Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Carbohydr Polym ; 346: 122644, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245531

RESUMO

A complex heteropolysaccharide SCP-2 named schisanan B (Mw = 1.005 × 105 g/mol) was obtained from water extracts of Schisandra chinensis fruits, and its planar structure was finally deduced as a galacturonoglucan by a combination of monosaccharide compositions, methylation analysis, partial acid hydrolysis, enzymatic hydrolysis and 1D/2D-nuclear magnetic resonance spectroscopy. The conformation of SCP-2 exhibited a globular shape with branching in ammonium formate aqueous solutions. The rheological properties of SCP-2 were investigated on concentrations, temperature, pH and salts. The in vitro immunomodulatory activity assay demonstrated that SCP-2 significantly enhanced the production of nitric oxide (NO) and stimulated the secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in macrophages. Through a combination of high-resolution live-cell imaging, surface plasmon resonance, and molecular docking techniques, SCP-2 exhibited a strong binding affinity with the Toll-like receptor 4 (TLR4). Moreover, western blot analysis revealed that SCP-2 effectively induced downstream signaling proteins associated with TLR4 activation, thereby promoting macrophage activation. The evidence strongly indicates that TLR4 functions as a membrane protein target in the activation of macrophages and immune regulation induced by SCP-2.


Assuntos
Frutas , Reologia , Schisandra , Receptor 4 Toll-Like , Schisandra/química , Camundongos , Frutas/química , Células RAW 264.7 , Animais , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Pectinas/química , Fator de Necrose Tumoral alfa/metabolismo , Glucanos/química , Interleucina-6/metabolismo
2.
Food Sci Biotechnol ; 33(9): 2169-2178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130654

RESUMO

Plasma metabolites offer insights into aging processes and aging-related biomarkers. Here, the dietary effects of various functional foods on older adult mice were evaluated using metabolomic techniques. Fifty-week-old mice were divided into four groups (n = 4 each) and fed either a normal diet (AC) or the diets from Triticum aestivum sprout (TA), Schisandra chinensis (SZ), or Pisum sativum sprout (PS) extracts. Additionally, a group of 8-week-old mice fed a normal diet (YC; n = 5) was included for the comparison. The PS group had a significantly lower free fatty acid content and higher ornithine, proline, citric acid, and oxalic acid contents than the AC group. The PS group also showed reduced oxidative stress and muscle damage, suggesting the higher anti-aging efficacy of P. sativum sprouts than the other diets. These findings suggest plasma metabolite profiling is an effective tool to assess the anti-aging effects of functional foods. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01479-8.

3.
Front Microbiol ; 15: 1444414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104584

RESUMO

Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.

4.
Int J Biol Macromol ; 279(Pt 1): 134952, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197630

RESUMO

The purified neutral polysaccharide fraction, namely SBP-1, was isolated and characterized from Schisandra chinensis (Turcz.) Baill crude polysaccharides, which have anti-Parkinson's disease activity were investigated in vivo and in vitro. Experiments have shown that the main chain of SBP-1 was Glcp-(1→, →4)-Glcp-(1→ and →4,6)-Glcp-(1→. We also revealed the effect of SBP-1 on the PD mice model and the potential underlying molecular mechanism. The results showed that SBP-1 administration improved behavioral deficits, increased tyrosine hydroxylase-positive cells, attenuated loss of dopaminergic neurons in MPTP-exposed mice, and reduced cell death induced by MPP+. The MCL-1 was identified as the target of SBP-1 by the combination of docking-SPR-ITC, WB, and IF experiments. Subsequently, the study showed that SBP-1 could target MCL-1 to enhance autophagy with a change in the apoptotic response, which was further demonstrated by a change in LC3/P62, PI3K/AKT/mTOR, and possesses a change in the expression of BCL2/BAX/Caspase3. These results demonstrate that SBP-1 may protect neurons against MPP+ or MPTP-induced damage in vitro and in vivo through enhancing autophagy. In summary, these findings indicate that SBP-1 and S. chinensis show potential as effective candidates for further investigation in the prevention and treatment of PD or associated illnesses, specifically through autophagy apoptotic-based mechanisms.

