineering reconfigures cellular networks to produce value-added compounds from renewable substrates efficiently. However, identifying strains with desired phenotypes from large libraries through rational or random mutagenesis remains challenging. To overcome this bottleneck, an effective high-throughput screening (HTS) method must be developed to detect and analyze target candidates rapidly. Salidroside is an aromatic compound with broad applications in food, healthcare, medicine, and daily chemicals. However, there currently needs to be HTS methods available to monitor salidroside levels or to screen enzyme variants and strains for high-yield salidroside biosynthesis, which severely limits the development of microbial cell factories capable of efficiently producing salidroside on an industrial scale. This study developed a gene-encoded whole-cell biosensor that is specifically responsive to salidroside. The biosensor was created by screening a site-saturated mutagenic library of uric acid response regulatory protein binding bags. This work demonstrates the feasibility of monitoring metabolic flux with whole-cell biosensors for critical metabolites. It provides a promising tool for building salidroside high-yielding strains for high-throughput screening and metabolic regulation to meet industrial needs.


Assuntos
Técnicas Biossensoriais , Glucosídeos , Ensaios de Triagem em Larga Escala , Engenharia Metabólica , Fenóis , Fenóis/metabolismo , Técnicas Biossensoriais/métodos , Glucosídeos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo
17.
Biomed Pharmacother ; 174: 116625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643543

RESUMO

AIMS: The purpose of this study was to explore the impacts of salidroside on vascular regeneration, vascular structural changes and long-term neurological recuperation following cerebral ischemia and its possible mechanism. MAIN METHODS: From Day 1 to Day 28, young male mice with middle cerebral artery blockage received daily doses of salidroside and measured neurological deficits. On the 7th day after stroke, the volume of cerebral infarction was determined using TTC and HE staining. Microvascular density, astrocyte coverage, angiogenesis and the expression of the Shh signaling pathway were detected by IF, qRTPCR and WB at 7, 14 and 28 days after stroke. Changes in blood flow, blood vessel density and diameter from stroke to 28 days were measured by the LSCI and TPMI. KEY FINDINGS: Compared with the dMACO group, the salidroside treatment group significantly promoted the recovery of neurological function. Salidroside was found to enhance cerebral blood flow perfusion and reduce the infarct on the 7th day after stroke. From the 7th to the 28th day after stroke, salidroside treatment boosted the expression of CD31, CD31+/BrdU+, and GFAP in the cortex around the infarction site. On the 14th day after stroke, salidroside significantly enhanced the width and density of blood vessels. Salidroside increased the expression of histones and genes in the Shh signaling pathway during treatment, and this effect was weakened by the Shh inhibitor Cyclopamine. SIGNIFICANCE: Salidroside can restore nerve function, improve cerebral blood flow, reduce cerebral infarction volume, increase microvessel density and promote angiogenesis via the Shh signaling pathway.


Assuntos
Isquemia Encefálica , Glucosídeos , Proteínas Hedgehog , Neovascularização Fisiológica , Fenóis , Transdução de Sinais , Animais , Glucosídeos/farmacologia , Fenóis/farmacologia , Masculino , Proteínas Hedgehog/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Circulação Cerebrovascular/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Angiogênese
18.
J Hazard Mater ; 470: 134129, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565019

RESUMO

Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 µM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.


Assuntos
Rim , Parabenos , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Glucosídeos/farmacologia , Células HEK293 , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Parabenos/toxicidade , Fenóis/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Pharmacol Res ; 203: 107179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615876

RESUMO

Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.


Assuntos
Produtos Biológicos , Exossomos , Medicina Tradicional Chinesa , Neoplasias , Humanos , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
20.
Food Chem X ; 22: 101260, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38450386

RESUMO

Salidroside (Sal), the main bioactive substance in Rhodiola rosea, is a promising functional food component with a wide range of pharmacological effects, but its biological activity is challenging to sustain due to its short half-life, low oral bioavailability, and susceptibility to environmental factors. The aim of this study was to investigate the effect of sodium alginate (SA) concentration on the construction of W/O/W emulsion in the protection of Sal. With the escalation of SA concentrations, the range of droplet size distribution was smaller and the droplets were more uniform. When the concentration of SA was 2 %, the average droplet size reached 9.1 ± 0.1 µm, and the encapsulation efficiency of Sal was 77.8 ± 1.8 %. Moreover, the double emulsion with 2 % SA was the most stable for 28 days at 4 °C since the oil droplets were embedded in the network structure of SA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...