Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174161, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38909809

RESUMO

The comparative assessment of a variety of microplastic contamination on various soil types hasn't been extensively explored in existing literature. The present study focuses on the comparative analysis of the impact of environmentally relevant concentrations of LDPE, HDPE, and PVC microplastic contamination (2 %, 4 %, and 6 %) on index properties and strength parameters of sandy, silty and clayey soil types at varying observation days 5,10,15,20,25, and 30 days. Extensive experimental investigations are carried out to understand the effect of contamination on moisture content, specific gravity, liquid limit, plastic limit, plasticity index, optimum moisture content, maximum dry density, and shear strength parameters of the respective soil type. It is observed that the depletion in Atterberg's limits is found more in the case of clayey soil as compared to silty soil because clayey soils consist of large specific surface areas leading to van der Waals force of attraction being the predominant force between particles, compared with silty soil which is affected by microplastic addition leading to decrease in net attractive forces. In the case of clayey soil maximum depletion of liquid limit up to 168 %, plastic limit up to 33 %, plasticity index (136 %), and optimum moisture content (9.04 %) is observed for PVC microplastic. The deduction in maximum dry density values is observed more for sandy soil (0.59 g/cc) followed by silty soil (0.21 g/cc) and clayey soil (0.12 g/cc). The maximum depletion of moisture content(delta-8 %), shear strength (delta-0.89 kg/cm2), and maximum dry density (delta-0.44 g/cc) is observed in the case of sandy soil for PVC and LDPE microplastic contamination. Significant depletion in optimum moisture content is observed in the case of clayey soil (9.57 %) compared to sandy (5.62 %) and silty soil (5.3 %). An increase in cohesion is observed for sandy soil (0.09 kg/cm2) and a decrease for clayey (0.19 kg/cm2) and silty soil (0.19 kg/cm2). The angle of internal friction is reduced in the case of clayey soil (∆-14.380) followed by silty soil (∆-11.230) and sandy soil (∆-11.020). For silty soil maximum depletion of specific gravity(delta-1.06) and cohesion (0.192 kg/cm2) is observed for LDPE and HDPE microplastic. The sandy soil type is most affected due to microplastic contamination irrespective of the type of microplastic contamination followed by clayey soil and the silty soil type is least affected. The maximum overall shear strength is reduced due to microplastic contamination in all the soil types.

2.
Sci Rep ; 14(1): 13895, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886472

RESUMO

A methodology combining physical experiments with simulation was employed to acquire contact parameters of sandy soil precisely for planting tiger nuts in the desert area of Xinjiang. The stacking angle under different parameter combinations was applied as a response value. Through the Plackett-Burman test, several factors that have a significant influence were determined. The steepest ascent test was conducted to establish the finest scope of values for these parameters. The stacking angle was considered the response variable, and non-linear tools were used to optimize these parameters for simulation. The findings showed that applying response surface methodology (RSM) resulted in a relative error of 1.24%. In the case of BP-GA, the relative error compared to the physical test value was 0.34%, while for BP, it was 2.18%. After optimization using Wavelet Neural Network (WNN), the relative error was reduced to only 0.15%. Results suggest that WNN outperforms the RSM model, and the sandy soil model and parameters generated using WNN can be effectively utilized for discrete element simulation research.

