Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38963625

RESUMO

As recent geopolitical conflicts and climate change escalate, the effects of war on the atmosphere remain uncertain, in particular in the context of the recent large-scale war between Russia and Ukraine. We use satellite remote sensing techniques to establish the effects that reduced human activities in urban centers of Ukraine (Kharkiv, Donetsk, and Mariupol) have on Land Surface Temperatures (LST), Urban Heat Islands (UHI), emissions, and nighttime light. A variety of climate indicators, such as hot spots, changes in the intensity and area of the UHI, and changes in LST thresholds during 2022, are differentiated with pre-war conditions as a reference period (i.e., 2012-2022). Findings show that nighttime hot spots in 2022 for all three cities cover a smaller area than during the reference period, with a maximum decrease of 3.9% recorded for Donetsk. The largest areal decrease of nighttime UHI is recorded for Kharkiv (- 12.86%). Our results for air quality changes show a significant decrease in carbon monoxide (- 2.7%, based on the average for the three cities investigated) and an increase in Absorbing Aerosol Index (27.2%, based on the average for the three cities investigated) during the war (2022), compared to the years before the war (2019-2021). The 27.2% reduction in nighttime urban light during the first year of the war, compared to the years before the war, provides another measure of conflict-impact in the socio-economic urban environment. This study demonstrates the innovative application of satellite remote sensing to provide unique insights into the local-scale atmospheric consequences of human-related disasters, such as war. The use of high-resolution satellite data allows for the detection of subtle changes in urban climates and air quality, which are crucial for understanding the broader environmental impacts of geopolitical conflicts. Our approach not only enhances the understanding of war-related impacts on urban environments but also underscores the importance of continuous monitoring and assessment to inform policy and mitigation strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38963629

RESUMO

Water scarcity in arid regions poses significant livelihood challenges and necessitates proactive measures such as rainwater harvesting (RWH) systems. This study focuses on identifying RWH sites in Dera Ghazi Khan (DG Khan) district, which recently experienced severe water shortages. Given the difficulty of large-scale ground surveys, satellite remote sensing data and Geographic Information System (GIS) techniques were utilized. The Analytic Hierarchy Process (AHP) approach was employed for site selection, considering various criteria, including land use/land cover, precipitation, geological features, slope, and drainage. Landsat 8 OLI imagery, GPM satellite precipitation data, soil maps, and SRTM DEM were key inputs. Integrating these data layers in GIS facilitated the production of an RWH potential map for the region. The study identified 9 RWH check dams, 12 farm ponds, and 17 percolation tanks as suitable for mitigating water scarcity, particularly for irrigation and livestock consumption during dry periods. The research region was classified into four RWH zones based on suitability, with 9% deemed Very Good, 33% Good, 53% Poor, and 5% Very Poor for RWH projects. The generated suitability map is a valuable tool for hydrologists, decision-makers, and stakeholders in identifying RWH potential in arid regions, thereby ensuring water reliability, efficiency, and socio-economic considerations.

3.
J Environ Manage ; 365: 121617, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968896

RESUMO

Suspended particulate matter (SPM) plays a crucial role in assessing the health status of coastal ecosystems. Satellite remote sensing offers an effective approach to investigate the variations and distribution patterns of SPM, with the performance of various satellite retrieval models exhibiting significant spatial heterogeneity. However, there is still limited information on precise remote sensing retrieval algorithms specifically designed for estimating SPM in tropical areas, hindering our ability to monitor the health status of valuable tropical ecological resources. A relatively accurate empirical algorithm (root mean square error = 2.241 mg L-1, mean absolute percentage error = 42.527%) was first developed for the coastal SPM of Hainan Island based on MODIS images and over a decade of field SPM data, which conducted comprehensive comparisons among empirical models, semi-analytical models, and machine learning models. Long-term monitoring from 2003 to 2022 revealed that the average SPM concentration along the coastal wetlands of Hainan Island was 6.848 mg L-1, which displayed a decreasing trend due to government environmental protection regulations (average rate of change of -0.009 mg L-1/year). The seasonal variations in coastal SPM were primarily influenced by sea surface temperature (SST). Spatially, the concentrations of SPM along the southwest coast of Hainan Island were higher in comparison to other waters, which was attributable to sediment types and ocean currents. Further, anthropogenic pressure (e.g., agricultural waste input, vegetation cover) was the main influence on the long-term changes of coastal SPM in Hainan Island, particularly evident in typical tropical ecosystems affected by aquaculture, coastal engineering, and changes in coastal green vegetation. Compared to other typical ecosystems around the globe, the overall health status of SPM along the coast wetlands of Hainan is considered satisfactory. These findings not only establish a robust remote sensing model for long-term SPM monitoring along the coast of Hainan Island, but also provide comprehensive insights into SPM dynamics, thereby contributing to the formulation of future coastal zone management policies.

