Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.631
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(8): e35456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031923

RESUMO

Tissue engineered scaffolds aimed at the repair of critical-sized bone defects lack adequate consideration for our aging society. Establishing an effective aged in vitro model that translates to animals is a significant unmet challenge. The in vivo aged environment is complex and highly nuanced, making it difficult to model in the context of bone repair. In this work, 3D nanofibrous scaffolds generated by the thermally-induced self-agglomeration (TISA) technique were functionalized with polydopamine nanoparticles (PD NPs) as a tool to improve drug binding capacity and scavenge reactive oxygen species (ROS), an excessive build-up that dampens the healing process in aged tissues. PD NPs were reduced by ascorbic acid (rPD) to further improve hydrogen peroxide (H2O2) scavenging capabilities, where we hypothesized that these functionalized scaffolds could rescue ROS-affected osteoblastic differentiation in vitro and improve new bone formation in an aged mouse model. rPDs demonstrated improved H2O2 scavenging activity compared to neat PD NPs, although both NP groups rescued the alkaline phosphatase activity (ALP) of MC3T3-E1 cells in presence of H2O2. Additionally, BMP2-induced osteogenic differentiation, both ALP and mineralization, was significantly improved in the presence of PD or rPD NPs on TISA scaffolds. While in vitro data showed favorable results aimed at improving osteogenic differentiation by PD or rPD NPs, in vivo studies did not note similar improvements in ectopic bone formation an aged model, suggesting that further nuance in material design is required to effectively translate to improved in vivo results in aged animal models.


Assuntos
Regeneração Óssea , Indóis , Nanopartículas , Osteogênese , Polímeros , Espécies Reativas de Oxigênio , Alicerces Teciduais , Animais , Camundongos , Indóis/química , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Nanofibras/química , Peróxido de Hidrogênio/química , Envelhecimento/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Osteoblastos/metabolismo
2.
Microb Pathog ; 194: 106798, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025383

RESUMO

Phytocompounds possess the potential to treat a broad spectrum of disorders due to their remarkable bioactivity. Naturally occurring compounds possess lower toxicity profiles, which making them attractive targets for drug development. Hydnocarpus wightianus seeds were extracted using ethanol, acetone, and hexane solvents. The extracts were evaluated for phytochemicals screening and other therapeutic characteristics, such as free radicals scavenging, anti α-amylase, anti α-glucosidase, and anti-bacterial activities. The ethanolic extract exhibited noteworthy antibacterial characteristics and demonstrated considerable antioxidant, and anti-diabetic effects. The IC50 value of the ethanolic extract for Dpph, α-amylase, and α-glucosidase were found to be 77.299 ± 3.381 µg/mL, 165.56 2.56 µg/mL, and 136.58 ± 5.82 µg/mL, respectively. The ethanolic extract was effective against Methicillin resistant Staphylococcus aureus (26 mm zone of inhibition at 100 µL concentration). Molecular docking investigations revealed the phytoconstituent's inhibitory mechanisms against diabetic, free radicals, and bacterial activity. Docking score for phytocompounds against targeted protein varies from -7.2 to -5.1 kcal/mol. The bioactive compounds present in the ethanolic extract were identified by Gas chromatography/Mass spectrometry analysis, followed by molecular docking and molecular dynamic simulation studies to further explore the phytoconstituent's inhibitory mechanism of α-glucosidase, ∝-amylase, radical scavenging, and bacterial activity. The electronic structure and possible pharmacological actions of the phytocompound were revealed through the use of Density Functional Theory (DFT) analysis. Computational and in vitro studies revealed that these identified compounds have anti-diabetic, anti-oxidant, and anti-bacterial activities against antibiotic-resistant strain of Staphylococcus aureus.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39052228