3.
Front Plant Sci ; 15: 1377626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799103

RESUMO

Introduction: Phosphorus (P) fertilizer is critical to maintain a high yield and quality of alfalfa (Medicago sativa L.). There are several fertilizer types and soil types in China, and the application of a single type of P fertilizer may not be suitable for present-day alfalfa production. Methods: In order to select the optimal combination of alfalfa and soil type and fertilizer type for improving P utilization efficiency. We conducted a greenhouse pot experiment, calcium superphosphate (SSP), diammonium phosphate (DAP), ammonium polyphosphate (APP), potassium dihydrogen phosphate (KP), and no-fertilizer control treatments were applied to alfalfa in sandy and saline-alkali soils. The response of alfalfa root morphology and rhizosphere processes to different P fertilizers was investigated. Results and discussion: The results showed that shoot biomass of alfalfa was slightly higher in sandy soil than in saline-alkali soil. Shoot biomass of alfalfa increased by 223%-354% in sandy soil under P treatments compared with the control, and total root length increased significantly by 74% and 53% in DAP and SSP treatments, respectively. In saline-alkali soil, alfalfa shoot biomass was significantly increased by 229% and 275% in KP and DAP treatments, and total root length was increased by 109% only in DAP treatment. Net P uptake of alfalfa in DAP treatment was the highest in both soils, which were 0.73 and 0.54 mg plant-1, respectively. Alfalfa shoot P concentration was significantly positively correlated with shoot and root biomass (P < 0.05, 0.01 or 0.001) whereas negatively correlated with acid phosphatase concentration (P < 0.05). Improvement of plant growth and P uptake induced by P fertilizer application was greater in sandy soil than in saline-alkali soil. DAP and KP was the most efficient P fertilizers in both sandy soil and saline-alkali soil.

4.
Heliyon ; 10(8): e29620, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699743

RESUMO

Increasing pressures on land resources requires increased land use efficiency. Over 900 million ha of sandy soils throughout the world are extensively used for agricultural crop production, most requiring nutrient inputs. Although use of humic substances together with inorganic fertilizer as soil amendments has been introduced, their synergistic effects on plant growth in sandy soils are not well addressed. We assessed the efficacy of a lignite waste derived humic substance on barley (Hordeum vulgare L.) growth, with and without inorganic fertilizer. Ten treatments were applied to sandy soils, comprising sole application of the humic product at four rates (NH1, NH2, NH3, NH4), sole application of fertilizer (F), and their combinations (F + NH1, F + NH2, F + NH3, F + NH4). Synergistic effects of nano humus and fertilizer were more notable than the corresponding sole application, particularly on plant biomass and seed production. Combined application with inorganic fertilizer increased root biomass by 92 % (0.1 g per plant), shoot biomass by 80 % (0.5 g per plant), root length by 24 % (3.6 cm), and seed production by 38 % (5 seeds per head) averagely relative to the untreated control, suggesting a strong synergistic effect. The increased seed production was particularly important from an agricultural perspective. Four application rates of nano humus all showed beneficial effects on barley growth with no significant differences. The most distinct positive effect of the humic product as a sole application was on root growth. Our study confirmed that a lignite waste derived humic product, nano humus, together with fertilizer may be an effective soil amendment to enhance agricultural plant growth in sandy soil regions.

5.
Data Brief ; 53: 110234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445195

RESUMO

This article presents data of the effects of fly ash on growth and yield of radish plant under two types of soil (delta clay rich soil and coastal sandy soil). The experiment was conducted under semi-controlled conditions in a greenhouse at the Faculty of Agronomy, Vietnam National University of Agriculture (latitude 21°0'01N, longitude 105° 9'32″ W). The experiment has been conducted with the Randomized Complete Block Design (RCBD), each experimental formula was repeated 5 times. A total of 10 experimental formulas were performed including 100% delta clay rich soil, 95% delta clay rich soil+5% FA, 90% delta clay rich soil+10% FA, 85% delta clay rich soil+15% FA, 80% delta clay rich soil+20% FA, 100% coastal sandy soil, 95% coastal sandy soil+5%FA, 90% coastal sandy soil +10%FA, 85% coastal sandy soil+15%FA, and 80% coastal sandy soil+20%FA. Data on germination rate, plant height, number of leaves, SPAD values, leaf area, shoot fresh and dry weight, storage-root traits, storage-root fresh and dry weight were collected to assess the effects of fly ash on growth and yield of radish plant under delta clay rich soil and coastal sandy soil. This data could help develop a strategy fly ash application for crop cultivation.