4.
Environ Int ; 190: 108818, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878653

RESUMO

Despite advancements in satellite instruments, such as those in geostationary orbit, biases continue to affect the accuracy of satellite data. This research pioneers the use of a deep convolutional neural network to correct bias in tropospheric column density of NO2 (TCDNO2) from the Geostationary Environment Monitoring Spectrometer (GEMS) during 2021-2023. Initially, we validate GEMS TCDNO2 against Pandora observations and compare its accuracy with measurements from the TROPOspheric Monitoring Instrument (TROPOMI). GEMS displays acceptable accuracy in TCDNO2 measurements, with a correlation coefficient (R) of 0.68, an index of agreement (IOA) of 0.79, and a mean absolute bias (MAB) of 5.73321 × 1015 molecules/cm2, though it is not highly accurate. The evaluation showcases moderate to high accuracy of GEMS TCDNO2 across all Pandora stations, with R values spanning from 0.46 to 0.80. Comparing TCDNO2 from GEMS and TROPOMI at TROPOMI overpass time shows satisfactory performance of GEMS TCDNO2 measurements, achieving R, IOA, and MAB values of 0.71, 0.78, and 6.82182 × 1015 molecules/cm2, respectively. However, these figures are overshadowed by TROPOMI's superior accuracy, which reports R, IOA, and MAB values of 0.81, 0.89, and 3.26769 × 1015 molecules/cm2, respectively. While GEMS overestimates TCDNO2 by 52 % at TROPOMI overpass time, TROPOMI underestimates it by 9 %. The deep learning bias corrected GEMS TCDNO2 (GEMS-DL) demonstrates a marked enhancement in the accuracy of original GEMS TCDNO2 measurements. The GEMS-DL product improves R from 0.68 to 0.88, IOA from 0.79 to 0.93, MAB from 5.73321 × 1015 to 2.67659 × 1015 molecules/cm2, and reduces MAB percentage (MABP) from 64 % to 30 %. This represents a significant reduction in bias, exceeding 50 %. Although the original GEMS product overestimates TCDNO2 by 28 %, the GEMS-DL product remarkably minimizes this error, underestimating TCDNO2 by a mere 1 %. Spatial cross-validation across Pandora stations shows a significant reduction in MABP, from a range of 45 %-105.6 % in original GEMS data to 24 %-59 % in GEMS-DL.

5.
New Phytol ; 243(2): 607-619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764134

RESUMO

Leaf phenology variations within plant communities shape community assemblages and influence ecosystem properties and services. However, questions remain regarding quantification, drivers, and productivity impacts of intra-site leaf phenological diversity. With a 50-ha subtropical forest plot in China's Heishiding Provincial Nature Reserve (part of the global ForestGEO network) as a testbed, we gathered a unique dataset combining ground-derived abiotic (topography, soil) and biotic (taxonomic diversity, functional diversity, functional traits) factors. We investigated drivers underlying leaf phenological diversity extracted from high-resolution PlanetScope data, and its influence on aboveground biomass (AGB) using structural equation modeling (SEM). Our results reveal considerable fine-scale leaf phenological diversity across the subtropical forest landscape. This diversity is directly and indirectly influenced by abiotic and biotic factors (e.g. slope, soil, traits, taxonomic diversity; r2 = 0.43). While a notable bivariate relationship between AGB and leaf phenological diversity was identified (r = -0.24, P < 0.05), this relationship did not hold in SEM analysis after considering interactions with other biotic and abiotic factors (P > 0.05). These findings unveil the underlying mechanism regulating intra-site leaf phenological diversity. While leaf phenology is known to be associated with ecosystem properties, our findings confirm that AGB is primarily influenced by functional trait composition and taxonomic diversity rather than leaf phenological diversity.


Assuntos
Biodiversidade , Florestas , Folhas de Planta , Clima Tropical , Folhas de Planta/fisiologia , Biomassa , Solo , China
6.
Environ Monit Assess ; 196(6): 580, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805109

RESUMO

Urban green spaces are central components of urban ecosystems, providing refuge for wildlife while helping 'future proof' cities against climate change. Conversion of urban green spaces to artificial turf has become increasingly popular in various developed countries, such as the UK, leading to reduced urban ecosystem services delivery. To date, there is no established satellite remote sensing method for reliably detecting and mapping artificial turf expansion at scale. We here assess the combined use of very high-resolution multispectral satellite imagery and classical, open source, supervised classification approaches to map artificial lawns in a typical British city. Both object-based and pixel-based classifications struggled to reliably detect artificial turf, with large patches of artificial turf not being any more reliably identified than small patches of artificial turf. As urban ecosystems are increasingly recognised for their key contributions to human wellbeing and health, the poor performance of these standard methods highlights the urgency of developing and applying new, easily accessible approaches for the monitoring of these important ecosystems.


Assuntos
Ecossistema , Monitoramento Ambiental , Imagens de Satélites , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Cidades , Conservação dos Recursos Naturais/métodos
7.
Environ Sci Technol ; 58(22): 9760-9769, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38775357

RESUMO

Peroxyacetyl nitrate (PAN) is produced in the atmosphere by photochemical oxidation of non-methane volatile organic compounds in the presence of nitrogen oxides (NOx), and it can be transported over long distances at cold temperatures before decomposing thermally to release NOx in the remote troposphere. It is both a tracer and a precursor for transpacific ozone pollution transported from East Asia to North America. Here, we directly demonstrate this transport with PAN satellite observations from the infrared atmospheric sounding interferometer (IASI). We reprocess the IASI PAN retrievals by replacing the constant prior vertical profile with vertical shape factors from the GEOS-Chem model that capture the contrasting shapes observed from aircraft over South Korea (KORUS-AQ) and the North Pacific (ATom). The reprocessed IASI PAN observations show maximum transpacific transport of East Asian pollution in spring, with events over the Northeast Pacific offshore from the Western US associated in GEOS-Chem with elevated ozone in the lower free troposphere. However, these events increase surface ozone in the US by less than 1 ppbv because the East Asian pollution mainly remains offshore as it circulates the Pacific High.


Assuntos
Ozônio , Ozônio/química , Atmosfera/química , Poluentes Atmosféricos , Monitoramento Ambiental
8.
Environ Sci Technol ; 58(18): 7891-7903, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38602183

RESUMO

Tropospheric nitrogen dioxide (NO2) poses a serious threat to the environmental quality and public health. Satellite NO2 observations have been continuously used to monitor NO2 variations and improve model performances. However, the accuracy of satellite NO2 retrieval depends on the knowledge of aerosol optical properties, in particular for urban agglomerations accompanied by significant changes in aerosol characteristics. In this study, we investigate the impacts of aerosol composition on tropospheric NO2 retrieval for an 18 year global data set from Global Ozone Monitoring Experiment (GOME)-series satellite sensors. With a focus on cloud-free scenes dominated by the presence of aerosols, individual aerosol composition affects the uncertainties of tropospheric NO2 columns through impacts on the aerosol loading amount, relative vertical distribution of aerosol and NO2, aerosol absorption properties, and surface albedo determination. Among aerosol compositions, secondary inorganic aerosol mostly dominates the NO2 uncertainty by up to 43.5% in urban agglomerations, while organic aerosols contribute significantly to the NO2 uncertainty by -8.9 to 37.3% during biomass burning seasons. The possible contrary influences from different aerosol species highlight the importance and complexity of aerosol correction on tropospheric NO2 retrieval and indicate the need for a full picture of aerosol properties. This is of particular importance for interpreting seasonal variations or long-term trends of tropospheric NO2 columns as well as for mitigating ozone and fine particulate matter pollution.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monitoramento Ambiental , Dióxido de Nitrogênio , Estações do Ano , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Ozônio/análise
9.
J Environ Manage ; 355: 120413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442655

