Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958951

RESUMO

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Assuntos
Apigenina , Glucuronatos , Sistema de Sinalização das MAP Quinases , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Camundongos , Apigenina/farmacologia , Glucuronatos/farmacologia , Glucuronatos/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Inflamação/patologia
2.
J Cell Commun Signal ; 18(2): e12023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946727

RESUMO

Microglia are resident immune cells in the central nervous system that are rapidly activated to mediate neuroinflammation and apoptosis, thereby aggravating brain tissue damage after ischemic stroke (IS). Although scutellarin has a specific therapeutic effect on IS, the potential target mechanism of its treatment has not been fully elucidated. In this study, we explored the potential mechanism of scutellarin in treating IS using network pharmacology. Lipopolysaccharide (LPS) was used to induce an in vitro BV-2 microglial cell model, while middle cerebral artery occlusion (MCAO) was used to induce an in vivo animal model. Our findings indicated that scutellarin promoted the recovery of cerebral blood flow in MCAO rats at 3 days, significantly different from that in the MCAO group. Western blotting and immunofluorescence revealed that scutellarin treatment of BV-2 microglial cells resulted in a significant reduction in the protein expression levels and incidence of cells immunopositive for p-NF-κB, TNF-α, IL-1ß, Bax, and C-caspase-3. In contrast, the expression levels of p-PI3K, p-AKT, p-GSK3ß, and Bcl-2 were further increased, significantly different from those in the LPS group. The PI3K inhibitor LY294002 had similar effects to scutellarin by inhibiting neuroinflammation and apoptosis in activated microglia. The results of the PI3K/AKT/GSK3ß signaling pathway and NF-κB pathway in vivo in MCAO models induced microglia at 3 days were consistent with those obtained from in vitro cells. These findings indicate that scutellarin plays a neuroprotective role by reducing microglial neuroinflammation and apoptosis mediated by the activated PI3K/AKT/GSK3ß/NF-κB signaling pathway.

3.
Int J Appl Basic Med Res ; 14(2): 85-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912363

RESUMO

Background: Aerobic glycolysis has recently demonstrated promising potential in mitigating the effects of ischemia-reperfusion (IR) injury. Scutellarin (Scu) possesses various cardioprotective properties that warrant investigation. To mimic IR injury in vitro, this study employed hypoxia/reoxygenation (H/R) injury. Methods and Results: First, we conducted an assessment of the protective properties of Scu against HR in H9c2 cells, encompassing inflammation damage, apoptosis injury, and oxidative stress. Then, we verified the effects of Scu on the Warburg effect in H9c2 cells during HR injury. The findings indicated that Scu augmented aerobic glycolysis by upregulating p-PKM2/PKM2 levels. Following, we built a panel of six long noncoding RNAs and seventeen microRNAs that were reported to mediate the Warburg effect. Based on the results, miR-34c-5p was selected for further experiments. Then, we observed Scu could mitigate the HR-induced elevation of miR-34c-5p. Upregulation of miR-34c-5p could weaken the beneficial impacts of Scu in cellular viability, inflammatory damage, oxidative stress, and the facilitation of the Warburg effect. Subsequently, our investigation revealed a decrease in both ALDOA mRNA and protein levels following HR injury, which could be restored by Scu administration. Downregulation of ALDOA or Mimic of miR-34c-5p could reduce these effects induced by Scu. Conclusions: Scu provides cardioprotective effects against IR injury by upregulating the Warburg effect via miR-34c-5p/ALDOA.

4.
J Asian Nat Prod Res ; : 1-15, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910315

RESUMO

Scutellarin, one of natural flavonoids from Scutellaria barbata D. Don and Erigeron breviscapus (vant) Hand.-Mazz. Modern pharmacological studies have shown that scutellarin has a good anti-tumor effect. According to the literature review at home and abroad, scutellarin can inhibit the growth and metastasis of tumor cells, block the cell cycle at various stages, induce apoptosis and autophagy, interfere with tumor metabolism, reverse drug resistance of tumor cells and enhance the sensitivity of chemotherapy drugs. In this paper, the anti-tumor mechanism of scutellarin was reviewed, and the shortcomings of current studies and future research directions were analyzed, so as to provide a basis for further exploration of the anti-tumor potential of scutellarin and its further development and utilization.

5.
Sci Rep ; 14(1): 13430, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862696

RESUMO

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Assuntos
Apigenina , Apoptose , Glucuronatos , Janus Quinase 2 , Microglia , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Apigenina/farmacologia , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Glucuronatos/farmacologia , Células PC12 , Apoptose/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Camundongos , Caspase 3/metabolismo , Glucose/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Tirfostinas/farmacologia
6.
Pharmacol Res ; : 107281, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942341

RESUMO

Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.

7.
Int J Biol Macromol ; 269(Pt 1): 132134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719013

RESUMO

Stimulus-responsive nanomaterials, particularly with targeting capabilities, have garnered significant attention in the cancer therapy. However, the biological safety of these innovative materials in vivo remains unknown, posing a hurdle to their clinical application. Here, a pH/H2O2 dual-responsive and targeting nano carrier system (NCS) was developed using core shell structure of Fe3O4 mesoporous silicon (MSN@Fe3O4) as main body, scutellarin (SCU) as antitumor drug and polymer cyclodextrin (PCD) as molecular switch (denoted as PCD@SCU@MSN@Fe3O4, abbreviated as NCS). The NCS, with an average particle size of 100 nm, displayed exceptional SCU loading capacity, a result of its uniform radial channel structure. The in vitro investigation under condition of pH and H2O2 indicated that NCS performed excellent pH/H2O2-triggered SCU release behavior. The NCS displayed a higher cytotoxicity against tumor cells (Huh7 and HCT116) due to its pH/H2O2 dual-triggered responsiveness, while the PCD@MSN@Fe3O4 demonstrated lower cytotoxicity for both Huh7 and HCT116 cells. In vivo therapeutic evaluation of NCS indicates significant inhibition of tumor growth in mouse subcutaneous tumor models, with no apparent side-effects detected. The NCS not only enhances the bioavailability of SCU, but also utilizes magnetic targeting technology to deliver SCU accurately to tumor sites. These findings underscore the substantial clinical application potential of NCS.


Assuntos
Apigenina , Ciclodextrinas , Portadores de Fármacos , Glucuronatos , Peróxido de Hidrogênio , Silício , Animais , Humanos , Ciclodextrinas/química , Camundongos , Peróxido de Hidrogênio/química , Apigenina/química , Apigenina/farmacologia , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Glucuronatos/química , Glucuronatos/farmacologia , Silício/química , Porosidade , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Liberação Controlada de Fármacos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Celulose
8.
Heliyon ; 10(8): e29162, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655299

RESUMO

Chronic cerebral ischemia (CCI) primarily causes cognitive dysfunction and other neurological impairments, yet there remains a lack of ideal therapeutic medications. The preparation combination of Astragalus membranaceus (Fisch.) Bunge and Erigeron breviscapus (Vant.) Hand.-Mazz have been utilized to ameliorate neurological dysfunction following cerebral ischemia, but material basis of its synergy remains unclear. The principal active ingredients and their optimal proportions in this combination have been identified through the oxygen and glucose deprivation (OGD) cell model, including astragaloside A, chlorogenic acid and scutellarin (ACS), and its efficacy in enhancing the survival of OGD PC12 cells surpasses that of the combination preparation. Nevertheless, mechanism of ACS against CCI remains elusive. In this study, 63 potential targets of ACS against CCI injury were obtained by network pharmacology, among which AKT1, CASP3 and TNF are the core targets. Subsequent analysis utilizing KEGG and GO suggested that PI3K/AKT pathway may play a crucial role for ACS in ameliorating CCI injury. Then, a right unilateral common carotid artery occlusion (rUCCAO) mouse model and an OGD PC12 cell model were established to replicate the pathological processes of CCI in vivo and in vitro. These models were utilized to explore the anti-CCI effects of ACS and its regulatory mechanisms, particularly focusing on PI3K/AKT pathway. The results showed that ACS facilitated the restoration of cerebral blood flow in CCI mice, enhanced the function of the central cholinergic nervous system, protected against ischemic nerve cell and mitochondrial damage, and improved cognitive function and other neurological impairments. Additionally, ACS upregulated the expression of p-PI3K, p-AKT, p-GSK3ß and Bcl-2, and diminished the expression of Cyto-c, cleaved Caspase-3 and Bax significantly. However, the PI3K inhibitor (LY294002) partially reversed the downregulation of Bax, Cyto-c and cleaved Caspase-3 expression as well as the upregulation of p-AKT/AKT, p-GSK3ß/GSK3ß, and Bcl-2/Bax ratios. These findings suggest that ACS against neuronal damage in cerebral ischemia may be closely related to the activation of PI3K/AKT pathway. These results declared first time ACS may become an ideal candidate drug against CCI due to its neuroprotective effects, which are mediated by the activated PI3K/AKT pathway mitigates mitochondrial damage and prevents cell apoptosis.

9.
Nat Prod Bioprospect ; 14(1): 25, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656633

RESUMO

Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the transforming growth factor-ß1 (TGF-ß1) signaling pathway, as well as its interaction with the extracellular signal-regulated kinase (Erk) and Wnt/ß-catenin pathways.

10.
Adv Biol (Weinh) ; : e2400123, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684459

RESUMO

Scutellarin is an herbal agent which can exert anti-neuroinflammatory effects in activated microglia. However, it remains uncertain if it can inhibit microglia-mediated neuroinflammation by regulating miRNAs. This study sought to elucidate the upstream regulatory mechanisms by endogenous microRNAs and its target gene in activated microglia in lipopolysaccharide (LPS)-induced BV-2 microglia. Results show that scutellarin suppressed the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS) significantly in LPS-stimulated BV-2 microglia. As with the results of miRNAs function classification in vitro, the expression levels of mir-7036a-5p are upregulated in LPS-activated BV-2 microglia, but are downregulated by scutellarin. Rescue experiments indicated that mir-7036a-5p is a pro-inflammatory factor in activated BV-2 microglia. mir-7036a-5p agomir promoted the expression of phosphorylated tau proteins (p-tau), protein kinase C gamma type (PRKCG), extracellular regulated protein kinases (ERK1/2), but the is reversed by mir-7036a-5p antagomir in vitro. It is shown here that mir-7036a-5p is involved in microglia-mediated inflammation in LPS-induced BV-2 microglia. More important is the novel finding that scutellarin mitigated microglia inflammation by down-regulating the mir-7036a-5p/MAPT/PRKCG/ERK signaling pathway.

11.
Phytomedicine ; 128: 155418, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518647

RESUMO

BACKGROUND: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. PURPOSE: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. METHODS: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. RESULTS: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/ß-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. CONCLUSION: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.


Assuntos
Apigenina , Neoplasias da Mama , Proliferação de Células , Glucuronatos , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas , Scutellaria , Animais , Apigenina/farmacologia , Scutellaria/química , Glucuronatos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos SCID , Antineoplásicos Fitogênicos/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores de Hialuronatos/metabolismo
12.
Nat Prod Bioprospect ; 14(1): 20, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436812

RESUMO

Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.

13.
Clin Exp Pharmacol Physiol ; 51(4): e13845, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382550

RESUMO

Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.


Assuntos
Apigenina , Aterosclerose , Glucuronatos , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Músculo Liso Vascular/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Aterosclerose/metabolismo , Autofagia , RNA Mensageiro/metabolismo , Miócitos de Músculo Liso/metabolismo
14.
J Stroke Cerebrovasc Dis ; 33(3): 107534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219378

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of scutellarin on the activation of astrocytes into the A1 type following cerebral ischemia and to explore the underlying mechanism. METHODS: In vivo, a mouse middle cerebral artery wire embolism model was established to observe the regulation of astrocyte activation to A1 type by scutellarin, and the effects on neurological function and brain infarct volume. In vitro, primary astrocytes were cultured to establish an oxygen-glucose deprivation model, and the mRNA and protein expression of C3, a specific marker of A1-type astrocytes pretreated with scutellarin, were examined. The neurons were cultured in vitro to detect the toxic effects of ischemia-hypoxia-activated A1 astrocyte secretion products on neurons, and to observe whether scutellarin could reduce the neurotoxicity of A1 astrocytes. To validate the signaling pathway-related proteins regulated by scutellarin on C3 expression in astrocytes. RESULTS: The results showed that scutellarin treatment reduced the volume of cerebral infarcts and attenuated neurological deficits in mice caused by middle cerebral artery embolism. Immunofluorescence and Western blot showed that treatment with scutellarin down-regulated middle cerebral artery embolism and OGD/R up-regulated A1-type astrocyte marker C3. The secretory products of ischemia-hypoxia-activated A1-type astrocytes were toxic to neurons and induced an increase in neuronal apoptosis, and astrocytes treated with scutellarin reduced the toxic effects on neurons. Further study revealed that scutellarin inhibited the activation of NF-κB signaling pathway and thus inhibited the activation of astrocytes to A1 type.


Assuntos
Apigenina , Isquemia Encefálica , Embolia , Glucuronatos , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Astrócitos/metabolismo , AVC Isquêmico/metabolismo , Ratos Sprague-Dawley , Isquemia/metabolismo , Hipóxia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
15.
Inflammation ; 47(3): 853-873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168709

RESUMO

Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Epithelial-mesenchymal transition (EMT) is an essential player in these alterations. Scutellarin is isolated from Erigeron breviscapus. Its vascular relaxative, myocardial protective, and anti-inflammatory effects have been well established. This study was designed to detect the biological roles of scutellarin in asthma and its related mechanisms. The asthma-like conditions were induced by ovalbumin challenges. The airway resistance and dynamic compliance were recorded as the results of AHR. Bronchoalveolar lavage fluid (BALF) was collected and processed for differential cell counting. Hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson staining were conducted to examine histopathological changes. The levels of asthma-related cytokines were measured by enzyme-linked immunosorbent assay. For in vitro analysis, the 16HBE cells were stimulated with 10 ng/mL transforming growth beta-1 (TGF-ß1). Cell migration was estimated by Transwell assays and wound healing assays. E-cadherin, N-cadherin, and α-smooth muscle actin (α-SMA) were analyzed by western blotting, real-time quantitative polymerase chain reaction, immunofluorescence staining, and immunohistochemistry staining. The underlying mechanisms of the mitogen-activated protein kinase (MAPK) and Smad pathways were investigated by western blotting. In an ovalbumin-induced asthmatic mouse model, scutellarin suppressed inflammation and inflammatory cell infiltration into the lungs and attenuated AHR and airway remodeling. Additionally, scutellarin inhibited airway EMT (upregulated E-cadherin level and downregulated N-cadherin and α-SMA) in ovalbumin-challenged asthmatic mice. For in vitro analysis, scutellarin prevented the TGF-ß1-induced migration and EMT in 16HBE cells. Mechanistically, scutellarin inhibits the phosphorylation of Smad2, Smad3, ERK, JNK, and p38 in vitro and in vivo. In conclusion, scutellarin can inactivate the Smad/MAPK pathways to suppress the TGF-ß1-stimulated epithelial fibrosis and EMT and relieve airway inflammation and remodeling in asthma. This study provides a potential therapeutic strategy for asthma.


Assuntos
Remodelação das Vias Aéreas , Apigenina , Asma , Glucuronatos , Ovalbumina , Proteína Smad2 , Proteína Smad3 , Apigenina/farmacologia , Apigenina/uso terapêutico , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Camundongos , Glucuronatos/farmacologia , Glucuronatos/uso terapêutico , Ovalbumina/toxicidade , Humanos , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Proteína Smad3/metabolismo , Proteína Smad2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular , Brônquios/patologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Camundongos Endogâmicos BALB C , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fenótipo
16.
Tissue Cell ; 87: 102300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211409

RESUMO

OBJECTIVE: Abnormal proliferation and migration of biomechanical force-induced venous smooth muscle cells (VSMCs) is a major cause to limit the efficacy of coronary artery bypass grafting (CABG) for coronary heart disease (CHD). Scutellarin is the main active ingredient of Erigeron Breviscapus, and has broad-spectrum pharmacological effects. Therefore, the present study was proposed to investigate the effect of Scutellarin on VSMCs under tensile stress. METHODS: After interfering with VSMCs at different tensile stresses, the optimal tensile stress was screened. In a tensile stress environment, 100 µM Scutellarin and Hesperetin (p38 MAPK pathway activator) was used to treatment with VSMCs. CCK-8, EDU, Wound healing, flow cytometry and western blotting assays were used to detect cell proliferation, migration, apoptosis, and the expression of apoptosis-related proteins (Caspase3, Bcl2 and Bax). RESULTS: Tensile stress with 10% significantly enhanced the activity, wound-healing ratio, and EDU+ cells of VSMCs, and decreased their apoptosis ratio. Moreover, it upregulated Bcl2 expression, and downregulated cleaved-Caspase3 and Bax expression of VSMCs. Hence, 10% tensile stress was selected to creates a tensile stress environment for VSMCs. Interestingly, 100 µM Scutellarin alleviated the effect of 10% tensile stress on the phenotype of VSMCs. Notably, 10% tensile stress increased the phosphorylation level of p38 MAPK (Thr180 +Tyr182) in VSMCs, which was restricted by Scutellarin. Further, Hesperetin restored the effect of Scutellarin on the phenotype of VSMCs. CONCLUSION: Scutellarin alleviates tension stress-induced proliferation and migration of VSMCs via suppressing p38 MAPK pathway. Scutellarin may be used as an adjunctive strategy for future GABG treatment in CHD patients.


Assuntos
Apigenina , Proteínas Reguladoras de Apoptose , Glucuronatos , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína X Associada a bcl-2/metabolismo , Células Cultivadas , Proliferação de Células , Proteínas Reguladoras de Apoptose/metabolismo , Miócitos de Músculo Liso , Movimento Celular/fisiologia
17.
Curr Eye Res ; 49(2): 180-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014534

RESUMO

PURPOSE: Diabetic retinopathy, a prevalent complication of diabetes, represents the leading cause of vision loss and blindness among middle-aged and elderly populations. Recent research has demonstrated the ameliorating effects of scutellarin on diabetes-associated complications such as diabetic retinopathy and type 2 diabetic cardiomyopathy. However, investigations into its protective impact and underlying mechanisms on diabetic retinopathy are scant. This study aims to explore the therapeutic potential of scutellarin in diabetic retinopathy treatment. METHODS: Diabetic retinopathy was induced in rats through intraperitoneal injections of streptozotocin (STZ, 60 mg/kg) administered daily for three consecutive days. Following this, diabetic retinopathy rats received daily intragastric administration of scutellarin (40 mg/kg) for 42 days. RESULTS: Our findings suggest that scutellarin alleviates histological damage in the retinal tissues of streptozotocin-challenged rats. Furthermore, scutellarin effectively enhances total retinal thickness and increases the number of ganglion cell layer (GCL) cells in the retinal tissues of streptozotocin-treated rats. Scutellarin also demonstrated anti-inflammatory and antioxidant effects in the retinal tissues of STZ-induced rats, as indicated by reduced levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6, and elevated levels of glutathione peroxidase, superoxide dismutase, and catalase. Additionally, scutellarin effectively inhibited the expression of NOD-like receptor pyrin domain containing protein 3 inflammasome-related markers in the retinal tissues of streptozotocin-administered rats. CONCLUSIONS: Collectively, our results indicate that scutellarin significantly reduces streptozotocin-induced retinal inflammation, an effect that may be partially attributed to the suppression of NLRP3 inflammasome activation.


Assuntos
Apigenina , Diabetes Mellitus Experimental , Retinopatia Diabética , Glucuronatos , Humanos , Ratos , Animais , Pessoa de Meia-Idade , Idoso , Retinopatia Diabética/metabolismo , Inflamassomos/metabolismo , Estreptozocina/uso terapêutico , Domínio Pirina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016475

RESUMO

ObjectiveTo evaluate some properties of scutellarin-phospholipid complex nanoemulsion(SCU-PC-NE), such as release, cell uptake and tissue distribution, and to investigate its effect on ameliorating lipopolysaccharide(LPS)-induced vascular endothelial injury. MethodSCU-PC-NE was prepared by weighting SCU-PC, ethyl oleate, Kolliphor HS15, 1,2-propylene glycol(50, 400, 514.3, 85.7 mg), respectively. And the appearance of SCU-PC-NE was observed by transmission electron microscope, the average paticle size and Zeta potential were measured by nanopotential particle size analyzer. The cumulative release of SCU-PC-NE in vitro was measured by dynamic dialysis, thiazolyl blue(MTT) colorimetric assay was used to investigate the effect of SCU-PC-NE on the viability of human umbilical vein endothelial cells(HUVECs), the inverted fluorescence microscope and flow cytometry were used to investigate cell uptake of HUVECs by SCU-PC-NE in vitro using coumarin 6 as a fluorescent probe, the tissue distribution of DiR/SCU-PC-NE labeled by near infrared fluorescent dyes was obeserved by small animal in vivo imaging system. The inflammation injury model was established by co-incubation with LPS(1 mg·L-1) and HUVECs, the effect of SCU-PC-NE on the levels of interleukin(IL)-1β and IL-6 were determined by enzyme-linked immunosorbent assay(ELISA), 18 Kunming male mice were randomly divided into blank group, model group, blank preparation group(equivalent to high dose group), SCU group and SCU-PC-NE low and high dose groups(5, 10 mg·kg-1), 3 mice in each group, and the drug administration groups were administered once in the tail vein at the corresponding dose every 48 h, equal volume of normal saline was given to the blank group and the model group, and the drug was administered for 4 consecutive times. Except for the blank group, the endothelial inflammatory injury was induced by intraperitoneal injection of LPS(10 mg·kg-1) at 12 h before the last administration in each group. Hematoxylin-eosin(HE) staining was used to investigate the effect of SCU-PC-NE on the histopathological changes in the thoracic aorta of mice. ResultThe appearance of SCU-PC-NE displayed pale yellow milky light, mostly spherical with rounded appearance and relatively uniform particle size distribution, with the average particle size of 35.31 nm, Zeta potential of 7.23 mV, and the encapsulation efficiency of 75.24%. The cumulative release in vitro showed that SCU-PC-NE exhibited sustained release properties compared with SCU. The cell viability of SCU-PC-NE was >90% at a concentration range of 1.05-8.4 mg·L-1. The results of cellular uptake experiments showed that the cellular uptake ability of SCU-PC-NE was significantly enhanced when compared with the SCU group(P<0.01). Compared with normal mice, the results of tissue distribution showed that the fluorescence intensity of DiR/SCU-PC-NE was significantly enhanced in the spleen, kidney, brain and thoracic aorta of mice at different time points after intraperitoneal injection of LPS(P<0.05, P<0.01), especially in thoracic aorta. ELISA results showed that the levels of IL-1β and IL-6 in the model group were significantly increased when compared with the blank group(P<0.05, P<0.01), and compare with the model group, all administration groups significantly down-regulated IL-1β level, with the strongest effect in the SCU-PC-NE high-dose group(P<0.01), and all administration groups significantly down-regulated IL-6 level, with the strongest effect in the SCU-PC-NE low-dose group(P<0.05). Compare with the blank group, the results of HE staining showed that the endothelial cells were damaged, the elastic fibers were broken and arranged loosely in the model group, although similar vascular injury could be observed in the blank preparation group, SCU group and SCU-PC-NE low-dose group, the vascular endothelial damage was significantly reduced in the high-dose group of SCU-PC-NE, which had a better effect than that in the SCU group. ConclusionSCU-PC-NE can promote the uptake of drugs by endothelial cells and effectively enriched in the site of vascular endothelial injury caused by LPS, suggesting that it has a protective effect on vascular endothelial injury and is a good carrier of SCU.

19.
Chin Herb Med ; 15(4): 542-548, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094008

RESUMO

Objective: Scutellarin is a primary active composition come from Erigeron breviscapus. It is well known that scutellarin has anti-inflammatory and antioxidant physiological functions. In this study, we detected the effects of scutellarin on hepatocyte cell apoptosis in type 2 diabetes mellitus (T2DM) rats. Methods: Sprague Dawley (SD) (6-8 weeks, 160-180 g) rats were randomly divided into six groups: control, model, scutellarin low-dose, medium-dose, high-dose treatment, and rosiglitazone positive groups; with 10 SD rats in each group (n = 10). The changes of biochemical factors in serum were detected by automatic biochemical instrument, the pathological changes of liver tissue were detected by hematoxylin and eosin (HE) staining, the apoptosis of liver tissue and cells was detected by tissue staining and flow analyzer, and the expression of apoptosis-related factors were determined by qPCR, Western blot and immunohistochemistry in liver tissues or cells. Results: The results showed that scutellarin decreased the levels of fasting blood glucose, total cholesterol, triglyceride, and low-density lipoprotein and increased the levels of high-density lipoprotein. Meanwhile, scutellarin decreased the levels of alanine transaminase (ALT) and aspartate transaminase (AST) and improved liver function. In addition, scutellarin suppressed the secretion of interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and reduced hepatocyte apoptosis. Furthermore, scutellarin inhibited the expression of cleaved Caspase-3, Bax, and cytochrome C (Cyt-C) and promoted the expression of Bcl-2. Conclusion: Scutellarin can inhibit the apoptotic pathway, thereby relieving T2DM.

20.
Int J Pharm ; 648: 123567, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37918495

RESUMO

This study aims to examine the impact of the microfluidic preparation process on the quality of poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-delivered with scutellarin (SCU) and paeoniflorin (PAE) in comparison to a conventional emulsification method and to evaluatethe potential cardio-protective effect of SCU-PAE PLGA NPs produced through emulsification method. As compared with microfluidics, the nanoparticles prepared by emulsification method exhibited a smaller size, higher encapsulation efficiency, higher drug loading and lower viscosity for injection. Subsequently, a rat myocardial ischemia (MI) was established using male Sprague-Dawley (SD) rats (250 ± 20 g) subcutaneously injected with 85 mg/kg isoproterenol (ISO) for two consecutive days. The pharmacokinetic findings demonstrated that our SCU-PAE PLGA NPs exhibited prolonged blood circulation time in MI rats, leading to increased levels of SCU and PAE in the heart. This resulted in significant improvements in electrocardiogram and cardiac index, as well as reduced serum levels of CK, LDH, AST. Histopathological analysis using H&E and TUNEL staining provided further evidence of improved cardiac function and decreased apoptosis. Additionally, experiments measuring SOD, MDA, GSH, NO, TNF-α and IL-6 levels indicated that SCU-PAE PLGA NPs may effectively treat MI through oxidative stress and inflammatory pathways, thereby establishing it as a promising therapeutic intervention.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Nanopartículas , Ratos , Masculino , Animais , Isoproterenol , Ratos Sprague-Dawley , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...