6.
Environ Sci Pollut Res Int ; 31(3): 4630-4639, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110676

RESUMO

This study sheds light on the influence of fluoride on the changes in the properties of alkaline sandy soils and the efficiency of calcium-enriched biochar application. The investigation involved an incubation experiment with soil contaminated with varying NaF concentrations (0, 400, 800, and 1200 mg NaF kg-1 soil) and biochar (1% w/w). The data revealed that adding NaF to the soil resulted in significant increases in soil pH and decreases in total nitrogen (TN) content. Short-term fluoride pollution did not affect the microbial abundance due to certain factors such as increased soil pH and decreased microbial metabolism promoting the survival of cells under fluoride stress. However, a shift from bacterial to fungal-dominated microbial communities was observed at the highest NaF concentration. The nitrogen functional gene amoA was found to be highly sensitive to fluoride toxicity. The decrease in the abundance of amoA gene and the increase in soil pH can explain reduced nitrogen concentration. On the other hand, our findings indicated a significant decrease in enzyme activity in soil contaminated with mild to severe levels of NaF. This reduction in enzyme activity can be attributed to increased soil pH, decreased TN content, and the inhibition of microbial metabolism due to fluoride toxicity. Furthermore, the addition of calcium-rich biochar reduced fluoride solubility and adjusted pH, mitigating the negative effects of fluoride toxicity on soil properties. The use of biochar was also found to inhibit the accumulation of soil fluoride-resistant microbial genes.


Assuntos
Fluoretos , Solo , Solo/química , Cálcio , Areia , Microbiologia do Solo , Carvão Vegetal/química , Nitrogênio
7.
Materials (Basel) ; 16(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687460

RESUMO

Soil properties are the most important factors determining the safety of civil engineering structures. One of the soil improvement methods studied, mainly under laboratory conditions, is the use of microbially induced calcite precipitation (MICP). Many factors influencing the successful application of the MICP method can be distinguished; however, one of the most important factors is the composition of the bio-cementation solution. This study aimed to propose an optimal combination of a bio-cementation solution based on carbonate precipitation, crystal types, and the comprehensive strength of fine sand after treatment. A series of laboratory tests were conducted with the urease-producing environmental strain of bacteria B. subtilis, using various combinations of cementation solutions containing precipitation precursors (H2NCONH2, C6H10CaO6, CaCl2, MgCl2). To decrease the environmental impact and increase the efficiency of MICP processed, the addition of calcium lactate (CaL) and Mg ions was evaluated. This study was conducted in Petri dishes, assuming a 14-day soil treatment period. The content of water-soluble carbonate precipitates and their mineralogical characterization, as well as their mechanical properties, were determined using a pocket penetrometer test. The studies revealed that a higher concentration of CaL and Mg in the cementation solution led to the formation of a higher amount of precipitates during the cementation process. However, the crystal forms were not limited to stable forms, such as calcite, aragonite, (Ca, Mg)-calcite, and dolomite, but also included water-soluble components such as nitrocalcite, chloro-magnesite, and nitromagnesite. The presence of bacteria allowed for the increasing of the carbonate content by values ranging from 15% to 42%. The highest comprehensive strength was achieved for the bio-cementation solution containing urea (0.25 M), CaL (0.1 M), and an Mg/Ca molar ratio of 0.4. In the end, this research helped to achieve higher amounts of precipitates with the optimum combination of bio-cementation solutions for the soil improvement process. However, the numerical analysis of the precipitation processes and the methods reducing the environmental impact of the technology should be further investigated.

8.
Front Plant Sci ; 14: 1172425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409290

RESUMO

Biochar, as a soil conditioner, has been widely used to promote the growth of maize, but most of the current research is short-term experiments, which limits the research on the long-term effects of biochar, especially the physiological mechanism of biochar on maize growth in aeolian sandy soil is still unclear. Here, we set up two groups of pot experiments, respectively after the new biochar application and one-time biochar application seven years ago (CK: 0 t ha-1, C1: 15.75 t ha-1, C2: 31.50 t ha-1, C3: 63.00 t ha-1, C4: 126.00 t ha-1), and planted with maize. Subsequently, samples were collected at different periods to explore the effect of biochar on maize growth physiology and its after-effect. Results showed that the plant height, biomass, and yield of maize showed the highest rates of increase at the application rate of 31.50 t ha-1 biochar, with 22.22% increase in biomass and 8.46% increase in yield compared with control under the new application treatment. Meanwhile, the plant height and biomass of maize increased gradually with the increase of biochar application under the one-time biochar application seven years ago treatment (increased by 4.13%-14.91% and 13.83%-58.39% compared with control). Interestingly, the changes in SPAD value (leaf greenness), soluble sugar and soluble protein contents in maize leaves corresponded with the trend of maize growth. Conversely, the changes of malondialdehyde (MDA), proline (PRO), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) manifested an opposite trend to the growth of maize. In conclusion, 31.50 t ha-1 biochar application can promote the growth of maize by inducing changes in its physiological and biochemical characteristics, but excessive biochar application rates ranging from 63.00-126.00 t ha-1 inhibited the growth of maize. After seven years of field aging, the inhibitory effect of 63.00-126.00 t ha-1 biochar amount on maize growth disappeared and changed to promoting effect.