5.
Life (Basel) ; 14(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39202688

RESUMO

Genetic and environmental factors influence the growth and quality of medicinal plants. In recent years, rhizosphere microorganisms have also emerged as significant factors affecting the quality of medicinal plants. This study aimed to identify Schisandra resources with high lignan content and analyze the microbial diversity of the rhizosphere soil. High-performance liquid chromatography was used to measure the lignan content in nine Schisandra fruits. High-throughput sequencing was used to analyze the 16S rDNA sequences of rhizosphere bacteria to identify bacterial species diversity. The total lignan content of the nine Schisandra resources ranged from 9.726 mg/g to 14.031 mg/g, with ZJ27 having the highest content and ZJ25 the lowest. Among the six lignan components, Schisandrol A had the highest content, ranging from 5.133 mg/g to 6.345 mg/g, with a significant difference between ZJ25, ZJ27, and other resources (p < 0.05). Schizandrin C had the lowest content, ranging from 0.062 mg/g to 0.419 mg/g, with more significant differences among the resources. A total of 903,933 sequences were obtained from the rhizosphere soil of the nine Schisandra resources, clustered into 10,437 OTUs at a 97% similarity level. The dominant bacterial phyla were Actinobacteriota, Acidobacteriota, Proteobacteria, Chloroflexi, Gemmatimonadota, and Verrucomicrobiota. The dominant bacterial genera were Candidatus_Udaeobacter, Candidatus_Solibacter, RB41, Bradyrhizobium, Gaiella, and Arthrobacter. ZJ27 is the Schisandra resource with the highest lignan content, and the rhizosphere bacteria of Schisandra are rich in diversity. Schisandra B is negatively correlated with Bryobacter, Candidatus_Solibacter, and unnamed genera of Gaiellales.

6.
Phytomedicine ; 133: 155929, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126923

RESUMO

BACKGROUND: Schisandra chinensis lignan (SCL), a major active component of the traditional functional Chinese medicine Schisandra chinensis, has been reported to have antidepressant effects. Its mechanisms include alleviating intestinal barrier injury (IBI) by resolving intestinal microflora, anti-inflammation, and neuroprotection. SCL also regulates endogenous cannabinoid system, and it is closely related to the onset and development of depression. PURPOSE: We investigated a new treatment strategy for depression, i.e., alleviating IBI by regulating the endogenous cannabinoid system for antidepressant effects, as well as conducted in-depth research to explore the specific mechanism. METHODS: Behavioral analysis was conducted to detect the occurrence of depressive-like behavior in C57BL/6 mice. We used hematoxylin-eosin staining, periodic acid-Schiff staining, and immunofluorescence to evaluate IBI. Network pharmacology and Western blotting (WB) were used to predict and confirm that the amelioration effect of SCL was associated with anti-inflammation and anti-apoptosis. Combined with the levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), we conducted the Pearson analysis between the AEA, 2-AG levels and the major targets identified and validated by network pharmacology and WB. Subsequently, URB-597, a fatty acid amide hydrolase (FAAH) antagonist with an AEA hydrolase-inhibiting effect, was administered to the mice, and behavioral analysis and apoptotic proteins were verified. Plasma endocannabinoid levels after URB-597 supplementation were measured via 6470 Triple Quadrupole LC/MS. Finally, the cannabinoid receptor type 2 (CB2R) antagonist AM630 was administered to mice, and immunofluorescence and WB were performed to assess the proteins of IBI and anti-inflammation. RESULTS: The study demonstrated that SCL alleviated depressive-like behaviours and ameliorated IBI. Network pharmacology and WB confirmed that the improvement of IBI was related to the anti-inflammatory and anti-apoptotic pathways. Pearson results showed that AEA levels were positively correlated with inflammation and apoptosis, with a greater contribution to apoptosis. In-depth studies validated that the URB-597 administration reversed the positive effects of SCL on depressive-like behavior and anti-apoptosis. Similarly, URB-597 counteracted AEA levels reduced by SCL and decreased 2-AG levels. Furthermore, AM630 supplementation antagonized SCL's effect of improving IBI by reactivating the MAPK/NF-κB inflammation pathway. CONCLUSION: Overall, SCL, in collaboration with the endogenous cannabinoid system regulated by SCL, alleviates depression associated IBI. The specific mechanism involes SCL decreasing AEA levels to inhibit colon tissue cell apoptosis by up-regulating FAAH. Simultaneously, it directly triggers CB2R to reduce inflammation responses, further alleviating IBI.