RESUMO

Active and passive approaches to rewilding and ecological restoration are increasingly considered to promote nature recovery at scale. However, historical data on vegetation trajectories have rarely been used to inform decisions on whether active or passive management is most appropriate to aid recovery of a specific ecosystem, which can lead to sub-optimal approaches being deployed and reduced biodiversity benefits. To demonstrate how understanding past changes can inform future management strategies, this study used satellite remote sensing data to analyse the changes in land cover and primary productivity within the Greater Côa Valley in Portugal, which has experienced wide-scale land abandonment. Results show that some areas in the Valley regenerated well following land abandonment in the region, leading to a more heterogeneous landscape of habitats for wildlife, whereas in other areas passive recovery was slow. As Rewilding Portugal intensifies its nature recovery efforts in the region, this study calls for strategic deployment of passive and active approaches to maximise conservation benefits. More broadly, our results highlight how baseline vegetational trajectories and contextual information can help inform whether active or passive management approaches may be suitable on a site-by-site basis for both rewilding and restoration projects.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Animais Selvagens , Portugal
10.
Sci Total Environ ; 914: 169801, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184264

RESUMO

With the potential to cause millions of deaths, PM2.5 pollution has become a global concern. In Southeast Asia, the Mekong River Basin (MRB) is experiencing heavy PM2.5 pollution and the existing PM2.5 studies in the MRB are limited in terms of accuracy and spatiotemporal coverage. To achieve high-accuracy and long-term PM2.5 monitoring of the MRB, fused aerosol optical depth (AOD) data and multi-source auxiliary data are fed into a stacking model to estimate PM2.5 concentrations. The proposed stacking model takes advantage of convolutional neural network (CNN) and Light Gradient Boosting Machine (LightGBM) models and can well represent the spatiotemporal heterogeneity of the PM2.5-AOD relationship. In the cross-validation (CV), comparison with CNN and LightGBM models shows that the stacking model can better suppress overfitting, with a higher coefficient of determination (R2) of 0.92, a lower root mean square error (RMSE) of 5.58 µg/m3, and a lower mean absolute error (MAE) of 3.44 µg/m3. For the first time, the high-accuracy PM2.5 dataset reveals spatially and temporally continuous PM2.5 pollution and variations in the MRB from 2015 to 2022. Moreover, the spatiotemporal variations of annual and monthly PM2.5 pollution are also investigated at the regional and national scales. The dataset will contribute to the analysis of the causes of PM2.5 pollution and the development of mitigation policies in the MRB.

11.
Sci Total Environ ; 917: 170570, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296071

RESUMO

Ground-level ozone (O3) pollution poses significant threats to both human health and air quality. This study uses ground observations and satellite retrievals to explore the spatiotemporal characteristics of ground-level O3 in Zhejiang Province, China. We created data-driven machine learning models that include meteorological, geographical and atmospheric parameters from multi-source remote sensing products, achieving good performance (Pearson's r of 0.81) in explaining regional O3 dynamics. Analyses revealed the crucial roles of temperature, relative humidity, total column O3, and the distributions and interactions of precursor (volatile organic compounds and nitrogen oxides) in driving the varied O3 patterns observed in Zhejiang. Furthermore, the interpretable modeling quantified multifactor interactions that sustain high O3 levels in spring and autumn, suppress O3 levels in summer, and inhibit O3 formation in winter. This work demonstrates the value of a combined approach using satellite and machine learning as an effective novel tool for regional air quality assessment and control.