9.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446587

RESUMO

Chinese yam (Dioscorea opposita Thunb. cv. Tiegun), a type of homologous medicinal plant, mainly grows in sandy soil (SCY) and loessial soil (LCY). However, the effects of the soil on the metabolites in SCY and LCY remain unclear. Herein, this study aims to comprehensively elucidate the metabolites in SCY and LCY. A UPLC-MS/MS-based, widely targeted metabolomics approach was adapted to compare the chemical composition of SCY and LCY. A total of 988 metabolites were detected, including 443 primary metabolites, 510 secondary metabolites, and 35 other compounds. Notably, 177 differential metabolites (classified into 12 categories) were identified between SCY and LCY; among them, 85.9% (152 differential metabolites) were upregulated in LCY. LCY significantly increased the contents of primary metabolites such as 38 lipids and 6 nucleotides and derivatives, as well as some secondary metabolites such as 36 flavonoids, 28 phenolic acids, 13 alkaloids, and 6 tannins. The results indicate that loessial soil can improve the nutritional and medicinal value of D. opposita.


Assuntos
Dioscorea , Solo , Dioscorea/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica
10.
Sci Total Environ ; 900: 165770, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506915

RESUMO

Long-term drought induced by low rainfall leads to environmental degradation of land in arid and semi-arid regions. In past decades, re-vegetation of degraded sandy soils to prevent soil erosion has been widely employed, including in Mu Us Sandy Land, which suffers from severe soil erosion. However, it remains unclear how re-vegetation affects soil properties and soil microbes after long restoration periods. In this study, typical plots planting Artemisia ordosica and Salix psammophila were selected to investigate the influence of plant types on soil properties; an area of bare sandy land was used as a control. The results show that re-vegetation increased soil organic carbon (C), total nitrogen (N), soil microbial carbon, microbial nitrogen and soil organic acid, while decreasing soil total phosphorous (TP) content significantly, resulting in increased C/P and N/P ratios. Correlation analysis showed that TP was negatively correlated with oxalic acid (OA) and acetic acid (AA), indicating that increased AA and OA content could accelerate the active utilization of phosphorus and induced low TP in soil. Re-vegetation with A. ordosica significantly decreased the microbial diversity of topsoil. The redundancy analysis showed that TP was main index in affecting microbes. These results that lower P content, higher C/P and N/P ratio and influence of TP on microbes suggest that phosphorus is the main limiting factor for re-vegetation and growth of soil microorganisms. In the future, strategies for the development of sustainable ecosystems in regions suffers from severe soil erosion should consider phosphorus supplementation.


Assuntos
Ecossistema , Solo , Areia , Fósforo/análise , Carbono/análise , Plantas , China , Nitrogênio/análise
11.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297129

RESUMO

This study evaluates a binary mixture of fly ash and lime as a stabilizer for natural soils. A comparative analysis was performed on the effect on the bearing capacity of silty, sandy and clayey soils after the addition of lime and ordinary Portland cement as conventional stabilizers, and a non-conventional product of a binary mixture of fly ash and Ca(OH)2 called FLM. Laboratory tests were carried out to evaluate the effect of additions on the bearing capacity of stabilized soils by unconfined compressive strength (UCS). In addition, a mineralogical analysis to validate the presence of cementitious phases due to chemical reactions with FLM was performed. The highest UCS values were found in the soils that required the highest water demand for compaction. Thus, the silty soil added with FLM reached 10 MPa after 28 days of curing, which was in agreement with the analysis of the FLM pastes, where soil moistures higher than 20% showed the best mechanical characteristics. Furthermore, a 120 m long track was built with stabilized soil to evaluate its structural behavior for 10 months. An increase of 200% in the resilient modulus of the FLM-stabilized soils was identified, and a decrease of up to 50% in the roughness index of the FLM, lime (L) and Ordinary Portland Cement (OPC)-stabilized soils compared to the soil without addition, resulting in more functional surfaces.

