Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Sci Total Environ ; 943: 173761, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851355

RESUMO

Acephate is commonly used as a seed treatment (ST) in precision agriculture, but its impact on pollinators, earthworms, and soil microorganisms remains unclear. This study aimed to compare the fate of acephate seed dressing (SD) and seed coating (SC) treatments and assess potential risks to bees, earthworms, and soil microorganisms. Additionally, a follow-up study on maize seeds treated with acephate in a greenhouse was conducted to evaluate the maize growth process and the dissipation dynamics of the insecticide. The results indicated that acephate SC led to greater uptake and translocation in maize plants, resulting in lower residue levels in the soil. However, high concentrations of acephate metabolites in the soil had a negative impact on the body weight of earthworms, whereas acephate itself did not. The potential risk to bees from exposure to acephate ST was determined to be low, but dose-dependent effects were observed. Furthermore, acephate ST had no significant effect on soil bacterial community diversity and abundance compared to a control. This study provides valuable insights into the uptake and translocation of acephate SD and SC, and indicates that SC is safer than SD in terms of adverse effects on bees and nontarget soil organisms.


Assuntos
Agricultura , Inseticidas , Oligoquetos , Fosforamidas , Sementes , Microbiologia do Solo , Zea mays , Animais , Abelhas/fisiologia , Agricultura/métodos , Inseticidas/toxicidade , Poluentes do Solo/toxicidade , Compostos Organotiofosforados/toxicidade , Solo/química
2.
Sci Rep ; 14(1): 14645, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918548

RESUMO

Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.


Assuntos
Produtos Agrícolas , Tolerância ao Sal , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus/fisiologia , Bacillus/metabolismo , Endófitos/fisiologia , Salinidade , Ácidos Indolacéticos/metabolismo , Microbiologia do Solo , Fixação de Nitrogênio , Germinação , Bacillus cereus/fisiologia , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/isolamento & purificação , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Carbono-Carbono Liases/metabolismo
3.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805655

RESUMO

Honey bees exhibit age polyethism and thus have a predictable sequence of behaviors they express through developmental time. Numerous laboratory studies show exposure to pesticides may impair critical honey bee behaviors (brood care, foraging, egg-laying, etc.) that adversely affect colony productivity and survival. There are fewer studies that examine the impacts of pesticides in natural field settings, especially given the challenges of implementing treatment groups and controlling variables. This study helps address the need for impact studies on pollinators under field conditions to assess the consequences of chemical overuse and dependency in agricultural and urban landscapes. To assess the impact of systemic pesticides in a natural field setting on worker bee behavioral development, observation hives were established to monitor changes in behaviors of similarly aged workers and sister queens within 2 experimental groups: (i) colonies located near point-source systemic pesticide pollution (pesticide contaminated treatment), and (ii) colonies embedded within a typical Midwestern US agricultural environment (control). In this study, worker bees in the contaminated environment exhibited important and biologically significant behavioral differences and accelerated onset of hive tasks (i.e., precocious behavioral development) compared to similarly aged bees at the control site. Queen locomotion was largely unaffected; however, the egg-laying rate was reduced in queens at the contaminated (treated) site. These results show that environmental pesticide exposure can disrupt colony function and adversely affect worker bee behavioral maturation, leading to reduced worker longevity and decreased colony efficiency.


Assuntos
Comportamento Animal , Praguicidas , Animais , Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos , Praguicidas/toxicidade , Feminino
4.
BMC Plant Biol ; 24(1): 428, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773358

RESUMO

BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.