Assuntos
Antidepressivos , Ácidos Araquidônicos , Depressão , Endocanabinoides , Lignanas , Camundongos Endogâmicos C57BL , Alcamidas Poli-Insaturadas , Schisandra , Animais , Lignanas/farmacologia , Depressão/tratamento farmacológico , Masculino , Alcamidas Poli-Insaturadas/farmacologia , Schisandra/química , Antidepressivos/farmacologia , Camundongos , Apoptose/efeitos dos fármacos , Glicerídeos/farmacologia , Farmacologia em Rede , Amidoidrolases/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Anti-Inflamatórios/farmacologia , Benzamidas , Carbamatos , Indóis
7.
Drug Des Devel Ther ; 18: 2745-2760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974120

RESUMO

Purpose: Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods: The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results: Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion: This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Ferroptose , Neoplasias Hepáticas , Pólen , Schisandra , Humanos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Animais , Schisandra/química , Pólen/química , Ferroptose/efeitos dos fármacos , Abelhas/química , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Produtos Biológicos , Polifenóis
8.
Neuroscience ; 555: 92-105, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39032805

RESUMO

This study utilized network pharmacology and docking analyses to explore a groundbreaking therapeutic approach for managing the neuropathic pain and depressive disorder (NP/DD) comorbidity. Schisandra chinensis (SC), a common Chinese medicine, has demonstrated numerous beneficial effects in treating neuropsychological disorders. The main objective of this study was to identify potential bioactive components of SC and investigate their interactions with relevant target genes associated with NP/DD. To gain insights into the underlying molecular mechanisms, GO and KEGG analyses were conducted. Furthermore, molecular docking analysis was employed to validate the therapeutic relevance of SC's active ingredients. Seven bioactive components of SC, namely Longikaurin A, Deoxyharringtonine, Angeloylgomisin O, Schisandrin B, Gomisin A, Gomisin G, and Gomisin R, exhibited effectiveness in the treatment of NP/DD. From this list, the first five components were selected for further analysis. The analyses revealed a complex network of interactions between the targets of SC and NP/DD, providing valuable information about the molecular mechanisms involved in the treatment of NP/DD with SC. SC components demonstrated the ability to regulate pathways involving tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF), and other growth hormones (GH). Overall, this study contributes to our understanding of the molecular mechanisms underlying the effects of SC in treating NP/DD. Further investigation is necessary to explore the therapeutic potential of SC as a viable strategy for NP/DD comorbidity. These findings lay a solid foundation for future research endeavors in this field, holding potential implications for the development of novel therapeutic interventions targeting NP/DD.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , Neuralgia , Schisandra , Schisandra/química , Simulação de Acoplamento Molecular/métodos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Animais , Depressão/tratamento farmacológico , Comorbidade , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo
9.
Anal Bioanal Chem ; 416(19): 4275-4288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853180