12.
Sci Total Environ ; 912: 169209, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092211

RESUMO

The partial pressure of ocean surface CO2 (pCO2) plays an important role in quantifying the carbon budget and assessing ocean acidification. For such a vast and complex ocean system as the global ocean, most current research practices tend to study the ocean into regions. In order to reveal the overall characteristics of the global ocean and avoid mutual influence between zones, a holistic research method was used to detect the correlation of twelve predictive factors, including chlorophyll concentration (Chlor_a), diffuse attenuation coefficient at 490 nm (Kd_490), density ocean mixed layer thickness (Mlotst), eastward velocity (East), northward velocity (North), salinity (Sal), temperature (Temp), dissolved iron (Fe), dissolved silicate (Si), nitrate (NO3), potential of hydrogen (pH), phosphate (PO4), at the global ocean scale. Based on measured data from the Global Surface pCO2 (LDEO) database, combined with National Aeronautics and Space Administration (NASA) Ocean Color satellite data and Copernicus Ocean reanalysis data, an improved optimized random forest (ORF) method is proposed for the overall reconstruction of global ocean surface pCO2, and compared with various machine learning methods. The results indicate that the ORF method is the most accurate in overall modeling at the global ocean scale (mean absolute error of 6.27µatm, root mean square error of 15.34µatm, R2 of 0.92). Based on independent observations from the LDEO dataset and time series observation stations, the ORF model was further validated, and the global ocean surface pCO2 distribution map of 0.25° × 0.25° for 2010 to 2019 was reconstructed, which is of significance for the global ocean carbon cycle and carbon assessment.

13.
J Environ Manage ; 349: 119518, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944321

RESUMO

This forecasting approach may be useful for water managers and associated public health managers to predict near-term future high-risk cyanobacterial harmful algal blooms (cyanoHAB) occurrence. Freshwater cyanoHABs may grow to excessive concentrations and cause human, animal, and environmental health concerns in lakes and reservoirs. Knowledge of the timing and location of cyanoHAB events is important for water quality management of recreational and drinking water systems. No quantitative tool exists to forecast cyanoHABs across broad geographic scales and at regular intervals. Publicly available satellite monitoring has proven effective in detecting cyanobacteria biomass near-real time within the United States. Weekly cyanobacteria abundance was quantified from the Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3 satellite as the response variable. An Integrated Nested Laplace Approximation (INLA) hierarchical Bayesian spatiotemporal model was applied to forecast World Health Organization (WHO) recreation Alert Level 1 exceedance >12 µg L-1 chlorophyll-a with cyanobacteria dominance for 2192 satellite resolved lakes in the United States across nine climate zones. The INLA model was compared against support vector classifier and random forest machine learning models; and Dense Neural Network, Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Gneural Network (GNU) neural network models. Predictors were limited to data sources relevant to cyanobacterial growth, readily available on a weekly basis, and at the national scale for operational forecasting. Relevant predictors included water surface temperature, precipitation, and lake geomorphology. Overall, the INLA model outperformed the machine learning and neural network models with prediction accuracy of 90% with 88% sensitivity, 91% specificity, and 49% precision as demonstrated by training the model with data from 2017 through 2020 and independently assessing predictions with data from the 2021 calendar year. The probability of true positive responses was greater than false positive responses and the probability of true negative responses was less than false negative responses. This indicated the model correctly assigned lower probabilities of events when they didn't exceed the WHO Alert Level 1 threshold and assigned higher probabilities when events did exceed the threshold. The INLA model was robust to missing data and unbalanced sampling between waterbodies.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Estados Unidos , Humanos , Lagos/microbiologia , Teorema de Bayes , Cianobactérias/fisiologia , Qualidade da Água , Monitoramento Ambiental
14.
Front Public Health ; 11: 1270033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045962

RESUMO

Background: The intricate interplay between human well-being and the surrounding environment underscores contemporary discourse. Within this paradigm, comprehensive environmental monitoring holds the key to unraveling the intricate connections linking population health to environmental exposures. The advent of satellite remote sensing monitoring (SRSM) has revolutionized traditional monitoring constraints, particularly limited spatial coverage and resolution. This innovation finds profound utility in quantifying land covers and air pollution data, casting new light on epidemiological and geographical investigations. This dynamic application reveals the intricate web connecting public health, environmental pollution, and the built environment. Objective: This comprehensive review navigates the evolving trajectory of SRSM technology, casting light on its role in addressing environmental and geographic health issues. The discussion hones in on how SRSM has recently magnified our understanding of the relationship between air pollutant exposure and population health. Additionally, this discourse delves into public health challenges stemming from shifts in urban morphology. Methods: Utilizing the strategic keywords "SRSM," "air pollutant health risk," and "built environment," an exhaustive search unfolded across prestigious databases including the China National Knowledge Network (CNKI), PubMed and Web of Science. The Citespace tool further unveiled interconnections among resultant articles and research trends. Results: Synthesizing insights from a myriad of articles spanning 1988 to 2023, our findings unveil how SRMS bridges gaps in ground-based monitoring through continuous spatial observations, empowering global air quality surveillance. High-resolution SRSM advances data precision, capturing multiple built environment impact factors. Its application to epidemiological health exposure holds promise as a pioneering tool for contemporary health research. Conclusion: This review underscores SRSM's pivotal role in enriching geographic health studies, particularly in atmospheric pollution domains. The study illuminates how SRSM overcomes spatial resolution and data loss hurdles, enriching environmental monitoring tools and datasets. The path forward envisions the integration of cutting-edge remote sensing technologies, novel explorations of urban-public health associations, and an enriched assessment of built environment characteristics on public well-being.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Tecnologia de Sensoriamento Remoto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Ambiente Construído
15.
Proc Natl Acad Sci U S A ; 120(49): e2306507120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37983483

RESUMO

Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality-reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period-we estimate a potential of 41 to 50 Mt net additional annual CO2 uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.


Assuntos
Ecossistema , Aerossóis e Gotículas Respiratórios , Humanos , Aerossóis/análise , Clorofila/análise , Poeira/análise , Fluorescência , Fotossíntese
16.
Toxins (Basel) ; 15(11)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999528

RESUMO

Harmful algal blooms (HABs) caused by lake eutrophication and climate change have become one of the most serious problems for the global water environment. Timely and comprehensive data on HABs are essential for their scientific management, a need unmet by traditional methods. This study constructed a novel digital twin lake framework (DTLF) aiming to integrate, represent and analyze multi-source monitoring data on HABs and water quality, so as to support the prevention and control of HABs. In this framework, different from traditional research, browser-based front ends were used to execute the video-based HAB monitoring process, and real-time monitoring in the real sense was realized. On this basis, multi-source monitored results of HABs and water quality were integrated and displayed in the constructed DTLF, and information on HABs and water quality can be grasped comprehensively, visualized realistically and analyzed precisely. Experimental results demonstrate the satisfying frequency of video-based HAB monitoring (once per second) and the valuable results of multi-source data integration and analysis for HAB management. This study demonstrated the high value of the constructed DTLF in accurate monitoring and scientific management of HABs in lakes.


Assuntos
Proliferação Nociva de Algas , Lagos , Qualidade da Água , Mudança Climática
17.
PNAS Nexus ; 2(11): pgad391, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034090

RESUMO

Maritime trade and associated emissions are dynamic in nature. Although shipping emissions contribute significantly to air quality and climate change, their trade-governed dynamics remain less explored due to the lack of observational evidence. Here, we use satellite measurements to capture the redistribution of shipping nitrogen oxides (NOx) emissions from Shanghai port, the world's busiest port, during a natural experiment posted by the localized COVID-19 lockdown in 2022. Viewing the ports as nodes in a network linked by ship journeys, we quantify a lockdown-induced -42% reduction in shipping NOx emissions for Shanghai port. We further identify an emission transfer to its neighboring connected ports, confirmed by comprehensive vessel activity observations. Our study highlights the socioeconomic drivers of shipping emissions, which may add additional layers of complexity to air quality management.

18.
Environ Sci Pollut Res Int ; 30(54): 115745-115757, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37889413

RESUMO

Understanding the spatial and temporal variations of CO2 column concentration (CO2-CCs) is crucial for tackling climate change and promoting sustainable human development. This study provides an in-depth analysis of CO2 dynamics in the Yellow River Basin, an area significantly affected by both natural and anthropogenic factors. Using data from the Orbiting Carbon Observatory 2 (OCO-2) and the Fourier transformation spectrometer (FTS) of the GOSAT satellite remote sensing sensors, supplemented with ground station data from the Waliguan station, we scrutinized the CO2 levels in the region from 2013 to 2022. The regional CO2-CC displayed a 12-month cyclical variation and a continuous upward trend, escalating by approximately 4.26% over the 10-year period. Spatiotemporal differences were evident in the monthly variation of CO2-CC, with peak and minimum values occurring in May and August respectively. Geographically, the highest CO2-CC was found in the central part of the basin, while the lowest was in the northern part of Inner Mongolia. This study underscores the increased significance of the region's CO2-CC, which showed an increase from 17.0 ppm at the start of the period to 21.0 ppm by the end, representing an overall growth of between 4.35 and 5.25%. The findings highlight the urgency of targeted measures to mitigate CO2 emissions and adapt to their consequences in the Yellow River Basin, contributing to the global efforts against climate change and towards sustainable development.


Assuntos
Dióxido de Carbono , Rios , Humanos , Dióxido de Carbono/análise , Tecnologia de Sensoriamento Remoto , China , Mudança Climática
19.
J Environ Manage ; 347: 119198, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804627

RESUMO

The location and layout of enterprises have an important impact on local air quality. However, a few studies on exploring of the optimal layout of gas-related enterprises from the perspective of optimizing the layout of air pollution sources. This study developed a method for the evaluation of air pollution source layout based on air pollutant emission inventory data, atmospheric self-purification capacity data, and satellite remote sensing air quality data. Taking Shaanxi Province as an example, the Moran's I index and GIS spatial analysis techniques were used to evaluate the layout of air pollution sources, analyze the spatial variation characteristics of air pollution sources, and propose specific countermeasures to optimize the layout of air pollution sources. Results showed that northern Shaanxi and Guanzhong Plain are the most unsuitable for the distribution of NOx and CO sources, accounting for 13.78% and 21.77% of the total area, respectively. The most suitable area for the distribution of NOx is southern Shaanxi, accounting for 65.77% of the total area, mainly concentrated in Hanzhong and Ankang regions. The most suitable area for the distribution of CO is southern Shaanxi, accounting for 40.97% of the total area, mainly concentrated in Hanzhong and Shangluo regions. The findings of this study could supplement and improve the evaluation of the layout of industrial enterprises in China from technical and methodological aspects, and provide new insight for local governments to adjust and optimize the layout of air pollution sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental/métodos , Poluição Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China , Material Particulado/análise
20.
Mar Pollut Bull ; 196: 115558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757532

RESUMO

The Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) will provide unique high temporal frequency observations of the United States coastal waters to quantify processes that vary on short temporal and spatial scales. The frequency and coverage of observations from geostationary orbit will improve quantification and reduce uncertainty in tracking water quality events such as harmful algal blooms and oil spills. This study looks at the potential for GLIMR to complement existing satellite platforms from its unique geostationary viewpoint for water quality and oil spill monitoring with a focus on temporal and spatial resolution aspects. Water quality measures derived from satellite imagery, such as harmful algal blooms, thick oil, and oil emulsions are observable with glint <0.005 sr-1, while oil films require glint >10-5 sr-1. Daily imaging hours range from 6 to 12 h for water quality measures, and 0 to 6 h for oil film applications throughout the year as defined by sun glint strength. Spatial pixel resolution is 300 m at nadir and median pixel resolution was 391 m across the entire field of regard, with higher spatial resolution across all spectral bands in the Gulf of Mexico than existing satellites, such as MODIS and VIIRS, used for oil spill surveillance reports. The potential for beneficial glint use in oil film detection and quality flagging for other water quality parameters was greatest at lower latitudes and changed location throughout the day from the West and East Coasts of the United States. GLIMR scan times can change from the planned ocean color default of 0.763 s depending on the signal-to-noise ratio application requirement and can match existing and future satellite mission regions of interest to leverage multi-mission observations.


Assuntos
Poluição por Petróleo , Qualidade da Água , Estados Unidos , Imagens de Satélites , Proliferação Nociva de Algas , Golfo do México , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...