RESUMO

Cyanobacteria are photosynthetic prokaryotes that inhabit extreme environments by modifying their photosensitive chemoreceptors called cyanobacteriochromes (CBCRs) which are linear tetrapyrrole-linked phycobilin molecules. These light-sensitive phycobilin from Spirulina platensis is recognized as a potential photoreceptor tool in optogenetics for monitoring cellular morphogenesis. We prepared and extracted highly fluorescent cyanobacterial phycocyanin (C-PC) by irradiating the culture with ambient red light. The crude phycocyanin was subjected to ion exchange chromatography, and its purity was monitored using UV-visible, fluorescence, and FT-IR spectroscopy methods. In the conventional method, red light-induced C-PC exhibited strong antioxidant activity against H2O2, with 88.7% in vitro scavenging activity without requiring any other preservatives. Interestingly, this red light-acclimated phycocyanin was applied as a biosensing material for the detection of the free radical hydrogen peroxide (H2O2) using the enzyme horseradish peroxidase (HRP) as a mediator. The modified C-PC-HRP glassy carbon electrode (GCE) can detect H2O2 from 0.1 to 1600 µM. The lowest possible detection limit of the electrode for H2O2 was 19 nM. This electrode was used to detect free radical H2O2 in blood serum samples. The microstructure of the lyophilized PC under SEM showed a flat crystal pattern, which enabled the immobilization of HRP on the electrode surface and electron transfer.

4.
Antioxidants (Basel) ; 13(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39061873

RESUMO

The health-promoting properties of black elderberry are related to its high content of polyphenols (natural antioxidants), which eliminate free radicals and prevent the formation of oxidative stress responsible for many diseases. The aim of this work was to determine, the anti-radical effect of Sambucus nigra infusions based on the reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and galvinoxyl (Glv) radicals and to determine the function describing the disappearance curves of these radicals. The antioxidant properties of infusions obtained from the flowers and fruits of this plant were tested using the modified Brand-Williams method using DPPH and Glv radicals. Higher antioxidant activity towards both the DPPH and Glv radicals was found in flowers compared to fruits. In addition, it was found that the process of quenching radicals in the reaction with Sambucus nigra infusions proceeds in accordance with the assumptions of second-order reaction kinetics. The infusion obtained from flowers quenched radicals faster than fruit infusions. The applied second-order kinetics equation may enable estimation of antioxidants levels in natural sources of radicals.

5.
Antioxidants (Basel) ; 13(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061902

RESUMO

Vitis vinifera L. is a natural source of bioactive compounds that is already used for cosmeceutical and nutraceutical approaches. However, their phytochemical and antioxidant properties, although studied, have not been fully explored. We aimed to characterize V. vinifera L. cv. Falanghina seed extracts in different polarity solvents (hexane, ethyl acetate, ethanol, and a mixture of acetone-water) for their phytochemical contents, including the total phenolic compound content (TPC), free radical scavenging capacities, and antioxidant ability on HepG2 cells. We directly profiled the functional quality of V. vinifera seed extracts against H2O2-induced oxidative stress in HepG2 cells, focusing on mitochondrial functions. The content of bioactive compounds was characterized by LC-MS. To assess the cytocompatibility of the extracts, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted. Results showed that extraction with ethyl acetate (18.12 mg GAE·g-1) and ethanol solvents (18.07 mg GAE·g-1), through Soxhlet, and with an acetone-water mixture (14.17 mg GAE·g-1), through maceration, yielded extracts rich in (poly)phenols, with good scavenging and antioxidant activity (98.32 I% for ethanol solvents and 96.31 I% for acetone-water mixture). The antioxidant effect of polyphenols is at least partially due to their capacity to maintain mitochondrial biogenesis and mitophagy, which elevates mitochondrial efficiency, resulting in diminished ROS production, hence re-establishing the mitochondrial quality control. These findings highlight the valorization of Vitis by-products to improve food functional characteristics.

6.
Antioxidants (Basel) ; 13(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39061922

RESUMO

Recent evidence suggests that mulberry leaves have good antioxidant activity. However, what the antioxidant ingredient is and how the ingredient works are still not well understood. In this study, we enzymatically hydrolyze mulberry leaf proteins (MLPs) using neutral protease and find that the mulberry leaf protein hydrolysates (MLPHs) have stronger antioxidant activity compared to MLPs. We separate the core antioxidant components in MLPHs by ion-exchange columns and molecular sieves and identify 798 antioxidant peptides by LC-MS/MS. Through bioinformatics analysis and biochemical assays, we screen two previously unreported peptides, P6 and P7, with excellent antioxidant activities. P6 and P7 not only significantly reduce ROS in cells but also improve the activities of the antioxidant enzymes SOD and CAT. In addition, both peptides are found to exert protective effects against H2O2-induced chromatin damage and cell apoptosis. Collectively, these results provide support for the application of mulberry leaf peptides as antioxidants in the medical, food and livestock industries.

7.
Antioxidants (Basel) ; 13(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39061943

RESUMO

Bioactive glass nanoparticles (BGNs) are applied widely in tissue regeneration. Varied micro/nanostructures and components of BGNs have been designed for different applications. In the present study, nanorod-shaped mesoporous zinc-containing bioactive glass nanoparticles (ZnRBGNs) were designed and developed to form the bioactive content of composite materials for hard/soft tissue repair and regeneration. The nanostructure and components of the ZnRBGNs were characterized, as were their cytocompatibility and radical-scavenging activity in the presence/absence of cells and their ability to modulate macrophage polarization. The ZnRBGNs possessed a uniform rod shape (length ≈ 500 nm; width ≈ 150 nm) with a mesoporous structure (diameter ≈ 2.4 nm). The leaching liquid of the nanorods at a concentration below 0.5 mg/mL resulted in no cytotoxicity. More significant improvements in the antioxidant and M1-polarization-inhibiting effects and the promotion of M2 polarization were found when culturing the cells with the ZnRBGNs compared to when culturing them with the RBGNs. The doping of the Zn element in RBGNs may lead to improved antioxidant and anti-inflammatory effects, which may be beneficial in tissue regeneration/repair.

8.
Biomedicines ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062004

RESUMO

Lipid metabolism dysregulation can lead to dyslipidemia and obesity, which are major causes of cardiovascular disease and associated mortality worldwide. The purpose of the study was to obtain and characterize six plant extracts (ACE-Allii cepae extractum; RSE-Rosmarini extractum; CHE-Cichorii extractum; CE-Cynarae extractum; AGE-Apii graveolentis extractum; CGE-Crataegi extractum) as promising adjuvant therapies for the prevention and treatment of dyslipidemia and its related metabolic diseases. Phytochemical screening revealed that RSE was the richest extract in total polyphenols (39.62 ± 13.16 g tannic acid/100 g dry extract) and phenolcarboxylic acids (22.05 ± 1.31 g chlorogenic acid/100 g dry extract). Moreover, the spectrophotometric chemical profile highlighted a significant concentration of flavones for CGE (5.32 ± 0.26 g rutoside/100 g dry extract), in contrast to the other extracts. UHPLC-MS quantification detected considerable amounts of phenolic constituents, especially chlorogenic acid in CGE (187.435 ± 1.96 mg/g extract) and rosmarinic acid in RSE (317.100 ± 2.70 mg/g extract). Rosemary and hawthorn extracts showed significantly stronger free radical scavenging activity compared to the other plant extracts (p < 0.05). Pearson correlation analysis and the heatmap correlation matrix indicated significant correlations between phytochemical contents and in vitro antioxidant activities. Computational studies were performed to investigate the potential anti-obesity mechanism of the studied extracts using target prediction, homology modeling, molecular docking, and molecular dynamics approaches. Our study revealed that rosmarinic acid (RA) and chlorogenic acid (CGA) can form stable complexes with the active site of carbonic anhydrase 5A by either interacting with the zinc-bound catalytic water molecule or by directly binding Zn2+. Further studies are warranted to experimentally validate the predicted CA5A inhibitory activities of RA and CGA and to investigate the hypolipidemic and antioxidant activities of the proposed plant extracts in animal models of dyslipidemia and obesity.

9.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230179, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39034699

RESUMO

Rapid urbanization is a major cause of habitat and biodiversity loss and human-animal conflict. While urbanization is inevitable, we need to develop a good understanding of the urban ecosystem and the urban-adapted species, in order to ensure sustainable cities for our future. Scavengers play a major role in urban ecosystems, and often, urban adaptation involves a shift towards scavenging behaviour in wild animals. We experimented at different sites in the state of West Bengal, India, to identify the scavenging guild within urban habitats, in response to human-provided food. Our study found a total of 17 different vertebrate species across 15 sites, over 498 sessions of observations. We carried out network analysis to understand the dynamics of the system and found that the free-ranging dog and common myna were key species within the scavenging networks. This study revealed the complexity of scavenging networks within human-dominated habitats. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Ecossistema , Animais , Índia , Cadeia Alimentar , Urbanização , Humanos , Biodiversidade , Comportamento Alimentar , Cidades , Vertebrados/fisiologia , Animais Selvagens/fisiologia
10.
Adv Sci (Weinh) ; : e2403399, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031809

RESUMO

Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.

11.
Food Chem ; 458: 140252, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38964113

RESUMO

Ethylene plays diverse roles in post-harvest processes of horticultural crops. However, its impact and regulation mechanism on the postharvest physiological deterioration (PPD) of cassava storage roots is unknown. In this study, a notable delay in PPD of cassava storage roots was observed when ethephon was utilized as an ethylene source. Physiological analyses and quantitative acetylproteomes were employed to investigate the regulation mechanism regulating cassava PPD under ethephon treatment. Ethephon was found to enhance the reactive oxygen species (ROS) scavenging system, resulting in a significant decrease in H2O2 and malondialdehyde (MDA) content. The comprehensive acetylome analysis identified 12,095 acetylation sites on 4403 proteins. Subsequent analysis demonstrated that ethephon can regulate the acetylation levels of antioxidant enzymes and members of the energy metabolism pathways. In summary, ethephon could enhance the antioxidant properties and regulate energy metabolism pathways, leading to the delayed PPD of cassava.

12.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999581

RESUMO

In this study, we collected seven prevalent Taiwanese Desmodium plants, including three species with synonymous characteristics, in order to assess their antioxidant phytoconstituents and radical scavenging capacities. Additionally, we compared their inhibitory activities on monoamine oxidase (MAO) and 6-hydroxydopamine (6-OHDA) auto-oxidation. Subsequently, we evaluated the neuroprotective potential of D. pulchellum on 6-OHDA-induced nerve damage in SH-SY5Y cells and delved into the underlying neuroprotective mechanisms. Among the seven Desmodium species, D. pulchellum exhibited the most robust ABTS radical scavenging capacity and relative reducing power; correspondingly, it had the highest total phenolic and phenylpropanoid contents. Meanwhile, D. motorium showcased the best hydrogen peroxide scavenging capacity and, notably, D. sequax demonstrated remarkable prowess in DPPH radical and superoxide scavenging capacity, along with selective inhibitory activity against MAO-B. Of the aforementioned species, D. pulchellum emerged as the frontrunner in inhibiting 6-OHDA auto-oxidation and conferring neuroprotection against 6-OHDA-induced neuronal damage in the SH-SY5Y cells. Furthermore, D. pulchellum effectively mitigated the increase in intracellular ROS and MDA levels through restoring the activities of the intracellular antioxidant defense system. Therefore, we suggest that D. pulchellum possesses neuroprotective effects against 6-OHDA-induced neurotoxicity due to the radical scavenging capacity of its antioxidant phytoconstituents and its ability to restore intracellular antioxidant activities.

13.
Plants (Basel) ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999675

RESUMO

The bHLH transcription factor family plays crucial roles in plant growth and development and their responses to adversity. In this study, a highly salt-induced bHLH gene, PagbHLH35 (Potri.018G141600), was identified from Populus alba × P. glandullosa (84K poplar). PagbHLH35 contains a highly conserved bHLH domain within the region of 52-114 amino acids. A subcellular localization result confirmed its nuclear localization. A yeast two-hybrid assay indicated PagbHLH35 lacks transcriptional activation activity, while a yeast one-hybrid assay indicated it could specifically bind to G-box and E-box elements. The expression of PagbHLH35 reached its peak at 12 h and 36 h time points under salt stress in the leaves and roots, respectively. A total of three positive transgenic poplar lines overexpressing PagbHLH35 were generated via Agrobacterium-mediated leaf disk transformation. Under NaCl stress, the transgenic poplars exhibited significantly enhanced morphological and physiological advantages such as higher POD activity, SOD activity, chlorophyll content, and proline content, and lower dehydration rate, MDA content and hydrogen peroxide (H2O2) content, compared to wild-type (WT) plants. In addition, histological staining showed that there was lower ROS accumulation in the transgenic poplars under salt stress. Moreover, the relative expression levels of several antioxidant genes in the transgenic poplars were significantly higher than those in the WT. All the results indicate that PagbHLH35 can improve salt tolerance by enhancing ROS scavenging in transgenic poplars.

14.
Trop Anim Health Prod ; 56(6): 199, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38981927

RESUMO

The study compared nutrient intake and growth performance of local chickens to that of local x broiler crossbreds under scavenging and indoor conventional systems. A total of 48 male and 48 female chickens for each of the two chicken types were allocated to four outdoor free-range pens. The chickens were allowed to scavenge whilst being supplemented with sorghum plus kitchen waste and broiler growers from week 5 to week 13 of age. The same design was repeated using the indoor conventional system. Local chickens and their crosses with broilers had higher growth rates under the scavenging system than the indoor production system (P < 0.05). Local chickens and their crosses with broilers had the same growth rates when fed the same diet (P > 0.05). Crop and gizzard contents from local chickens had the same crude protein as their crosses with broilers under both systems (P > 0.05). The crude protein values of crop and gizzard contents ranged from 25.4 to 30.4%. Crop and gizzard contents from scavenging chickens had energy content ranging from 16.2 to 17.1 MJ/Kg which was lower (P < 0.05) than that from chickens under the indoor conventional system (20.3 to 25.8 kJ/Kg). Iron content ranged from 655.7 to 1619.4 mg/Kg in scavenging chickens and 156.1 to 621.4 mg/Kg in enclosed chickens. Chickens of the same type had higher iron content in their crop and gizzard contents under the scavenging system than the conventional system (P < 0.05). Crossbreds between local chickens and broilers matches the scavenging abilities of the local chickens but have lower growth rates under the scavenging system.


Assuntos
Ração Animal , Criação de Animais Domésticos , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Animais , Galinhas/crescimento & desenvolvimento , Feminino , Masculino , Criação de Animais Domésticos/métodos , Ração Animal/análise , Dieta/veterinária , Estado Nutricional , Papo das Aves , Moela das Aves/crescimento & desenvolvimento
15.
Sci Rep ; 14(1): 15776, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982144

RESUMO

The scavenging process significantly affects the combustion and emission performance of marine low-speed two-stroke dual-fuel engines. Optimizing scavenging air pressure and temperature can enhance the engine's combustion efficiency and emission control performance, thereby achieving more environmentally friendly and efficient operation of dual-fuel engines. This study focuses on marine low-speed two-stroke dual-fuel engines, analyzing the effects of scavenging air pressure (3.0 bar, 3.25 bar, 3.5 bar, and 3.75 bar) and scavenging air temperature (293 K, 303 K, and 313 K) on engine performance and emission products. The results indicate that scavenging air pressure has a greater impact on engine performance than scavenging air temperature. An increase in scavenging air pressure leads to higher thermal efficiency and power. As the scavenging air pressure increases from 3 to 3.75 bar, the indicated thermal efficiency (ITE) increases from 44.02 to 53.26%, and indicated mean effective pressure (IMEP) increases by approximately 0.35 MPa. Increased scavenging air pressure improves nitrogen oxide (NOx) and hydrocarbons (HC) emissions. For every 0.25 bar increase in scavenging air pressure, NOx emissions decrease by 3.53%, HC emissions decrease by 33.35%, while carbon dioxide (CO2) emissions increase by 0.71%. An increase in scavenging air temperature leads to lower ITE and IMEP. As the air temperature changes from 293 to 313 K, the ITE decreases by approximately 1%, and IMEP decreases by about 0.04 MPa. Increased scavenging air temperature improves CO2 emissions. For every 10 K increase in the air temperature, the CO2 emissions decrease by 0.02%, while NOx emissions increase by 4.84%, HC emissions increase by 34.39%. Therefore, controlling scavenging air pressure is more important than scavenging air temperature in the operational management of marine two-stroke engines. Higher power and lower NOx and HC emissions can be achieved by increasing the scavenging air pressure.

16.
J Food Sci Technol ; 61(8): 1470-1480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966787

RESUMO

Vacuum impregnation is a novel methodology for adding various substances to porous foods. This study aimed to develop a cost effective automate system for vacuum impregnation of food materials to enhance their nutritional, functional and sensory properties depending on the functionality of the impregnation solution. The developed vacuum impregnation system includes a vacuum chamber, vacuum pump and an automation setup for creating and maintaining vacuum conditions, feeding impregnated solutions to the samples and releasing vacuum. Fresh-cut spinach leaves were impregnated with ascorbic acid (AsA) and calcium chloride (Cacl2) (10% concentration) in the setup in order to test the effect of the process on some biochemical properties. Statistical analysis revealed significant effect of vacuum impregnation on the biochemical properties (total soluble solids, total phenolic content, flavonoid content and free radical scavenging activity) and color of spinach leaves during storage up to 4 days. Impregnation process showed significant increase in the total phenolic and flavonoid content of the spinach leaves. Increment up to 78% in antioxidant activity was seen for the uncoated impregnated leaves as compared to 59% activity in untreated samples. Thus, products with desired parameters can be produced with this process with minimal impact on their properties at a lower cost and in a shorter time period.

17.
J Agric Food Chem ; 72(28): 16018-16031, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38960914

RESUMO

Flow-injection spin-trapping electron paramagnetic resonance (FI-EPR) methods that involve the use of 5,5-dimethyl-pyrroline-N-oxide (DMPO) as a spin-trapping reagent have been developed for the kinetic study of the O2•- radical scavenging reactions occurring in the presence of various plant-derived and synthetic phenolic antioxidants (Aox), such as flavonoid, pyrogallol, catechol, hydroquinone, resorcinol, and phenol derivatives in aqueous media (pH 7.4 at 25 °C). The systematically estimated second-order rate constants (ks) of these phenolic compounds span a wide range (from 4.5 × 10 to 1.0 × 106 M-1 s-1). The semilogarithm plots presenting the relationship between ks values and oxidation peak potential (Ep) values of phenolic Aox are divided into three groups (A1, A2, and B). The ks-Ep plots of phenolic Aox bearing two or three OH moieties, such as pyrogallol, catechol, and hydroquinone derivatives, belonged to Groups A1 and A2. These molecules are potent O2•- radical scavengers with ks values above 3.8 × 104 (M-1 s-1). The ks-Ep plots of all phenol and resorcinol derivatives, and a few catechol and hydroquinone derivatives containing carboxyl groups adjacent to the OH groups, were categorized into the group poor scavengers (ks < 1.6 × 103 M-1 s-1). The ks values of each group correlated negatively with Ep values, supporting the hypothesis that the O2•- radical scavenging reaction proceeds via one-electron and two-proton processes. The processes were accompanied by the production of hydrogen peroxide at pH 7.4. Furthermore, the correlation between the plots of ks and the OH proton dissociation constant (pKa•) of the intermediate aroxyl radicals (ks-pKa• plots) revealed that the second proton transfer process could potentially be the rate-determining step of the O2•- radical scavenging reaction of phenolic compounds. The ks-Ep plots provide practical information to predict the O2•- radical scavenging activity of plant-derived phenolic compounds based on those molecular structures.


Assuntos
Sequestradores de Radicais Livres , Oxirredução , Fenóis , Superóxidos , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Fenóis/química , Sequestradores de Radicais Livres/química , Superóxidos/química , Detecção de Spin
18.
Access Microbiol ; 6(6)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045239

RESUMO

The ethanolic (80 %), methanolic (80 %) and aqueous decoction (100 % distilled water) of whole plant of Oxalis corniculata Linn (Indian Sorrel) was evaluated for its anti-microbial and antioxidant properties by in vitro methods. Methanolic (80 %) and ethanolic (80 %) decoctions showed significant antibacterial property against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhi bacterial strains. In comparison to Chloramphenicol (C30) against bacteria, 80 % ethanolic decoctions showed significant effect, among the decoctions. Nowadays though the standard soap is in huge demand but it's also facing major backlash due to the presence of synthetic compounds in it, which over long use may cause harmful effects on the skin health. Therefore, the organic soaps which are made up of natural ingredients, herbs or any sort Ayurvedic compound have fewer side effects on the human skin and are much safer than standard daily soap. The formulated therapeutic soap exhibits a significant amount of reducing potential (high FRAP and TAC values) and antioxidant activity (DPPH, ABTS assay).

19.
mSphere ; : e0034624, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995053

RESUMO

In the process of oxygen reduction, reactive oxygen species (ROS) are generated as intermediates, including superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH-). ROS can be destructive, and an imbalance between oxidants and antioxidants in the body can lead to pathological inflammation. Inappropriate ROS production can cause oxidative damage, disrupting the balance in the body and potentially leading to DNA damage in intestinal epithelial cells and beneficial bacteria. Microorganisms have evolved various enzymes to mitigate the harmful effects of ROS. Accurately predicting the types of ROS-scavenging enzymes (ROSes) is crucial for understanding the oxidative stress mechanisms and formulating strategies to combat diseases related to the "gut-organ axis." Currently, there are no available ROSes databases (DBs). In this study, we propose a systematic workflow comprising three modules and employ a hierarchical multi-task deep learning approach to collect, expand, and explore ROSes-related entries. Based on this, we have developed the human gut microbiota ROSes DB (http://39.101.72.186/), which includes 7,689 entries. This DB provides user-friendly browsing and search features to support various applications. With the assistance of ROSes DB, various communication-based microbial interactions can be explored, further enabling the construction and analysis of the evolutionary and complex networks of ROSes DB in human gut microbiota species.IMPORTANCEReactive oxygen species (ROS) is generated during the process of oxygen reduction, including superoxide anion, hydrogen peroxide, and hydroxyl radicals. ROS can potentially cause damage to cells and DNA, leading to pathological inflammation within the body. Microorganisms have evolved various enzymes to mitigate the harmful effects of ROS, thereby maintaining a balance of microorganisms within the host. The study highlights the current absence of a ROSes DB, emphasizing the crucial importance of accurately predicting the types of ROSes for understanding oxidative stress mechanisms and developing strategies for diseases related to the "gut-organ axis." This research proposes a systematic workflow and employs a multi-task deep learning approach to establish the human gut microbiota ROSes DB. This DB comprises 7,689 entries and serves as a valuable tool for researchers to delve into the role of ROSes in the human gut microbiota.

20.
Vitam Horm ; 125: 367-399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997170

RESUMO

Oxidative damage refers to the harm caused to biological systems by reactive oxygen species such as free radicals. This damage can contribute to a range of diseases and aging processes in organisms. Moreover, oxidative deterioration of lipids is a serious problem because it reduces the shelf life of food products, degrades their nutritional value, and produces reaction products that could be toxic. Antioxidants are effective compounds for preventing lipid oxidation, and synthetic antioxidants are frequently added to foods due to their high effectiveness and low cost. However, the safety of these antioxidants is a subject that is being discussed in the public more and more. Synthetic antioxidants have been found to have potential negative effects on health due to their ability to accumulate in tissues and disrupt natural antioxidant systems. During thermal processing and storage, foods containing reducing sugars and amino compounds frequently produce Maillard reaction products (MRPs). Through the chelation of metal ions, scavenging of reactive oxygen species, destruction of hydrogen peroxide, and suppression of radical chain reaction, MRPs exhibit excellent antioxidant properties in a variety of food products and biological systems. Also, the capacity of MRPs to chelate metals makes them as a potential inhibitor of the enzymatic browning in fruits and vegetables. In this book chapter, the methods used for the evaluation of antioxidant activity of MRPs are provided. Moreover, the antioxidant and antibrowning activities of MRPs in food and biological systems is discussed. MRPs can generally be isolated and used as commercial preparations of natural antioxidants.


Assuntos
Antioxidantes , Reação de Maillard , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...