RESUMO

Radix ginseng and Schisandra chinensis have been extensively documented in traditional Chinese medicine (TCM) for their potential efficacy in treating dementia. However, the precise mechanism of their therapeutic effects remains to be fully elucidated. In this study, air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and network pharmacology are used to investigate the pharmacodynamics and mechanism underlying the herbal combination consisting of Radix ginseng-Schisandra chinensis (RS) in a rodent model for Alzheimer's disease (AD). Brain histopathological findings suggested that RS attenuates hippocampal damage in AD mice, making this combination a potential AD treatment. Twenty-eight biomarkers were identified by spatial metabolomics analysis, which are intricately linked to neuroinflammation, neurotransmitter imbalance, energy deficiency, oxidative stress, and aberrant fatty acid metabolism in AD. The total extract of RS (TE) affected 22 of these biomarkers, with the small molecule components of RS (SN) significantly influencing 19 and the large molecule components of RS (PR) impacting 14. Nine small molecule components are likely to dominate the pharmacodynamics of RS. We constructed a target interaction network based on the corresponding bioactivities that revealed relationships amongst 11 key biomarkers, 8 active ingredients and 12 critical targets. This research illustrates the immense potential of spatial metabolomics and network pharmacology in the study of TCM, revealing the targets and mechanisms underlying herbal formulas.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Metabolômica , Farmacologia em Rede , Panax , Schisandra , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Metabolômica/métodos , Panax/química , Schisandra/química , Farmacologia em Rede/métodos , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Biomarcadores/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
Biomed Pharmacother ; 177: 116956, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901202

RESUMO

The fading efficacy of antibiotics is a growing global health concern due to its life-threatening consequences and increased healthcare costs. Non-genetic mechanisms of antimicrobial resistance, such as those employed by Chlamydia pneumoniae and Chlamydia trachomatis, complicate treatment as these bacteria can enter a non-replicative, persistent state under stress, evading antibiotics and linking to inflammatory conditions. Understanding chlamydial persistence at the molecular level is challenging, and new models for studying Chlamydia-host interactions in vivo are urgently needed. Caenorhabditis elegans offers an alternative given its immune system and numerous orthologues of human genes. This study established C. elegans as an in vivo model for chlamydial infection. Both Chlamydia species reduced the worm's lifespan, their DNA being detectable at three- and six-days post-infection. Azithromycin at its MIC (25 nM) failed to prevent the infection-induced lifespan reduction, indicating a persister phenotype. In contrast, the methanolic extract of Schisandra chinensis berries showed anti-chlamydial activity both in vitro (in THP-1 macrophages) and in vivo, significantly extending the lifespan of infected C. elegans and reducing the bacterial load. Moreover, S. chinensis increased the transcriptional activity of SKN-1 in the worms, but was unable to impact the bacterial load or lifespan in a sek-1 defective C. elegans strain. In summary, this study validated C. elegans as a chlamydial infection model and showcased S. chinensis berries' in vivo anti-chlamydial potential, possibly through SEK/SKN-1 signaling modulation.


Assuntos
Antibacterianos , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Infecções por Chlamydia , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/efeitos dos fármacos , Animais , Humanos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/tratamento farmacológico , Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Extratos Vegetais/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células THP-1 , Azitromicina/farmacologia , Longevidade/efeitos dos fármacos , Chlamydophila pneumoniae/efeitos dos fármacos
11.
Heliyon ; 10(11): e32194, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882346

RESUMO

Schisandra chinensis is a functional fruit with tonic effect and was widely used by traditional Chinese medicine for treatment and health care. The quality of Schisandra chinensis fruit may vary by different storage condition. In this study, the influence of ambient temperature, humidity, packaging materials and period of storage on the quality of Schisandra chinensis fruits were investigated. The contents of main active components lignans and organic acids were simultaneously determined by ultra-performance liquid chromatography coupled to quadrupole electrostatic field orbitrap high resolution mass spectrometry (UPLC Orbitrap HRMS). The antioxidant activity was determined using DPPH radical scavenging capacity, ABTS+ inhibition rate and FRAP value. The correlation of multicomponent and antioxidant activity was analyzed by grey relevance analysis. Taking the changes of multicomponent and antioxidant activity as investigation index, Schisandra chinensis fruits under different storage conditions was comprehensively evaluated. Schisandrol A, malic acid, sorbic acid, schizandrin A, schizandrin B, and schisandrol B were the main effective components of antioxidant activity. Ambient temperature at 5 °C and humidity at 40 % were more suitable for Schisandra chinensis fruits and kraft paper bag was better packaging material. Do not exceed 1 year was the effective storage period. For the safety evaluation, no aflatoxin was detected within the storage period of 2 years, demonstrated the storage was satisfactory. This study provided a reference for the high-quality storage and standardized operating procedures for storage of Schisandra chinensis fruits.

12.
Front Microbiol ; 15: 1419943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939187

RESUMO

Introduction: Symbiotic microbial have a significant impact on the growth and metabolism of medicinal plants. Schisandra chinensis is a very functionally rich medicinal herb; however, its microbial composition and diversity have been poorly studied. Methods: In the present study, the core microbiomes associated with the rhizospheric soil, roots, stems, leaves, and fruits of S. chinensis from six geographic locations were analyzed by a macro-genomics approach. Results: Alpha and beta diversity analyses showed that the diversity of microbial composition of S. chinensis fruits did not differ significantly among the geographic locations as compared to that in different plant compartments. Principal coordinate analysis showed that the microbial communities of S. chinensis fruits from the different ecological locations were both similar and independent. In all S. chinensis samples, Proteobacteria was the most dominant bacterial phylum, and Ascomycota and Basidiomycota were the most dominant fungal phyla. Nitrospira, Bradyrhizobium, Sphingomonas, and Pseudomonas were the marker bacterial populations in rhizospheric soils, roots, stems and leaves, and fruits, respectively, and Penicillium, Golubevia, and Cladosporium were the marker fungal populations in the rhizospheric soil and roots, stems and leaves, and fruits, respectively. Functional analyses showed a high abundance of the microbiota mainly in biosynthesis. Discussion: The present study determined the fungal structure of the symbiotic microbiome of S. chinensis, which is crucial for improving the yield and quality of S. chinensis.

13.
Funct Integr Genomics ; 24(3): 112, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849609

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC), a globally common cancer, often presents late and shows high resistance to chemotherapy, resulting in suboptimal treatment efficacy. Components from traditional Chinese medicines have been recognized for their anti-cancer properties. OBJECTIVE: Exploring the mechanism of Schisandra chinensis lignans and acteoside in suppressing Epithelial-Mesenchymal Transition (EMT) in hepatoma cells through the Extracellular signal-Regulated Kinases (ERK)1/2 pathway and identifying biomarkers, molecular subtypes, and targets via multi-omics for precision oncology. METHODS: Proliferation was assessed using cell counting kit-8 (CCK-8) assays, with scratch and transwell assays for evaluating invasion and migration. Flow cytometry quantified apoptosis rates. Expression levels of CCL20, p-ERK1/2, c-Myc, Vimentin, and E-cadherin/N-cadherin were analyzed by real-time PCR and Western blot. Tumor volume was calculated with a specific formula, and growth. RESULTS: The Schisandra chinensis lignans and acteoside combination decreased CCL20 expression, inhibited hepatoma proliferation and migration, and enhanced apoptosis in a dose- and time-dependent manner. Molecular analysis revealed increased E-cadherin and decreased N-cadherin, p-ERK1/2, c-Myc, and Vimentin expression, indicating ERK1/2 pathway modulation. In vivo, treated nude mice showed significantly reduced tumor growth and volume. CONCLUSION: Schisandra chinensis lignans and acteoside potentially counteract CCL20-induced EMT, invasion, and migration in hepatocellular carcinoma cells via the ERK1/2 pathway, enhancing apoptosis. Multi-omics analysis further aids in pinpointing novel biomarkers for precision cancer therapy.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Transição Epitelial-Mesenquimal , Glucosídeos , Lignanas , Neoplasias Hepáticas , Sistema de Sinalização das MAP Quinases , Fenóis , Schisandra , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Lignanas/farmacologia , Schisandra/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fenóis/farmacologia , Glucosídeos/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Camundongos Endogâmicos BALB C , Células Hep G2 , Multiômica , Polifenóis
14.
Arch Microbiol ; 206(6): 259, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739151

RESUMO

Nucleotides are important components and the main indicators for judging Cordyceps quality. In this paper, the mixed fermentation process of Schisandra chinensis and Cordyceps tenuipes was systematically studied, and it was proposed that the fermentation products aqueous extract (S-ZAE) had antioxidant activity and anti-AChE ability. Herein, the results of a single factor showed that S. chinensis, yeast extract, inoculum amount, and pH had significant effects on nucleotide synthesis. The fermentation process optimization results were 3% glucose, 0.25% KH2PO4, 2.1% yeast extract, and S. chinensis 0.49% (m/v), the optimal fermentation conditions were 25℃, inoculum 5.8% (v/v), pH 3.8, 6 d. The yield of total nucleotides in the scale-up culture was 0.64 ± 0.027 mg/mL, which was 10.6 times higher than before optimization. S-ZAE has good antioxidant and anti-AChE activities (IC50 0.50 ± 0.050 mg/mL). This fermentation method has the advantage of industrialization, and its fermentation products have the potential to become good functional foods or natural therapeutic agents.


Assuntos
Antioxidantes , Cordyceps , Fermentação , Nucleotídeos , Schisandra , Cordyceps/metabolismo , Cordyceps/química , Schisandra/química , Schisandra/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análise , Nucleotídeos/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio
15.
Fitoterapia ; 176: 106029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768792

RESUMO

An intensive phytochemical investigation into the fruits of Schisandra chinensis afforded 28 triterpenoids incorporating diverse backbones with methyl-migration, ring-expansion and ring-opening features. Among them, ten compounds (1-10) including three likely extracting artefacts (8-10) were described for the first time. Their structures were fully characterized by comprehensive spectroscopic analyses, with the absolute configurations established via electronic circular dichroism and Mosher's NMR techniques. Preliminary biological evaluations revealed that nine isolates showed inhibitory activity against the hyperglycemic target α-glycosidase and 12 compounds exerted cytotoxicity toward three female tumor cell lines (Hela (cervical), MDA-MB231 and MCF-7 (breast)). Compound 6 exhibited the most promising potency on all the three tested cancer cells, and further assessment demonstrated that it could induce significant cell apoptosis and cycle arrest, as well as suppress cell migration, by regulating relevant proteins in MDA-MB231 cells.


Assuntos
Antineoplásicos Fitogênicos , Apoptose , Frutas , Inibidores de Glicosídeo Hidrolases , Compostos Fitoquímicos , Schisandra , Triterpenos , Schisandra/química , Humanos , Frutas/química , Estrutura Molecular , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Triterpenos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Apoptose/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , China
16.
Int J Biol Macromol ; 271(Pt 1): 132590, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788881

RESUMO

Schisandra chinensis (SC), a plant of the Magnoliaceae family, commonly known as "North Schisandra chinensis", has been listed as a top-grade Chinese medicine in the Shennong Materia Medica Classic for its high medicinal value since ancient times. Polysaccharides from S. chinensis fruits (SCPs) are an active component in SC, which have various biological activity, including immune regulation, anti-tumor, antioxidant, liver protective, anti-inflammatory and hypoglycemic activity. Research has shown that the extraction methods of SCPs include hot water extraction, water extraction and alcohol precipitation, ultrasonic-assisted, microwave-assisted and so on. Different extraction methods can affect the yield and purity of polysaccharides, and to improve the extraction yield of SCPs, two or more extraction methods can be combined. SCPs are mainly composed of glucose, mannose, rhamnose, galactose, galacturonic acid and arabinose. This article aims to provide a systematic review of the research progress in the extraction and separation methods, structural characterization, and biological activity of SCPs both domestically and internationally in recent years. This deeply explores the pharmacological activity and action mechanism of SCPs, and provides a certain point of reference for the research and clinical application of SC.


Assuntos
Polissacarídeos , Schisandra , Schisandra/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Humanos , Fracionamento Químico/métodos , Frutas/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais
17.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675712

RESUMO

Schisandra chinensis, as a traditional Chinese herbal medicine, has clear pharmacological effects such as treating asthma, protecting nerves and blood vessels, and having anti-inflammatory properties. Although the Schisandra chinensis fruit contain multiple active components, the lignans have been widely studied as the primary pharmacologically active compound. The volatile chemical components of Schisandra chinensis include a large amount of terpenes, which have been proven to have broad pharmacological activities. However, when to harvest to ensure the highest accumulation of pharmacologically active components in Schisandra chinensis fruits is a critical issue. The Schisandra chinensis fruit trees in the resource nursery were all planted in 2019 and began bearing fruit in 2021. Their nutritional status and tree vigor remain consistently good. The content of lignans and organic acids in the fruits of Schisandra chinensis over seven different harvest periods was tested, and the results of high-performance liquid chromatography (HPLC) indicated that the lignan content was higher, at 35 mg/g, in late July, and the organic acid content was higher, at 72.34 mg/g, in early September. If lignans and organic acids are to be selected as raw materials for pharmacological development, the harvest can be carried out at this stage. Using HS-GC-IMS technology, a total of 67 volatile flavor substances were detected, and the fingerprint of the volatile flavor substances in the different picking periods was established. It was shown by the results that the content of volatile flavor substances was the highest in early August, and 16 flavor substances were selected by odor activity value (OAV). The variable importance in projection (VIP) values of 16 substances were further screened, and terpinolene was identified as the key volatile flavor substance that caused the aroma characteristics of Schisandra chinensis fruit at different harvesting periods. If the aroma component content of Schisandra chinensis fruit is planned to be used as raw material for development and utilization, then early August, when the aroma component content is higher, should be chosen as the time for harvest. This study provides a theoretical basis for the suitable harvesting time of Schisandra chinensis for different uses, and promotes the high-quality development of the Schisandra chinensis industry.


Assuntos
Frutas , Schisandra , Schisandra/química , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Lignanas/análise , Lignanas/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos
18.
EFSA J ; 22(4): e8731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601870

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a tincture from the dried fruit of Schisandra chinensis (Turcz.) Baill. (omicha tincture), when used as a sensory additive in feed for horses, cats, dogs, and in feed and in water for drinking for poultry. The product is a water/ethanol (55:45 v/v) solution, with a dry matter content of not more than 4% (w/w) and a content of 0.01%-0.15% (w/w) for the sum of schisandrin and deoxyschisandrin. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that omicha tincture is safe at the following concentrations in complete feed: 16 mg/kg for turkeys for fattening, 12 mg/kg for chickens for fattening and other poultry for fattening or reared for laying/reproduction, 18 mg/kg for laying hens and other laying/reproductive birds, 56 mg/kg for dogs and 47 mg/kg for horses and cats. The additive is considered safe for consumers when used up to the highest safe level in feed for poultry species and horses. Omicha tincture should be considered as irritants to skin and eyes, and as dermal and respiratory sensitisers. The use of omicha tincture as a flavour in feed for poultry species and horses was not considered to be a risk to the environment. Since it was recognised that the fruit of S. chinensis can influence sensory properties of feedingstuffs, no further demonstration of efficacy was considered necessary for the tincture under assessment.

19.
Int J Biol Macromol ; 267(Pt 1): 130804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565361

RESUMO

Schisandra chinensis (Turcz.) Baill (SC) is a traditional sedative in China, with wide applications for treating various neurological disorders. Its polysaccharide component has been gaining increased attention for its potential in nerve protection. While raw SC is the primary focus of current research, its processed products are primarily utilized as clinical medicines. Notably, limited research exists on the mechanisms underlying the effects of wine-processed Schisandra chinensis polysaccharide (WSCP) in Alzheimer's Disease (AD). Therefore, this study seeks to assess the therapeutic impact of WSCP on AD mice and investigate the underlying mechanisms through biochemical and metabolomics analyses. The results demonstrate that WSCP exerts significant therapeutic effects on AD mice by enhancing learning and memory abilities, mitigating hippocampal neuronal damage, reducing abnormal amyloid-beta (Aß) deposition, and attenuating hyperphosphorylation of Tau. Biochemical analysis revealed that WSCP can increase SOD content and decrease MDA, IL-6, and TNF-α content in AD mice. Furthermore, serum metabolomic results showed that WSCP intervention can reverse metabolic disorders in AD mice. 43 endogenous metabolites were identified as potential biomarkers for WSCP treatment of AD, and the major metabolic pathways were Ala, Glu and Asp metabolism, TCA cycle. Overall, these findings will provide a basis for further development of WSCP.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Metabolômica , Polissacarídeos , Schisandra , Vinho , Animais , Schisandra/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Metabolômica/métodos , Vinho/análise , Masculino , Peptídeos beta-Amiloides/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas tau/metabolismo , Biomarcadores , Metaboloma/efeitos dos fármacos , Memória/efeitos dos fármacos
20.
Phytochem Anal ; 35(5): 1142-1151, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558474

RESUMO

INTRODUCTION: Gomisin is a natural dibenzo cyclooctene lignan, which is mainly derived from the family Magnoliaceae. It has anti-inflammatory, antioxidant, anti-tumor, anti-aging, and hypoglycemic effects. Gomisins play important roles as medicines, nutraceuticals, food additives, and cosmetics. OBJECTIVE: The objective of this study is to establish a micellar electrokinetic chromatography (MEKC) method for simultaneous separation and determination of seven biphenyl cyclooctene lignans (Gomisin D, E, G, H, J, N, and O) in Schisandra chinensis and its preparations. METHODS: The method was optimized by studying the effects of the main parameters on the separation. The method has been validated and successfully applied to the determination of seven Gomisins in S. chinensis and its preparations. RESULTS: In the separation system, the running buffer was composed of 20 mM Na2HPO4, 8.0 mM sodium dodecyl sulfate (SDS), 11% (v/v) methanol, and 6.0% (v/v) ethanol. A diode array detector was used with a detection wavelength of 230 nm, a separation voltage of 17 kV, and an operating temperature of 25°C. Under this condition, the seven analytes were separated at baseline within 20 min, and a good linear relationship was obtained with correlation coefficient ranging from 0.9919 to 0.9992. The limit of detection (LOD, S/N = 3) and the limit of quantification (LOQ, S/N = 10) ranged from 0.8 to 0.9 µg/mL and from 2.6 to 3.0 µg/mL, respectively. The recovery rate was between 99.1% and 102.5%. CONCLUSION: The experimental results indicated that this method is suitable for the separation and determination of seven Schisandra biphenyl cyclooctene lignan compounds in real samples. At the same time, it provides an effective reference for the quality control of S. chinensis and its preparations.


Assuntos
Cromatografia Capilar Eletrocinética Micelar , Ciclo-Octanos , Lignanas , Schisandra , Solventes , Lignanas/análise , Schisandra/química , Cromatografia Capilar Eletrocinética Micelar/métodos , Solventes/química , Ciclo-Octanos/análise , Ciclo-Octanos/química , Reprodutibilidade dos Testes , Limite de Detecção , Compostos de Bifenilo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA