Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Am J Hypertens ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850192

RESUMO

BACKGROUND: Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases.Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats. METHODS: Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, NDS group) or a high-salt diet (8% NaCl, HDS group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via HE-staining, Masson-staining, Prussian-blue-staining, TEM, tissue iron content detection, MDA content detection, immunofluorescence, and Western blot. RESULTS: Compared to the NDS group, rats in the HDS group increases in systolic blood pressure(SBP) and diastolic blood pressure(DBP)(P<0.05);collagen fiber accumulation was observed in the heart and kidney tissues (P<0.01), accompanied by alterations in mitochondrial ultrastructure,reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally,there were significant increases in both iron content and MDA levels(P<0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P<0.05) of xCT and GPX4 proteins associated with ferroptosis in the HDS group. CONCLUSION: Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.

2.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38940286

RESUMO

Salt-sensitive hypertension is common among individuals with essential hypertension, and the prevalence of left ventricular hypertrophy (LVH) has increased. However, data from early identification of the risk of developing LVH in young adults with salt-sensitive hypertension are lacking. Thus, the present study aimed to design a nomogram for predicting the risk of developing LVH in young adults with salt-sensitive hypertension. A retrospective analysis of 580 patients with salt-sensitive hypertension was conducted. The training set consisted of 70% (n = 406) of the patients, while the validation set consisted of the remaining 30% (n = 174). Based on multivariate analysis of the training set, predictors for LVH were extracted to develop a nomogram. Discrimination curves, calibration curves, and clinical utility were employed to assess the predictive performance of the nomogram. The final simplified nomogram model included age, sex, office systolic blood pressure, duration of hypertension, abdominal obesity, triglyceride-glucose index, and estimated glomerular filtration rate (eGFR). In the training set, the model demonstrated moderate discrimination, as indicated by an area under the receiver operating characteristic (ROC) curve of 0.863 (95% confidence interval: 0.831-0.894). The calibration curve exhibited good agreement between the predicted and actual probabilities of LVH in the training set. Additionally, the validation set further confirmed the reliability of the prediction nomogram. In conclusions, the simplified nomogram, which consists of seven routine clinical variables, has shown good performance and clinical utility in identifying young adults with salt-sensitive hypertension who are at high risk of LVH at an early stage.

4.
Hypertens Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877311

RESUMO

Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.

5.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915603

RESUMO

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS: We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1. Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION: Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP.

7.
Biochem Biophys Res Commun ; 722: 150147, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788356

RESUMO

We used an animal model of salt-sensitive hypertension (SSH) in which ovariectomized (oVx) rats developed hypertension with high salt (HS) intake. Hypertension is accompanied by changes in the percentage of CD4+ T lymphocytes, immune CD45+ cell infiltration into renal tissue, and changes in Na+, K+- ATPase (NKA) expression in both renal tissue and peripheral blood mononuclear cells (PBMCs). To determine whether the observed changes resulted from HS intake, high blood pressure, or both, hydralazine (HDZ) was used to lower blood pressure. The oVx HS rats received two HDZ schedules either to prevent or to treat hypertension. NKA was overexpressed in the kidneys of all oVx groups and in PBMCs of oVx HS rats. This pattern was not altered with HDZ treatment. Changes in CD4+ T lymphocytes and renal infiltration of CD45+ cells were not reversed either. High salt, but not high blood pressure, induces immune cell activation and renal infiltration. Overexpressed NKA is the primary event, and HS is the perturbation to the system in this model of SSH, which resembles the postmenopausal state.


Assuntos
Hipertensão , Rim , Ovariectomia , Ratos Wistar , Animais , Feminino , Ratos , Rim/patologia , Rim/metabolismo , Rim/imunologia , Hipertensão/imunologia , Hipertensão/patologia , Hipertensão/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Pressão Sanguínea/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Hidralazina/farmacologia
8.
Am J Hypertens ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780971

RESUMO

BACKGROUND: High salt (HS) intake induces an augmented hypertensive response to nitric oxide (NO) inhibition, though it causes minimal changes in blood pressure (BP) in NO intact condition. The cause of such augmentation is not known. HS induces tumor necrosis factor-alpha (TNFα) production that causes natriuresis via activation of its' receptor type 1 (TNFR1). We hypothesized that NO deficiency reduces renal TNFR1 activity, leading to enhanced sodium retention and hypertension. METHODS: We examined the changes in renal TNFR1 protein expression (Immunohistochemistry analyses) after HS (4% NaCl) intake in wild-type mice (WT, C57BL6) treated with a NO synthase (NOS) inhibitor, nitro-L-arginine methyl ester (L-NAME; 0.05 mg/min/g; osmotic mini-pump), as well as in endothelial NOS knockout mice (eNOSKO) and compared the responses in WT mice with normal salt (NS; 0.3% NaCl) intake. BP was measured with tail-cuff plethysmography and 24-hour urine collections were made using metabolic cages. RESULTS: HS alone did not alter mean BP in untreated mice (76±3 to 77±1 mmHg) but induced an augmented response in L-NAME treated (106±1 vs 97±2 mmHg) and in eNOSKO (107±2 vs 89±3 mmHg) mice. The percentage area of TNFR1 expression in renal tissue was higher in WT+HS (4.1 + 0.5%) than in WT+NS mice (2.7±0.6%). However, TNFR1 expression was significantly lower in L-NAME treated WT+NS (0.9±0.1%) and in eNOSKO+NS (1.4±0.2%) than in both WT+NS and WT+HS mice. CONCLUSION: These data indicate that TNFR1 activity is downregulated in NO deficient conditions, which facilitates salt retention leading to augmented hypertension during HS intake.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38813592

RESUMO

Hypertension affects approximately 1 in 2 US adults and sex plays an important role in the pathogenesis of hypertension.​ The sodium chloride cotransporter (NCC), regulated by a kinase network including with-no-lysine kinases (WNK) 1 and WNK4, STE20/SPS1-related proline alanine rich kinase (SPAK), and oxidative stress response 1 (OxSR1) is critical to sodium reabsorption and blood pressure regulation. Dietary salt differentially modulates the NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In these studies, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague Dawley, Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt resistant SD and DSR rats a high salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males these changes were associated with no change in WNK1 expression and a decrease in WNK4 levels and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast in females decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.

10.
Am J Hypertens ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761040

RESUMO

BACKGROUND: Hypertension is a risk factor for atrial fibrillation (AF), and brain and muscle arnt-like protein 1 (Bmal1) regulate circadian blood pressure and is implicated in several fibrotic disorders. Our hypothesis that Bmal1 inhibits atrial fibrosis and susceptibility to AF in salt-sensitive hypertension (SSHT) and our study provide a new target for the pathogenesis of AF induced by hypertension. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). An experimental model was used to measure systolic blood pressure (SBP), left atrial ejection fraction (LAEF), left atrial end-volume index (LAEVI), left atrial index (LAFI), AF inducibility, AF duration, and atrial fibrosis pathological examination and the expression of Baml1 and fibrosis-related proteins (TNF-α and α-SMA) in left atrial tissue. RESULTS: DSH increased TNF-α and α-SMA expression in atrial tissue, level of SBP and LAESVI, atrial fibrosis, AF induction rate and AF duration, and decreased Bmal1 expression in atrial tissue, circadian rhythm of hypertension and level of LAEF and LAFI. Our results also showed that the degree of atrial fibrosis was negatively correlated with Bmal1 expression, but positively correlated with the expression of TNF-α and α-SMA. CONCLUSIONS: We demonstrated that a high-salt diet leads to circadian changes in hypertension due to reduction Bmal1 expression, which plays a crucial role in atrial fibrosis and increased susceptibility to AF in SSHT rats.

11.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474316

RESUMO

Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells based on transcriptome similarity, irrespective of the anatomical location and order within the nephron. Thus, a transcriptome cluster may obscure the heterogeneity of the cell population within a nephron segment. Elevated dietary fructose leads to salt-sensitive hypertension, in part, through fructose reabsorption in the proximal tubule (PT). However, the organization of the four known fructose transporters in apical PTs (SGLT4, SGLT5, GLUT5, and NaGLT1) remains poorly understood. We hypothesized that cells within each subsegment of the proximal tubule exhibit complex, heterogeneous fructose transporter expression patterns. To test this hypothesis, we analyzed rat kidney transcriptomes and proteomes from publicly available scRNAseq and tubule microdissection databases. We found that microdissected PT-S1 segments consist of 81% ± 12% cells with scRNAseq-derived transcriptional characteristics of S1, whereas PT-S2 express a mixture of 18% ± 9% S1, 58% ± 8% S2, and 19% ± 5% S3 transcripts, and PT-S3 consists of 75% ± 9% S3 transcripts. The expression of all four fructose transporters was detectable in all three PT segments, but key fructose transporters SGLT5 and GLUT5 progressively increased from S1 to S3, and both were significantly upregulated in S3 vs. S1/S2 (Slc5a10: 1.9 log2FC, p < 1 × 10-299; Scl2a5: 1.4 log2FC, p < 4 × 10-105). A similar distribution was found in human kidneys. These data suggest that S3 is the primary site of fructose reabsorption in both humans and rats. Finally, because of the multiple scRNAseq transcriptional phenotypes found in each segment, our findings also imply that anatomical labels applied to scRNAseq clusters may be misleading.


Assuntos
Frutose , Transcriptoma , Humanos , Ratos , Animais , Frutose/metabolismo , Néfrons/metabolismo , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
12.
J Pharm Pharmacol ; 76(6): 672-680, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447186

RESUMO

OBJECTIVES: Prolonged exposure to chronic hypertension places the heart under excessive strain, resulting in myocardial remodeling. Phillyrin, derived from the natural plant Forsythia suspensa, has been found to possess cardioprotective properties. The objective of this study is to investigate the role and mechanism of phillyrin in hypertension-induced myocardial remodeling in mice. METHODS: We constructed a mouse model of salt-sensitive hypertension. The mice were treated with varying doses of phillyrin, and their blood pressure, cardiac function, cardiac hypertrophy, fibrosis, inflammation, and other conditions were assessed. KEY FINDINGS: Our research findings demonstrated that phillyrin has the potential to lower blood pressure, enhance cardiac function, and mitigate cardiac hypertrophy, fibrosis, and inflammatory responses in deoxycorticosterone acetate-salt hypertension mice. In hypertensive mice, there was an elevated expression of endothelin1 (ET-1) in heart tissue, which can be reduced by phillyrin. Additionally, phillyrin effectively reduced the hypertrophy of H9c2 cells induced by ET-1 stimulation. CONCLUSIONS: Our research highlights the therapeutic capabilities of phillyrin in the treatment of myocardial remodeling through the reduction of ET-1 signaling. These results contribute to the advancement of novel applications for phillyrin and establish a solid conceptual basis for future investigations in this area.


Assuntos
Pressão Sanguínea , Cardiomegalia , Modelos Animais de Doenças , Endotelina-1 , Hipertensão , Transdução de Sinais , Remodelação Ventricular , Animais , Hipertensão/tratamento farmacológico , Endotelina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Remodelação Ventricular/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Glucosídeos/farmacologia , Camundongos Endogâmicos C57BL , Fibrose , Anti-Hipertensivos/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , Linhagem Celular , Acetato de Desoxicorticosterona
13.
Hypertens Res ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355818

RESUMO

Renal denervation (RDN) has emerged as a novel therapy for drug-resistant hypertension. We here examined the effects of RDN at early versus advanced stages of hypertension on blood pressure and organ pathology in rats with salt-sensitive hypertension. Dahl salt-sensitive (DahlS) rats fed an 8% NaCl diet from 6 weeks of age were subjected to RDN (surgical ablation and application of 10% phenol in ethanol) or sham surgery at 7 (early stage) or 9 (advanced stage) weeks and were studied at 12 weeks. RDN at early or advanced stages resulted in a moderate lowering of blood pressure. Although RDN at neither stage affected left ventricular (LV) and cardiomyocyte hypertrophy, it ameliorated LV diastolic dysfunction, fibrosis, and inflammation at both stages. Intervention at both stages also attenuated renal injury as well as downregulated the expression of angiotensinogen and angiotensin-converting enzyme (ACE) genes and angiotensin II type 1 receptor protein in the kidney. Furthermore, RDN at both stages inhibited proinflammatory gene expression in adipose tissue. The early intervention reduced both visceral fat mass and adipocyte size in association with downregulation of angiotensinogen and ACE gene expression. In contrast, the late intervention increased fat mass without affecting adipocyte size as well as attenuated angiotensinogen and ACE gene expression. Our results thus indicate that RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated cardiac and renal injury and adipose tissue inflammation in DahlS rats. They also suggest that cross talk among the kidney, cardiovascular system, and adipose tissue may contribute to salt-sensitive hypertension. Supposed mechanism for the beneficial effects of RDN on hypertension and target organ damage in DahlS rats. RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated renal injury in DahlS rats. Cross talk among the kidney, cardiovascular system, and adipose tissue possibly mediated by circulating RAS may contribute to salt-sensitive hypertension. LV; left ventricular, NE; norepinephrine, RAS; renin-angiotensin system, RDN; renal denervation.

14.
Biomed Pharmacother ; 170: 115987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056241

RESUMO

Heart failure (HF) preserved ejection fraction (HFpEF) accounts for almost 50% of HF, and hypertension is one of the pathogenies. The MAPK signaling pathway is closely linked to heart failure and hypertension; however, its function in HEpEF resulting from salt-sensitive hypertension is not well understood. In this work, a salt-sensitive hypertension-induced HEpEF model was established based on deoxycorticosterone acetate-salt (DOCA-salt) hypertension mice. The impact of the MAPK inhibitor (Doramapimod) on HEpEF induced by salt-sensitive hypertension was assessed through various measures, such as blood pressure, transthoracic echocardiography, running distance, and histological analysis, to determine its therapeutic effectiveness on cardiac function. In addition, the effects of high salt on myogenic cells were also evaluated in vitro using qRTPCR. The LV ejection fractions (LVEF) in DOCA-salt hypertension mice were over 50%, indicating that the salt-sensitive hypertension-induced HFpEF model was successful. RNA-seq revealed that the MAPK signaling pathway was upregulated in the HFpEF model compared with the normal mice, accompanied by hypertension, impaired running distance, restricted cardiac function, increased cross-sectional and fibrosis area, and upregulation of heart failure biomarkers, including GAL-3, LDHA and BNP. The application of Doramapimod could improve blood pressure, cardiomyocyte hypertrophy, and myocardial fibrosis, as well as decrease the aforementioned heart failure biomarkers. The qRTPCR results showed similar findings to these observations. Our findings suggest that the use of a MAPK inhibitor (Doramapimod) could be a potential treatment for salt-sensitive hypertension-induced HFpEF.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Volume Sistólico/fisiologia , Estudos Transversais , Cloreto de Sódio na Dieta , Fibrose , Biomarcadores
15.
Am J Physiol Renal Physiol ; 326(1): F95-F104, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916287

RESUMO

In the current study, we took advantage of the loss of protection from hypertension in SSCD247-/- rats to characterize the pathological effects of renal T-cells in isolation from the confounding effects of elevated renal perfusion pressure. Male SSCD247-/- and SSCD247+/+ littermates were fed 4.0% NaCl (high salt) diet to induce hypertension. Blood pressure was assessed continuously throughout the time course with radiotelemetry. Urine albumin and protein excretion were assessed on the final day of high salt. Renal injury and medullary transcriptome were assessed after completion of the high salt protocol. In contrast to previous studies, mean arterial pressure was not significantly different between SSCD247-/- and SSCD247+/+ rats. Despite this lack of pressure difference, urinary albumin was significantly lower in SSCD247-/- rats than their wild-type littermates. In the outer medulla, substantially more transcriptomic changes were found to correlate with endpoint blood pressure than with the absence of presence of renal T-cells. We also demonstrated that renal histological damage was driven by elevated renal perfusion pressure rather than the presence of renal T-cells. In conclusion, using the loss of protection from hypertension in SSCD247-/- rats, we demonstrated that renal perfusion pressure has more profound pathological effects on the kidney than renal T-cells. However, renal T-cells, independently of blood pressure, modulate the progression of albuminuria.NEW & NOTEWORTHY In vivo studies in a T-cell-deficient rat model of salt-sensitive hypertension (SSCD247-/- rats) were used to evaluate the role of T-cells on the development of hypertension and renal damage. Detailed physiological and transcriptomic analysis demonstrated no difference in blood pressure between rats with (SSCD247+/+) or without (SSCD247-/-) T-cells. Despite this, albuminuria was significantly lower in SSCD247-/- rats than SSCD247+/+ rats.


Assuntos
Hipertensão , Transcriptoma , Ratos , Masculino , Animais , Albuminúria/metabolismo , Linfócitos T/metabolismo , Ratos Endogâmicos Dahl , Rim/metabolismo , Hipertensão/metabolismo , Pressão Sanguínea , Cloreto de Sódio na Dieta/metabolismo , Albuminas/metabolismo
16.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958585

RESUMO

Exercise training (Ex) has anti-hypertensive and renal protective effects. In this study, we investigate the effects of Ex on mitochondrial fatty acid metabolism in the kidneys of Dahl salt-sensitive (Dahl-S) rats fed a high-salt (HS) diet. Eight-week-old, male Dahl-S rats were divided into three groups: (1) normal-salt diet, sedentary (NS-Sed), (2) HS diet, sedentary (HS-Sed), and (3) HS-Ex. The NS and HS groups were fed a diet containing 0.6% and 8% NaCl, respectively. The HS-Ex group performed treadmill running for 8 weeks (5 days/week; 60 min/day at 16-20 m/min, 0% gradient). Renal function and the expression of enzymes and regulators of ß-oxidation and electron transport chain (ETC) complexes were assessed. HS increased systolic blood pressure and proteinuria, and Ex ameliorated these defects. HS also reduced creatinine clearance, and Ex ameliorated it. HS reduced the renal expression of enzymes of ß-oxidation (carnitine palmitoyltransferase type I (CPTI) and acyl-CoA dehydrogenases (CADs)) and the related transcription factors peroxisome proliferator-activated receptor α (PPARα) and PPARγ-coactivator-1α (PGC-1α), and Ex restored this. HS also reduced the renal expression of enzymes in ETC complexes, and Ex restored this expression. Ex ameliorates HS-induced renal damage by upregulating enzymes involved in fatty acid ß-oxidation and ETC complexes via increases in PPAR-α and PGC-1α expressions in the kidneys of Dahl-S rats. These results suggest that Ex may have beneficial effects on HS-induced mitochondrial dysfunction in the kidney.


Assuntos
Hipertensão , Rim , Ratos , Animais , Masculino , Ratos Endogâmicos Dahl , Rim/metabolismo , Cloreto de Sódio , Cloreto de Sódio na Dieta , PPAR alfa/metabolismo , Ácidos Graxos , Hipertensão/metabolismo , Pressão Sanguínea
17.
Front Nutr ; 10: 1253803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899834

RESUMO

Background: Cardiovascular diseases persist as the primary cause of mortality in the global population. Hypertension (HTN) is widely recognized as one of the most crucial risk factors contributing to severe cardiovascular conditions. In recent years, a growing body of research has highlighted the therapeutic potential of gut microbiota (GM) in addressing cardiovascular diseases, particularly HTN. Consequently, unraveling and synthesizing the connections between GM and HTN, key research domains, and the underlying interaction mechanisms have grown increasingly vital. Methods: We retrieved articles related to GM and HTN from 2014 to 2023 using Web of Science. Bibliometric tools employed in this analysis include CiteSpace and VOSviewer. Result: From 2014 to 2023, we identified 1,730 related articles. These articles involved 88 countries (regions) and 9,573 authors. The articles were published in 593 journals, with 1000 references exhibiting co-occurrence more than 10 times. The number of studies in this field has been increasing, indicating that it remains a research hotspot. We expect this field to continue gaining attention in the future. China leads in the number of published articles, while the United States boasts the most extensive international collaborations, signifying its continued prominence as a research hub in this domain. Tain You-Lin, Hsu Chien-Ning, Raizada Mohan K, and Yang Tao are among the authors with the highest publication volume. Publications in this field are frequently found in nutrition, cardiovascular, and molecular biology journals. The most frequently occurring keywords include metabolic syndrome, cardiovascular disease, inflammation, short-chain fatty acids, trimethylamine N-oxide, chronic kidney disease, heart failure, and high-salt diet. Conclusion: The relationship between GM and HTN is presently one of the most active research areas. By employing bibliometric tools, we analyzed critical and innovative articles in this field to provide an objective summary of the primary research directions, such as the relationship between GM and HTN, GM metabolites, high-salt diet, the developmental origins of health and disease, obstructive sleep apnea-Induced hypertension and antihypertensive peptide. Our analysis aims to offer researchers insights into hotspots and emerging trends in the field of GM and HTN for future research reference.

18.
Cell Mol Life Sci ; 80(11): 327, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837447

RESUMO

Salt-sensitivity hypertension (SSHTN) is an independent predictor for cardiovascular mortality. VEGFC has been reported to be a protective role in SSHTN and hypertensive kidney injury. However, the underlying mechanisms remain largely unclear. The current study aimed to explore the protective effects and mechanisms of VEGFC against SSHTN and hypertensive nephropathy. Here, we reported that VEGFC attenuated high blood pressure as well as protected against renal inflammation and fibrosis in SSHTN mice. Moreover, VEGFC suppressed the activation of renal NLRP3 inflammasome in SSHTN mice. In vitro, we found VEGFC inhibited NLRP3 inflammasome activation, meanwhile, upregulated autophagy in high-salt-induced macrophages, while these effects were reversed by an autophagy inhibitor 3MA. Furthermore, in vivo, 3MA pretreatment weakened the protective effects of VEGFC on SSHTN and hypertensive nephropathy. Mechanistically, VEGF receptor 3 (VEGFR3) kinase domain activated AMPK by promoting the phosphorylation at Thr183 via binding to AMPK, thus enhancing autophagy activity in the context of high-salt-induced macrophages. These findings indicated that VEGFC inhibited NLRP3 inflammasome activation by promoting VEGFR3-AMPK-dependent autophagy pathway in high-salt-induced macrophages, which provided a mechanistic basis for the therapeutic target in SSHTN and hypertensive kidney injury.


Assuntos
Hipertensão , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia
19.
Curr Hypertens Rep ; 25(11): 405-419, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676461

RESUMO

PURPOSEOF REVIEW: Female sex hormones have systemic effects unrelated to their reproductive function. We describe experiences of different research groups and our own, on aspects related to the importance of female sex hormones on blood pressure (BP) regulation and salt-sensitivity-mediated BP response and salt sensitivity without alterations in BP, as well as renal sodium handling and interactions with the immune system. RECENT FINDINGS: Changes in sodium intake in normotensive premenopausal women cause more BP variations than in men. After menopause, women often develop arterial hypertension (HT) with a profile of sodium sensitivity. Besides, experimental results have shown that in adult rat models resembling the postmenopausal hormonal state induced by ovariectomy, controlling BP is not enough to avoid renal and other tissue infiltration with immune cells, which does not occur when sodium intake is low or normal. Therefore, excess sodium promotes an inflammatory state with the involvement of immune cells. The evidence of activation of adaptive immunity, besides changes in T cell subpopulations, includes changes in sodium transporters and receptors. More studies are needed to evaluate the particular sodium sensitivity of women and its meaning. Changes in lifestyle and sodium intake reduction are the main therapeutic steps. However, to face the actual burden of salt-sensitive HT in postmenopausal women and its associated inflammatory/immune changes, it seems reasonable to work on immune cell activity by considering the peripheral blood mononuclear cell phenotypes of molecules and transport proteins related to sodium handle, both to screen for and treat cell activation.

20.
Int J Nephrol Renovasc Dis ; 16: 183-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601040

RESUMO

Chloride anions are the most abundant in humans. For many years, it has been believed that chloride is simply a counterion of all other cations, ensuring the electroneutrality of the extracellular space. Recent data suggests that chloride anions possess a broad spectrum of important activities that regulate vital cellular functions. It is now evident that, apart from its contribution to the electroneutrality of the extracellular space, it acts as an osmole and contributes to extracellular and intracellular volume regulation. Its anionic charge also contributes to the generation of cell membrane potential. The most interesting action of chloride anions is their ability to regulate the activity of with-no-lysine kinases, which in turn regulate the activity of sodium chloride and potassium chloride cotransporters and govern the reabsorption of salt and excretion of potassium by nephron epithelia. Chloride anions seem to play a crucial role in cell functions, such as cell volume regulation, sodium reabsorption in the distal nephron, potassium balance, and sodium sensitivity, which lead to hypertension. All of these functions are accomplished on a molecular level via complicated metabolic pathways, many of which remain poorly defined. We attempted to elucidate some of these pathways in light of recent advances in our knowledge, obtained mainly from experimental studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...