Assuntos
Acacia , Colchicina , Sementes , Colchicina/farmacologia , Acacia/efeitos dos fármacos , Acacia/fisiologia , Acacia/crescimento & desenvolvimento , Acacia/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38651969

RESUMO

For plant protection products applied as seed treatments, the risk to birds and mammals possibly feeding on such treated seeds needs to be addressed in the EU, in order to register these products for commercial use. For this purpose, the European Food Safety Food Authority (EFSA) has provided guidance on how to execute such a risk assessment. The risk assessment follows a tiered approach. In the Tier 1 risk assessment of the EFSA guidance (2023), it is assumed that birds or mammals have ad libitum access to treated seeds and exclusively feed on treated seeds. Due to this conservative assumption, the Tier I risk assessment typically indicates an unacceptable risk to birds and mammals and higher-tier refinements are required. One option for refinement is to use data on the availability of treated seeds on the soil surface directly after drilling. Published data on seed counts are, however, limited to a few countries and crops, and often these data are not contemporary, that is, do not reflect advances in sowing technology and current agronomic practice. To address this data gap, we provide recently generated data from industry field trials (the studies were conducted from 2000 to 2022, >70% between 2019 and 2022), covering 270 fields from seven countries (Austria, France, Germany, Hungary, Poland, Spain, UK) for spring and winter cereals, winter oilseed rape, and sunflower. This comprehensive data set realistically reflects modern agronomic practice and is thus suitable for consideration in a regulatory context for refining the risk assessment for birds and mammals. Integr Environ Assess Manag 2024;00:1-8. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

6.
Plants (Basel) ; 13(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256789

RESUMO

Tryptophan, as a signal molecule, mediates many biotic and environmental stress-induced physiological responses in plants. Therefore, an experiment was conducted to evaluate the effect of tryptophan seed treatment in response to cadmium stress (0, 0.15, and 0.25 mM) in sunflower plants. Different growth and biochemical parameters were determined to compare the efficiency of the treatment agent. The results showed that cadmium stress reduced the growth attributes, including root and shoot length, dry and fresh weight, rate of seed germination, and the number of leaves. Cadmium stress also significantly reduced the contents of chlorophyll a, b, and total chlorophyll, carotenoid contents, phenolics, flavonoids, anthocyanin, and ascorbic acid. Whereas cadmium stress (0.15 and 0.25 mM) enhanced the concentrations of malondialdehyde (45.24% and 53.06%), hydrogen peroxide (-11.07% and 5.86%), and soluble sugars (28.05% and 50.34%) compared to the control. Tryptophan treatment decreased the effect of Cd stress by minimizing lipid peroxidation. Seed treatment with tryptophan under cadmium stress improved the root (19.40%) and shoot length (38.14%), root (41.90%) and shoot fresh weight (13.58%), seed germination ability (13.79%), average leaf area (24.07%), chlorophyll b (51.35%), total chlorophyll (20.04%), carotenoids (43.37%), total phenolic (1.47%), flavonoids (19.02%), anthocyanin (26.57%), ascorbic acid (4%), and total soluble proteins (12.32%) compared with control conditions. Overall, the tryptophan seed treatment showed positive effects on sunflower plants' growth and stress tolerance, highlighting its potential as a sustainable approach to improve crop performance.

7.
Integr Environ Assess Manag ; 20(1): 239-247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37222154

RESUMO

For plant protection products applied as seed treatments, the risk to birds and mammals possibly feeding on treated seeds must be addressed in the EU to register products for commercial use. One assumption of the Tier 1 long-term risk assessment of the European Food Safety Authority (EFSA) is that residues of pesticides on treated seeds do not decline over time after seeding. Consequently, a time-weighted average factor (fTWA ) of 1 (i.e., no dissipation) is used to calculate residue concentrations on seeds. In contrast, for spray applications, a default dissipation half-life (DT50 ) of 10 days is considered corresponding to an fTWA of 0.53. The aim of this study was to establish a default fTWA for treated seeds based on 29 industry-conducted seed dissipation studies, providing 240 datasets covering different active substances, crops, and regions. For fTWA calculation, two approaches were used: (i) kinetic fitting and (ii) using measured data without kinetic fitting. From kinetic fitting, 145 reliable DT50 values were obtained. Because there were no significant differences in DT50 values between crops and between the central and southern EU, the DT50 data from all studies were pooled. The geometric mean DT50 was 3.8 days and the 90th percentile was 13.0 days, corresponding to 21-day fTWA values of 0.27 and 0.59, respectively. Twenty-one-day fTWA values could be calculated directly from measured residues for 204 datasets. The resulting 21-day fTWA values were comparable with those from kinetic fitting (geometric mean: 0.29, 90th percentile: 0.59). The results demonstrate that residue decline on seeds is comparable with foliar dissipation after spray applications. Therefore, the risk assessment scheme by EFSA should implement a default fTWA < 1.0 in the Tier 1 risk assessment for treated seeds (e.g., either 0.53 as for foliage or 0.59, the 90th percentile fTWA in seeds reported in this study). Integr Environ Assess Manag 2024;20:239-247. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Resíduos de Praguicidas , Praguicidas , Animais , Resíduos de Praguicidas/análise , Praguicidas/toxicidade , Praguicidas/análise , Medição de Risco , Sementes/química , Aves , Produtos Agrícolas , Mamíferos
8.
Heliyon ; 9(11): e22148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045140

RESUMO

The present study was carried out in a pot experiment to examine the bioefficacy of three biocontrol agents, viz., Trichoderma viride, Bacillus subtilis, and Pseudomonas fluorescens, either alone or in consortium, on plant growth promotion and activation of defense responses in potato against the early blight pathogen Alternaria solani. The results demonstrate significant enhancement in growth parameters in plants bioprimed with the triple-microbe consortium compared to other treatments. In potato, the disease incidence percentage was significantly reduced in plants treated with the triple-microbe consortium compared to untreated control plants challenged with A. solani. Potato tubers treated with the consortium and challenged with pathogen showed significant activation of defense-related enzymes such as peroxidase (PO) at 96 h after pathogen inoculation (hapi) while, both polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) at 72 hapi, compared to the individual and dual microbial consortia-treated plants. The expression of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) and the accumulation of pathogenesis-related proteins such as chitinase and ß-1,3-glucanase were observed to be highest at 72 hapi in the triple microbe consortium as compared to other treatments. HPLC analysis revealed significant induction in polyphenolic compounds in triple-consortium bioprimed plants compared to the control at 72 hapi. Histochemical analysis of hydrogen peroxide (H2O2) clearly showed maximum accumulation of H2O2 in pathogen-inoculated control plants, while the lowest was observed in triple-microbe consortium at 72 hapi. The findings of this study suggest that biopriming with a microbial consortium improved plant growth and triggered defense responses against A. solani through the induction of systemic resistance via modulation of the phenylpropanoid pathway and antioxidative network.

9.
Front Plant Sci ; 14: 1240313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023856

RESUMO

Maize cropping systems need to be re-designed, within a sustainable intensification context, by focusing on the application of high-use efficiency crop practices, such as those that are able to enhance an early plant vigor in the first critical growth stages; such practices could lead to significant agronomic and yield benefits. The aim of this study has been to evaluate the effects of the cultivation of hybrids with superior early vigor, of the distribution of starter fertilizers at sowing, and of the seed application of biostimulants on promoting plant growth and grain yield in full factorial experiments carried out in both a growth chamber and in open fields. The greatest benefits, in terms of plant growth enhancement (plant height, biomass, leaf area) and cold stress mitigation, were detected for the starter fertilization, followed by the use of an early vigor hybrid and a biostimulant seed treatment. The starter fertilization and the early vigor hybrid led to earlier flowering dates, that is, of 2.1 and 2.8 days, respectively, and significantly reduced grain moisture at harvest. Moreover, the early vigor hybrid, the starter NP fertilization, and the biostimulant treatment increased grain yield by 8.5%, 6.0%, and 5.1%, respectively, compared to the standard hybrid and the untreated controls. The combination of all the considered factors resulted in the maximum benefits, compared to the control cropping system, with an increase in the plant growth of 124%, a reduction of the sowing-flowering period of 5 days, and a gain in grain yield of 14%. When choosing the most suitable crop practice, the diversity of each cropping system should be considered, according to the pedo-climatic conditions, the agronomic background, the yield potential, and the supply chain requirements.

10.
Front Plant Sci ; 14: 1240310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023909

RESUMO

The sustainable intensification of maize-based systems may reduce greenhouse-gas emissions and the excessive use of non-renewable inputs. Considering the key role that the microbiological fertility has on crop growth and resilience, it is worth of interest studying the role of cropping system on the rhizosphere bacterial communities, that affect soil health and biological soil fertility. In this work we monitored and characterized the diversity and composition of native rhizosphere bacterial communities during the early growth phases of two maize genotypes of different early vigor, using a nitrogen (N)-phosphorus (P) starter fertilization and a biostimulant seed treatment, in a growth chamber experiment, by polymerase chain reaction-denaturing gradient gel electrophoresis of partial 16S rRNA gene and amplicon sequencing. Cluster analyses showed that the biostimulant treatment affected the rhizosphere bacterial microbiota of the ordinary hybrid more than that of the early vigor, both at plant emergence and at the 5-leaf stage. Moreover, the diversity indices calculated from the community profiles, revealed significant effects of NP fertilization on richness and the estimated effective number of species (H2) in both maize genotypes, while the biostimulant had a positive effect on plant growth promoting community of the ordinary hybrid, both at the plant emergence and at the fifth leaf stage. Our data showed that maize genotype was the major factor shaping rhizosphere bacterial community composition suggesting that the root system of the two maize hybrids recruited a different microbiota. Moreover, for the first time, we identified at the species and genus level the predominant native bacteria associated with two maize hybrids differing for vigor. These results pave the way for further studies to be performed on the effects of cropping system and specific crop practices, considering also the application of biostimulants, on beneficial rhizosphere microorganisms.

11.
Plant Pathol J ; 39(5): 513-521, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817497

RESUMO

Seed-borne diseases reduce not only the seed germination and seedling growth but also seed quality, resulting in the significant yield loss in crop production. Plant seed harbors diverse microbes termed endophytes other than pathogens inside it. However, their roles and application to agricultures were rarely understood and explored to date. Recently, we had isolated from soybean seeds culturable endophytes exhibiting in-vitro antagonistic activities against common bacterial and fungal seed-borne pathogens. In this study, we evaluated effects of seed treatment with endophytes on plant growth and protection against the common seed-borne pathogens: four fungal pathogens (Cercospora sojina, C. kikuchii, Septoria glycines, Diaporthe eres) and two bacterial pathogens (Xanthomonas axonopodis pv. glycines, Pseudomonas syringae pv. tabaci). Our experiments showed that treatment of soybean seeds with seed endophytes clearly offer protection against seed-borne pathogens. We also found that some of the endophytes promote plant growth in addition to the disease suppression. Taken together, our results demonstrate agricultural potential of seed endophytes in crop protection.

12.
Sci Total Environ ; 905: 167078, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717765

RESUMO

The wide use of neonicotinoid seed treatment represents a hazard for farmland birds that feed on treated seeds. This study aimed to characterize the long-term effects of the neonicotinoid imidacloprid (IMI) in the passerine grayish baywing (Agelaioides badius). The birds were fed ad libitum for 32 days only with seeds treated with 53.1 (Low, 11 % of LD50) and 514 (High, (112 % of LD50) mg IMI/kg seed; these concentrations representing respectively, 1.8 and 17.1 % of 3 g IMI/kg, an average application rate used to treat crop seeds in Argentina. The effects exerted by IMI on birds were evaluated at behavioral, physiological, hematological, genotoxic, and biochemical levels. No differences in food consumption were observed between Control and Low treatments birds, indicating a lack of aversion to treated seeds. High treatment birds only decreased their food consumption by 20 % in the first 3 days of exposure. Birds from High treatment experienced an early loss of body weight, reduction in their mobility, lack of response to threats (i.e., predator call and approaching person), and altered their use of the cage. On the contrary, birds from Low treatment experienced a delay in the onset of effects like reduction in mobility, lack of response to threats, and a tendency to reduce their body weight. At the end of exposure, glutathione S transferase activity in the plasma of treated birds decreased, and cholinesterase activity increased in the liver of treated birds. This study highlights that consumption equivalent to 1.8 % of the daily diet of baywings as IMI-treated seeds, is sufficient to generate behavioral and physiological alterations and death. In the wild, these effects may have ecological consequences, by impairing the survival of birds, representing a risk to farmland bird populations.


Assuntos
Inseticidas , Humanos , Inseticidas/toxicidade , Inseticidas/análise , Neonicotinoides/toxicidade , Neonicotinoides/análise , Nitrocompostos/toxicidade , Nitrocompostos/análise , Sementes/química , Peso Corporal , Ingestão de Alimentos
13.
Plants (Basel) ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687295

RESUMO

In the context of climate change, strategies aimed at enhancing trees' resistance to biotic and abiotic stress are particularly relevant. We applied an electromagnetic field (EMF) seed treatment to observe changes in the establishment and content of biochemical compounds in silver birch seedlings induced by a short (1 min) seed exposure to a physical stressor. The impact of EMF treatment was evaluated on seedling emergence and growth of one-year-old and two-year-old seedlings from seven half-sib families of silver birch. The effects on numerous biochemical parameters in seedling leaves, such as total phenolic content (TPC), total flavonoid content (TFC), amounts of photosynthetic pigments, total soluble sugars (TSS), level of lipid peroxidation level, antioxidant activity and activity of antioxidant enzymes, were compared using spectrophotometric methods. The results indicated that, in one-year-old seedlings, two of seven (60th and 73rd) half-sib families exhibited a positive response to seed treatment with EMFs in nearly all analyzed parameters. For example, in the 60th family, seed treatment with EMFs increased the percentage of emergence by 3 times, one-year-old seedling height by 71%, leaf TPC by 47%, antioxidant activity by 2 times and amount of chlorophyll a by 4.6 times. Meanwhile, the other two (86th and 179th) families exhibited a more obvious positive response to EMF in two-year-old seedlings as compared to one-year-old seedling controls. The results revealed that short-term EMF treatment of silver birch seeds can potentially be used to improve seedling emergence and growth and increase the content of secondary metabolites, antioxidant capacity and photosynthetic pigments. Understanding of the impact of EMFs as well as the influence of genetic differences on tree responses can be significant for practical applications in forestry. Genetic selection of plant genotypes that exhibit positive response trends can open the way to improve the quality of forest stands.

14.
Front Plant Sci ; 14: 1258101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753503

RESUMO

Despite the economic and social importance, high-yielding cassava cultivars are only released after extensive research, mainly due to the low multiplication rate. This study aimed to assess the impact of using smaller-sized seed cuttings treated with agrochemicals (8MP) compared to the conventional planting size (16 cm) on genetic parameters, agronomic performance, and the ranking of cassava clones based on yield and growth attributes. The evaluation was carried out in clonal evaluation trial (CET), preliminary yield trial (PYT), and uniform yield trials (UYT). Additionally, a new selection scheme for cassava breeding programs was proposed. A total of 169 clones were evaluated, including 154 improved clones at different stages of selection and 15 local varieties used as checks. Field trials were conducted using both sizes of propagative material (8MP and 16 cm) in each phase of the breeding program. The data were analyzed using mixed models, considering the random effects of genotype and genotype-environment interaction (G×E) to determine variances and heritabilities. Bland-Altman concordance and correlation analysis of selection indices were employed to examine the consistency in the ranking of cassava clones using different seed cutting sizes. The distribution of variance components, heritabilities, means, and range of the 8MP and 16 cm trials in different phases of the cassava breeding program exhibited remarkable similarity, thereby enabling a comparative assessment of similar genetic effects. With a selection intensity of 30%, the concordance in clone ranking was 0.41, 0.57, and 0.85 in CET, PYT, and UYT trials, respectively, when comparing the selection based on 8MP and 16 cm trials. It is worth noting that the ranking of the top 15% remained largely unchanged. Based on the findings, proposed changes in the cassava selection scheme involve increasing the number of trials starting from the CET phase, early incorporation of G×E interaction, elimination of the PYT trial, reduction of the breeding cycle from 5 to 3 years, and a decrease in the time required for variety development from 11 to 9 years. These modifications are expected to lead to cost reduction and enhance the effectiveness of cassava breeding programs.

15.
Heliyon ; 9(8): e18973, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609427

RESUMO

Seed damage caused by screw working bodies of agricultural machines reduces the seed quality and increases the total cost of crop production. This paper describes the impact interaction of a particle with screw flights when seeds are fed into the transportation zone. There are velocity dependences during the impact and reflection of seeds on the screw surface at the maximum distance of the radius from the screw rotation axis. The potential energy lost by seeds when interacting with screw flights is determined. The paper considers the way transporting the seed material by screw working bodies impacts seed damage. The potential energy accumulated after impact by the reflecting surface and the particle depends on the magnitude and direction of the falling velocity to the screw belt, the auger geometric and kinematic parameters (the screw diameter; the inclination angle of the helix to the screw axis and the angular velocity), as well as the physical and mechanical properties of the particle and the reflecting surface (recovery and friction coefficients). Previous studies have shown that the critical angular velocity of the screw flight depends on the screw casing and the reduction factor of the circumferential velocity. In turn, the reduction factor depends on the transported seed material and the geometric parameters of the screw. It is possible to diminish the destruction of the seed material due to impact interaction with the working surface of the screw by reducing the inclination angle of the screw flight α, the angular speed of the screw rotation ω and its radius R. It also requires direct the seed flow closer to the rotation center. Reducing injury to seeds during transportation in a screw device requires a higher critical angular velocity of the screw. To increase the working angular velocity of the screw without exceeding its threshold of critical angular velocity, it is advisable to use screws with a large pitch and polymer screws with a wider pitch.

16.
J Nematol ; 55(1): 20230026, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37533966

RESUMO

Soybean Cyst Nematode (SCN), Heterodera glycines Ichinohe, is the most important pathogen of soybean in the Mid-Atlantic region. In recent decades, a decline in the effectiveness of genetic resistance has been observed and additional management approaches are needed. Seed treatments are of rising interest, but no local data on product response exists for the region. In 2020-2021, two experiments were conducted to observe the effects of chemical and biological seed treatment options. In one experiment, chemical seed treatments pydiflumetofen (Saltro®) and fluopyram (ILEVO®) were screened against nontreated plain seed for SCN suppression. In a second experiment, pydiflumetofen, fluopyram and four biological nematode-protectant seed treatments with a standard base insecticide and fungicide treatment were compared to nontreated plain seed and seed with only the standard base treatment to test product efficacy against SCN. Seed treatments increased the percent emergence over plain seed. Nematode reproductive factors and female counts from roots were collected, but did not statistically differ between seed treatments or plain seed. Yield differences were observed in one of the five trials, where pydiflumetofen + base seed treatment yielded the highest (p < 0.001) at 3813.1 kg/ha. Response from seed treatments varied, with no specific seed treatment consistently reducing SCN populations or increasing yield across trials. Seed treatments may have potential as an element of an integrated management approach for SCN.

17.
Environ Res ; 236(Pt 2): 116849, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558116

RESUMO

The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.

18.
Heliyon ; 9(6): e17302, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484362

RESUMO

Wireworms and white grubs are destructive underground pests in maize fields in China. Cyantraniliprole has good control effect on coleoptera pests. Here, we evaluated the toxicity of cyantraniliprole to the second instar larvae of Anomala corpulenta Motschulsky and third-instar of larvae of Pleonomus canaliculatus Faldermann and the effects of sublethal concentrations on the activity of antioxidant and detoxification enzymes. We also explored the efficacy of cyantraniliprole on underground pests under indoor and field conditions. The LC50 of cyantraniliprole for the third instar larvae of P. canaliculatus was 23.3712 mg/L, and that for the second instar larvae of A. corpulenta was 5.9715 mg/L. Cyantraniliprole can activate the activity of superoxide dismutase (SOD), peroxidase (POD), and glutathione S-transferase (GST) to different degrees at a sublethal dose. According to the pot experiment and the control efficacy test in the field, the indoor control effect of cyantraniliprole seed treatment on P. canaliculatus and white grubs was approximately 80%, and the maximum increase in yield achieved through cyantraniliprole application was approximately 15% in the field efficacy test. Cyantraniliprole has a strong control effect on wireworms and white grubs, so it can be used to treat seeds to control underground pests in maize fields.

19.
Pathogens ; 12(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37513760

RESUMO

Three soybean field trials were conducted in Indiana to evaluate the integration of seed treatment, cultivar selection, and seeding rate on sudden death syndrome (SDS) root rot, pathogen load in the root, foliar symptoms, yield, and net return. Two soybean cultivars, one moderately resistant and one susceptible to SDS, were planted at three seeding rates (272,277 seeds/ha, 346,535 seeds/ha, and 420,792 seeds/ha). Fluopyram and pydiflumetofen seed treatments were applied to both cultivars, and the cultivars were then compared with a control. Low foliar SDS disease pressure was observed in our study. Seed treatment with either fluopyram or pydiflumetofen and the use of a moderately resistant cultivar decreased Fusarium virguliforme DNA concentration in the root relative to the control and the use of a susceptible cultivar. Fluopyram significantly reduced visual root rot severity by 8.8% and increased yield by 105 kg/ha relative to the control but was not different from pydiflumetofen. However, pydiflumetofen performed the same as the control with respect to root rot severity and yield. Findings from this study support the use of a seed treatment to protect roots from infection and the use of a moderately resistant cultivar planted at a seeding rate of 346,535 seeds/ha to protect yield and maximize net returns when a field has low foliar SDS pressure.

20.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083497

RESUMO

Neonicotinoids, a class of systemic insecticides, have been widely used for decades against various insect pests. Previous studies have reported non-target effects of neonicotinoids on some beneficial macro- and micro-organisms. Considering the crucial role the soil microbiota plays in sustaining soil fertility, it is critical to understand how neonicotinoid exposure affects the microbial taxonomic composition and gene expression. However, most studies to date have evaluated soil microbial taxonomic compositions or assessed microbial functions based on soil biochemical analysis. In this study, we have applied a metatranscriptomic approach to quantify the variability in soil microbial gene expression in a 2 year soybean/corn crop rotation in Quebec, Canada. We identified weak and temporally inconsistent effects of neonicotinoid application on soil microbial gene expression, as well as a strong temporal variation in soil microbial gene expression among months and years. Neonicotinoid seed treatment altered the expression of a small number of microbial genes, including genes associated with heat shock proteins, regulatory functions, metabolic processes and DNA repair. These changes in gene expression varied during the growing season and between years. Overall, the composition of soil microbial expressed genes seems to be more resilient and less affected by neonicotinoid application than soil microbial taxonomic composition. Our study is among the first to document the effects of neonicotinoid seed treatment on microbial gene expression and highlights the strong temporal variability of soil microbial gene expression and its responses to neonicotinoid seed treatments.


Assuntos
Inseticidas , Microbiota , Neonicotinoides/farmacologia , Neonicotinoides/análise , Solo/química , Microbiologia do Solo , Inseticidas/farmacologia , Inseticidas/análise , Sementes/genética , Sementes/química , Genes Microbianos , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...