12.
J Fungi (Basel) ; 9(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37367615

RESUMO

The taxonomy of Inocybe similis and closely allied species is addressed using morphological and molecular data (nrITS and nrLSU DNA). The holotypes of I. chondrospora and I. vulpinella and the isotype of I. immigrans were studied and sequenced. Our results suggest the synonymy between I. similis and I. vulpinella as well as that between I. chondrospora and I. immigrans.

13.
Sci Total Environ ; 887: 164049, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37178834

RESUMO

Sandy soils cover a major portion of various natural and managed ecosystems. Soil health plays a key role in achieving sustainable development goals 2, 3,11, 12, 13 and 15. The engineering properties of soil are crucial in determining the stability and safety of structures. The increasing microplastic contamination in the soil ecosystem creates a need to study the effect of terrestrial microplastic contamination on the strength and stability of soil and therefore on the index properties and engineering properties of the soil. The present paper investigates, the effects of varying concentrations (2 %,4 %,6 % (w/w)) of Low-density polyethylene (LDPE), Polyvinyl chloride (PVC), and High-density polyethylene (HDPE) microplastics on the index properties and engineering properties of sandy soil for varying observation days. The moisture content, specific gravity, shear strength, compaction characteristics and permeability are found to be significantly altered by changing the concentrations of microplastics but, insignificant changes are observed with respect to observation days. The shear strength value of non-contaminated sandy soil is 1.74 kg/cm2 which reduces after 5th observation days as 0.85 kg/cm2, 0.90 kg/cm2, and 0.91 kg/cm2 for 2 %, 4 %, and 6 % LDPE microplastic contamination respectively. Similar trends are observed for PVC and HDPE microplastic contamination. It is also observed that although the shear strength value decreases, the cohesion value increases for the microplastics-contaminated sandy soil. The coefficient of permeability for non-contaminated sample is 0.0004 m/s which reduces for 2 % LDPE microplastic contamination to 0.000319 m/s, for 4 % to 0.000217 m/s, and 6 % to 0.000208 m/s respectively. Similar trends of are observed for the PVC and HDPE microplastic contamination. The soil strength and structural stability are affected due to alterations in soil index and engineering properties. The paper provides detailed experimental evidence of the impact of microplastic pollution on index properties and engineering properties of sandy soil.

14.
Appl Radiat Isot ; 194: 110690, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764222

RESUMO

Radioactive europium can be released as a fission product during nuclear incidents and pose a threat to the human and surrounding environment because of its biological activity and long decay half-lives. For safe design issues and human health protection demands in construction of the planned nuclear power plants (NPPs) at Al-Dabaa site, it is necessary to study the sorption and transport of different radionuclides as europium within the selected area for predicting their fate at any crisis. Many soil samples were collected from different locations at the area selected along the northwestern coast of Egypt. The samples were transported to the laboratory, preserved, and characterized using X-Ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR), and X-Ray diffraction (XRD). Experiments were performed to study the sorption and transport kinetics of Eu(III) ions on two sandy soil samples from the collected ones. The effect of different parameters (e.g. contact time, pH, initial europium concentration, and temperature) on the sorption behavior europium was explored in a static condition. The maximum sorption capacity was determined and found to be 3.4 and 7.0 mg g-1 for sorption of Eu(III) ions onto soil-1 and soil-2, respectively. Different models were applied to assess the sorption of europium onto the surface of the investigated soils. Data confirmed that Eu retention was attained through a chemisorption process. Further, the thermodynamic parameters were determined and their values confirmed the endothermic nature of the sorption process. The transport of europium radionuclides, with groundwater, through homogeneous porous media with uniform one-dimensional flow in the geosphere was processed and the relative migration velocity was determined in presence of both distilled and seawater media. The transport of Eu(III) radionuclides was higher in presence of seawater than that in presence of distilled water by about two order of magnitude. This obviously clarified the effect of seawater in accelerating the transport of radionuclides with groundwater in the geosphere of studied area. The role of different competing ions have various valances on the relative migration velocity was explored. Further, the time required for studied radionuclides to reach Mediterranean Sea was determined.

15.
Polymers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559797

RESUMO

Sandy soil has poor water-holding performance, making it difficult for plants to survive, which worsens the deterioration of the ecological environment. Therefore, borax cross-linked Gleditsia microphylla galactomannan hydrogel (GMGH) was prepared, and its practicability as a water-retaining agent was analyzed. GMGH exhibited fast self-healing performance (150 s, ≈100%) and a high swelling index (88.70 g/g in pH 9). The feasibility of improving the water absorption and retention properties of sandy soil was explored by mixing different proportions (0.1, 0.3, 0.5 wt % sandy soil) of GMGH and sandy soil. The results showed that sandy soil had a more porous structure after adding 0.5 wt % GMGH, and its water absorption index increased from 15.68 to 38.12%. In an artificial climate box, the water-holding time of the sandy soil was extended from 3 to 23.5 days, and the cycles of water absorption and retention were more than 10 times. Therefore, GMGH has broad application prospects as a potential water-retaining agent for desertification control.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36554682

RESUMO

A rapid growth in the population leads to a large increase in engineering construction. This means there is an inevitability in regard to building on problematic soils. Soil reinforcement becomes an important subject due to the fact that it is a concern for engineers and scientists. With the development of nanotechnology, more and more nanomaterials are being introduced within the practice of soil reinforcement engineering. In this study, the reinforcing effect of novel nanomaterial nano-silica (SiO2) applied to different kinds of soils was systematically studied. The nano-SiO2-reinforced soil possessed lower final water evaporation loss, and evaporation rates. The nano-SiO2 increased the shear strength of clayey soil and sandy soil under both cured and uncured conditions, but the reinforcing effect on clayey soil was more obvious. The addition of nano-SiO2 promotes the friction angle and cohesion of clayey soil; further, it also increases the cohesion of sandy soil. The unconfined compressive strength of clayey soil was enhanced by nano-SiO2, meanwhile, the nano-SiO2-reinforced soil possessed greater brittleness. The microstructure of nano-SiO2-reinforced soil is shown via SEM analysis, and the results of X-ray diffraction (XRD) tests show that there are no new mineral components generated during the reinforcing process. It was also found that nano-SiO2 possessed little influence on the soil pH value. Adding nano-SiO2 will not damage the original chemical environment of the soil. The microstructure of nano-SiO2-reinforced soil was observed to prove the results above. In general, nano-SiO2 is an excellent soil additive that can improve the mechanical properties of both clayey soil and sandy soil effectively. This research provides more ideas and directions for the purposes of selecting soil reinforcement materials.


Assuntos
Solo , Água , Solo/química , Dióxido de Silício/química , Argila , Areia
17.
Front Plant Sci ; 13: 947949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388534

RESUMO

The use of calcium carbonate-precipitating bacteria (CCPB) has become a well-established ground-improvement technique. However, the effect of the interaction of CCPB with nanoparticles (NPs) on plant performance is still meager. In this study, we aimed at evaluating the role of CCPB and/or silicon NPs (Si-NPs) on the growth, physio-biochemical traits, and antioxidative defense of wheat (Triticum aestivum L.) under semi-arid environmental conditions. A 2-year pot experiment was carried out to determine the improvement of the sandy soil inoculated with CCPB and the foliar application of Si-NPs on wheat plants. We tested the following treatments: spraying plants with 1.0 or 1.5 mM Si-NPs (control = 0 mM Si-NPs), soil inoculated with Bacillus lichenforms (MA16), Bacillus megaterium (MA27), or Bacillus subtilis (MA34), and the interaction of individual Bacillus species with Si-NPs. Our results showed that soil inoculation with any of the three isolated CCPB and/or foliar application of Si-NPs at the rates of 1.0 or 1.5 mM significantly improved (p ≤ 0.05) the physiological and biochemical attributes as well as the enzymatic antioxidant activities of wheat plants. Therefore, the combined treatments of CCPB + Si-NPs were more effective in enhancing physio-biochemical characteristics and enzymatic antioxidant activities than the individual treatments of CCPB or Si-NPs, thus achieving the best performance in the treatment of MA34 + 1.5 mM Si-NPs. Our results demonstrated that the co-application of CCPB and Si-NPs, particularly MA34 + 1.5 mM Si-NPs, considerably activated the antioxidant defense system to mitigate the adverse effects of oxidative stress, thus increasing tolerance and enhancing the production of wheat plants in sandy soils under semi-arid environmental conditions.

18.
Materials (Basel) ; 15(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295159

RESUMO

Due to the sensitivity of sandy soil's mechanical behavior to the particle shape, it is thus of importance for interpreting the effect of particle shape on the ground response induced by tunnel excavation in sandy formations. We conducted a series of 2D DEM (discrete element method) simulations on a common circular tunnel excavation in sandy soil with variable-shaped particles, which are characterized as two descriptors, i.e., aspect ratio (AR) and convexity (C). The macroscopic responses and the microscopic characteristics of the sandy ground are elaborated in detail. The simulation results show obvious asymmetrical features of the excavated ground, which results from the ground heterogeneity caused by the irregular particle shape. In addition, we investigate the roles of AR and C on the ground response and find that reducing AR or increasing C will enlarge the ground settlement, i.e., the sandy ground deformation is more sensitive to the particles with more irregular shapes. However, elongated particles are beneficial for the generation of soil arching with stronger bearing capacity and thus reduce the soil pressure on the tunnel lining. Our findings have important implications for the safety assessment of the tunnel excavation, as well as other underground structure construction in sandy formations.

19.
Front Microbiol ; 13: 979759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160213

RESUMO

Soil microorganisms play crucial roles in nutrient cycling and determining soil quality and fertility; thus, they are important for agricultural production. However, the impacts of long-term fertilization on soil microbial community remain ambiguous due to inconsistent results from different studies. The objective of this study was to characterize changes in bacterial and fungal diversity and community structures after 12 years of different fertilization in aeolian sandy soil by analyzing 16S rRNA and ITS rRNA gene sequences and the soil properties to discover the driving factors. Eight different fertilizer treatments have been set up since 2009: no fertilizer (CK), chemical N fertilizer (N), chemical N and P fertilizer (NP), chemical N, P and K fertilizer (NPK), pig manure only (M), pig manure plus chemical N fertilizer (MN), pig manure plus chemical N and P fertilizer (MNP), pig manure plus chemical N, P, and K fertilizer (MNPK). The results indicated that the long-term application of chemical fertilizer reduced soil pH, whereas the addition of pig manure alleviated a decrease in soil pH value. Chemical fertilizer plus pig manure significantly improved soil available nutrients and soil organic carbon. Long-term MNPK fertilization resulted in changes in bacterial diversity due to effects on specific bacterial species; by contrast, all fertilization treatments resulted in changes in fungal diversity due to changes in soil properties. Principal component analysis indicated that fertilization had a significant effect on soil microbial community structure, and the effect of chemical fertilizer combined with pig manure was greater than that of chemical fertilizer alone. Soil available phosphorus, total phosphorus, and pH were the most important factors that influenced bacterial taxa, whereas soil pH, total phosphorus, organic carbon, ammonium nitrogen and nitrate nitrogen were the most important factors influencing fungal taxa after 12 years of fertilization in aeolian sandy soil.

20.
Polymers (Basel) ; 14(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015622

RESUMO

Chemical sand-fixing technology has shown good potential in preventing desertification, but the effect is determined by materials. In this paper, the adsorption behavior of quartz and six common polymer sand-fixing agents under dry conditions was studied by molecular dynamics method. The results show that all polymers could be adsorbed on the surface of quartz and their functional groups play an important role in the adsorption process. Compared with other materials, the binding energy and the number of hydrogen bonds of PAA-quartz composites were improved by 30.7-65.6% and 8.3-333.3%, respectively. It was found that the number of hydrogen bonds formed under the unit molecular was positively correlated with the mechanical properties of the improved sandy soil. This study provides an accurate, efficient and inexpensive qualitative evaluation method for the curing effect of sand fixers, which will assist in the screening and development of new high performance sand fixers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA