Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Int Immunopharmacol ; 138: 112559, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955028

RESUMO

BACKGROUND: Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS: Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS: Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS: Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.

2.
Heliyon ; 10(12): e32685, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975190

RESUMO

Multiple sclerosis (MS) is a complex, neurodegenerative chronic disorder. Circulating diagnostic biomarkers for MS have remained elusive, and those proposed so far have limited sensitivity and specificity to MS. Plasma-circulating microRNAs (miRNAs) have advantageous biochemical and physiological attributes that can be utilized in clinical testing and disease monitoring. MS miRNA expression microarray datasets analysis resulted in four candidate miRNAs that were assessed for their expression in a separate MS case-control study. Only miR-24-3p was downregulated in all MS patients compared to healthy controls. MiR-484 was significantly upregulated in relapsing-remitting MS (RRMS) patients compared to healthy controls. Mir-146-5p and miR-484 were significantly downregulated in secondary-progressive MS (SPMS) compared to RRMS. MiR-484 downregulation was associated with worsening disability and increased lipocalin-2 levels. Mir-342-3p and miR-24-3p downregulation were associated with increased semaphorin-3A levels in MS and RRMS patients. In conclusion, mir-24-3p downregulation is diagnostic of MS, and mir-484 upregulation and downregulation are potential biomarkers for RRMS and SPMS conversion, respectively. The differential expression of miR-146a-3p in MS subtypes suggests its potential as an SPMS transition biomarker. The association of downregulated mir-24-3p and mir-484 with increased neurodegeneration biomarkers suggests they play a role in MS pathogenesis and neurodegeneration.

3.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929171

RESUMO

Semaphorin 3A (SEMA3A), a nerve-repellent factor produced by keratinocytes, has an inhibitory effect on nerve extension to the epidermis. Epidermal innervation is involved in pruritus in inflammatory skin diseases such as atopic dermatitis (AD) and dry skin. We previously reported that tapinarof, a stilbene molecule, upregulates SEMA3A in human keratinocytes. We also showed that this mechanism is mediated via the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, and the nuclear factor erythroid 2-related factor 2 (NRF2) axis. Since some stilbenes activate AHR and NRF2, we attempted to identify other stilbenes that upregulate SEMA3A. We analyzed normal human epidermal keratinocytes (NHEKs) treated with 11 types of stilbenes and examined SEMA3A expression. We found that resveratrol and pinostilbene, antioxidant polyphenols, upregulated SEMA3A and increased nuclear AHR and NRF2 expression. In addition, AHR knockdown by small interfering RNA (siRNA) transfection abolished the NRF2 nuclear expression. Furthermore, AHR and NRF2 knockdown by siRNA transfection abrogated resveratrol- and pinostilbene-induced SEMA3A upregulation. Finally, we confirmed that resveratrol and pinostilbene increased SEMA3A promoter activity through NRF2 binding using ChIP-qPCR analysis. These results suggest that resveratrol and pinostilbene upregulate SEMA3A via the AHR-NRF2 axis in human keratinocytes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38727898

RESUMO

Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.

5.
Mol Cell Biochem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819599

RESUMO

The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.

6.
Cell Biochem Funct ; 42(3): e4012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584583

RESUMO

Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.


Assuntos
Osso e Ossos , Semaforina-3A , Animais , Camundongos , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular , Dor , Semaforina-3A/genética , Semaforina-3A/metabolismo
7.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-38629364

RESUMO

BACKGROUND: Osteolytic bone metastasis is a common complication of Non-Small Cell Lung Cancer (NSCLC), resulting in bone pain, hypercalcemia, and fractures that severely reduce the quality of life and survival time of patients. Semaphorins 3A (Sema3A) is one of the isoforms of the Semaphorins family, which is important in a variety of physiological and pathological processes, such as angiogenesis, immune regulation, and tumorigenesis. However, the role of Sema3A in the development of osteolytic bone metastasis in NSCLC is unknown. METHODS: In this study, we established in vitro models simulating NSCLC cells in regulating the differentiation and maturation of osteoblast and osteoclast precursors and observed the differentiation of osteoblasts and osteoclasts. RESULTS: The results demonstrated that the expression of Sema3A inhibited the proliferation, migration, and invasion of NSCLC cells, as well as promoted the differentiation of osteoblasts and inhibited the differentiation of osteoclasts, suggesting that Sema3A can inhibit the occurrence and development of osteolytic bone metastasis of NSCLC. CONCLUSION: This study provides a new idea for the clinical treatment of osteolytic bone metastasis in NSCLC.

9.
Life (Basel) ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541683

RESUMO

Semaphorin 3A (SEMA3A) plays a crucial role in the development, differentiation, and plasticity of specific types of neurons that secrete Gonadotropin-Releasing Hormone (GnRH) and regulates the acquisition and maintenance of reproductive competence in humans and mice. Its insufficient expression has been linked to reproductive disorders in humans, which are characterized by reduced or failed sexual competence. Various mutations, polymorphisms, and alternatively spliced variants of SEMA3A have been associated with infertility. One of the common causes of infertility in women of reproductive age is diminished ovarian reserve (DOR), characterized by a reduced ovarian follicular pool. Despite its clinical significance, there are no universally accepted diagnostic criteria or therapeutic interventions for DOR. In this study, we analyzed the SEMA3A plasma levels in 77 women and investigated their potential role in influencing fertility in patients with DOR. The results revealed that the SEMA3A levels were significantly higher in patients with DOR than in healthy volunteers. Furthermore, the SEMA3A levels were increased in patients who underwent fertility treatment and had positive Beta-Human Chorionic Gonadotropin (ßHCG) values (ß+) after controlled ovarian stimulation (COS) compared to those who had negative ßHCG values (ß-). These findings may serve as the basis for future investigations into the diagnosis of infertility and emphasize new possibilities for the SEMA3A-related treatment of sexual hormonal dysfunction that leads to infertility.

10.
J Cell Physiol ; 239(5): e31248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501506

RESUMO

The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-ß)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-ß specifically in cardiac tissues (TGF-ß transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-ß transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-ß transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.


Assuntos
Fibrilação Atrial , Proliferação de Células , Células Endoteliais , Transição Epitelial-Mesenquimal , Flavanonas , Átrios do Coração , Semaforina-3A , Fator de Crescimento Transformador beta , Animais , Humanos , Masculino , Camundongos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/genética , Fibrilação Atrial/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Flavanonas/farmacologia , Átrios do Coração/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Camundongos Transgênicos , Semaforina-3A/metabolismo , Semaforina-3A/genética , Fator de Crescimento Transformador beta/metabolismo
11.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262737

RESUMO

Spinal cord injury (SCI) often results in various long-term sequelae, and chronically injured spinal cords exhibit a refractory feature, showing a limited response to cell transplantation therapies. To our knowledge, no preclinical studies have reported a treatment approach with results surpassing those of treatment comprising rehabilitation alone. In this study of rats with SCI, we propose a novel combined therapy involving a semaphorin 3A inhibitor (Sema3Ai), which enhances axonal regeneration, as the third treatment element in combination with neural stem/progenitor cell transplantation and rehabilitation. This comprehensive therapeutic strategy achieved significant improvements in host-derived neuronal and oligodendrocyte differentiation at the SCI epicenter and promoted axonal regeneration even in the chronically injured spinal cord. The elongated axons established functional electrical connections, contributing to significant enhancements in locomotor mobility when compared with animals treated with transplantation and rehabilitation. As a result, our combined transplantation, Sema3Ai, and rehabilitation treatment have the potential to serve as a critical step forward for chronic SCI patients, improving their ability to regain motor function.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Semaforina-3A , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Neurônios , Células-Tronco Neurais/transplante , Axônios , Medula Espinal , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia
12.
J Zhejiang Univ Sci B ; 25(1): 38-50, 2024 Jan 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38163665

RESUMO

Gorham-Stout disease (GSD) is a sporadic chronic disease characterized by progressive bone dissolution, absorption, and disappearance along with lymphatic vessel infiltration in bone-marrow cavities. Although the osteolytic mechanism of GSD has been widely studied, the cause of lymphatic hyperplasia in GSD is rarely investigated. In this study, by comparing the RNA expression profile of osteoclasts (OCs) with that of OC precursors (OCPs) by RNA sequencing, we identified a new factor, semaphorin 3A (Sema3A), which is an osteoprotective factor involved in the lymphatic expansion of GSD. Compared to OCPs, OCs enhanced the growth, migration, and tube formation of lymphatic endothelial cells (LECs), in which the expression of Sema3A is low compared to that in OCPs. In the presence of recombinant Sema3A, the growth, migration, and tube formation of LECs were inhibited, further confirming the inhibitory effect of Sema3A on LECs in vitro. Using an LEC-induced GSD mouse model, the effect of Sema3A was examined by injecting lentivirus-expressing Sema3A into the tibiae in vivo. We found that the overexpression of Sema3A in tibiae suppressed the expansion of LECs and alleviated bone loss, whereas the injection of lentivirus expressing Sema3A short hairpin RNA (shRNA) into the tibiae caused GSD-like phenotypes. Histological staining further demonstrated that OCs decreased and osteocalcin increased after Sema3A lentiviral treatment, compared with the control. Based on the above results, we propose that reduced Sema3A in OCs is one of the mechanisms contributing to the pathogeneses of GSD and that expressing Sema3A represents a new approach for the treatment of GSD.


Assuntos
Vasos Linfáticos , Osteólise Essencial , Semaforina-3A , Animais , Camundongos , Células Endoteliais/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise Essencial/metabolismo , Osteólise Essencial/patologia , Semaforina-3A/metabolismo
13.
Neuroscience ; 536: 36-46, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37967738

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is an abnormal neurological condition caused by hypoxic-ischemic damage during the perinatal period. Human placenta derived mesenchymal stem cells (hPMSCs) have been shown to have protective and reparative effects in various neurological diseases; however, the research on HIE is insufficient. This study aimed to establish a rat model of HIE and transplant hPMSCs through the lateral ventricle after hypoxic-ishcemic (HI) brain damage to observe its protective effects and mechanisms, with a focus on brain apoptosis compared among groups. Differentially expressed apoptosis-related proteins were screened using a rat cytokine array and subsequent verification. Neuropilin-1 (NRP-1) and Semaphorin 3A (Sema 3A) were selected for further investigation. Western blotting was used to quantify the expression of Sema 3A and the proteins related to PI3K/Akt/mTOR signaling pathway. Exogenous Sema 3A was added to evaluate the effects of Sema 3A/NRP-1 on hPMSCs following HI injury. hPMSCs transplantation ameliorated HI-induced pathological changes, reduced apoptosis, and improved long-term neurological prognosis. Furthermore, Sema 3A/NRP-1 was a key regulator in reducing HI-induced apoptosis after hPMSCs transplantation. hPMSCs inhibited the expression of Sema 3A/NRP-1 and activated the PI3K/Akt/mTOR signaling pathway. Additionally, exogenous Sema 3A abolished the protective effects of hPMSCs against HI. In conclusion, hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis after HI by downregulating Sema 3A/NRP-1 expression and activating the PI3K/Akt/mTOR signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Semaforina-3A , Feminino , Gravidez , Ratos , Humanos , Animais , Animais Recém-Nascidos , Neuropilina-1 , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Apoptose , Células-Tronco Mesenquimais/metabolismo
14.
Exp Ther Med ; 27(1): 38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125367

RESUMO

Cardiac hypertrophy, characterized by cardiomyocyte enlargement, is an adaptive response of the heart to certain hypertrophic stimuli; however, prolonged hypertrophy results in cardiac dysfunction and can ultimately cause heart failure. The present study evaluated the role of semaphorin-3A (Sema3A), a neurochemical inhibitor, in cardiac hypertrophy, utilizing an isoproterenol (ISO) induced H9c2 cell model. Cells were stained with rhodamine-phalloidin to assess the cell surface area and reverse transcription-quantitative PCR was performed to quantify mRNA expression levels of Sema3A, brain natriuretic factor (BNF) and ß-myosin heavy chain (ß-MHC). The protein expression levels of the autophagy-related proteins light chain 3 (LC3), p62 and Beclin-1, and the Akt/mTOR signaling pathway associated proteins Akt, phosphorylated (p)-Akt, mTOR, p-mTOR, 4E-binding protein 1 (4EBP1) and p-4EBP1 were semi-quantified using western blotting. Rapamycin, a canonical autophagy inducer, was administered to H9c2 cells to elucidate the regulatory mechanism of Sema3A. The results indicated significantly increased cell surface area and elevated BNF and ß-MHC mRNA expression levels, increased LC3II/I ratio and Beclin-1 protein expression levels and significantly decreased p62 protein expression levels after treatment of H9c2 cardiomyocytes with ISO for 24 h. Sema3A overexpression improved ISO-induced hypertrophy in H9c2 cells, indicated by decreased cell surface area and reduced BNF and ß-MHC mRNA expression levels. Moreover, Sema3A overexpression inhibited ISO-induced autophagy in H9c2 cells, indicated by decreased LC3II/I ratio and Beclin-1 protein expression levels and increased p62 protein expression levels. The autophagy activator rapamycin partially inhibited the protective effect of Sema3A on ISO-induced hypertrophy. Sema3A overexpression suppressed the decrease of the protein expression levels of p-Akt, mTOR and their downstream target 4EBP1, which is induced by ISO. Collectively, these results suggested Sema3A prevented ISO-induced cardiac hypertrophy by inhibiting autophagy via the Akt/mTOR signaling pathway.

15.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010596

RESUMO

Gorham-Stout disease (GSD) is a sporadic chronic disease characterized by progressive bone dissolution, absorption, and disappearance along with lymphatic vessel infiltration in bone-marrow cavities. Although the osteolytic mechanism of GSD has been widely studied, the cause of lymphatic hyperplasia in GSD is rarely investigated. In this study, by comparing the RNA expression profile of osteoclasts (OCs) with that of OC precursors (OCPs) by RNA sequencing, we identified a new factor, semaphorin 3A (Sema3A), which is an osteoprotective factor involved in the lymphatic expansion of GSD. Compared to OCPs, OCs enhanced the growth, migration, and tube formation of lymphatic endothelial cells (LECs), in which the expression of Sema3A is low compared to that in OCPs. In the presence of recombinant Sema3A, the growth, migration, and tube formation of LECs were inhibited, further confirming the inhibitory effect of Sema3A on LECs in vitro. Using an LEC-induced GSD mouse model, the effect of Sema3A was examined by injecting lentivirus-expressing Sema3A into the tibiae in vivo. We found that the overexpression of Sema3A in tibiae suppressed the expansion of LECs and alleviated bone loss, whereas the injection of lentivirus expressing Sema3A short hairpin RNA (shRNA) into the tibiae caused GSD-like phenotypes. Histological staining further demonstrated that OCs decreased and osteocalcin increased after Sema3A lentiviral treatment, compared with the control. Based on the above results, we propose that reduced Sema3A in OCs is one of the mechanisms contributing to the pathogeneses of GSD and that expressing Sema3A represents a new approach for the treatment of GSD.


Assuntos
Animais , Camundongos , Células Endoteliais/metabolismo , Vasos Linfáticos , Osteoclastos/patologia , Osteólise Essencial/patologia , Semaforina-3A/metabolismo
16.
Front Cell Dev Biol ; 11: 1321151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078001

RESUMO

Semaphorin 3A (Sema3A) is a neuroinformatic protein molecule with widespread expression across various tissues and organs. Recent investigations have unveiled its pivotal role in the skeletal system, primarily through its binding interactions with two co-receptors, neuropilin-1 (Nrp-1) and members of the plexin family. Prior research has confirmed the expression of Sema3A and its receptors in both osteocytes and chondrocytes. Beyond its expression patterns, Sema3A plays a multifaceted role in regulating bone and cartilage metabolism via employing diverse signaling pathways. Additionally, it engages in collaborative interactions with the immune and nervous systems, contributing to the pathophysiological processes underlying a spectrum of bone and joint diseases. In this paper, we undertake a comprehensive review of recent research developments in this field. Our objective is to deepen the understanding of Sema3A within the context of skeletal physiology and pathology. Furthermore, we aim to furnish a valuable reference for potential therapeutic interventions in the realm of bone and joint diseases.

17.
Diagnostics (Basel) ; 13(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835781

RESUMO

Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases.

18.
Biomater Res ; 27(1): 101, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840145

RESUMO

BACKGROUND: Neural stem cells (NSCs) derived from the embryonic spinal cord are excellent candidates for the cellular regeneration of lost neural cells after spinal cord injury (SCI). Semaphorin 3 A (Sema3A) is well known as being implicated in the major axon guidance of the growth cone as a repulsive function during the development of the central nervous system, yet its function in NSC transplantation therapy for SCI has not been investigated. Here, we report for the first time that embryonic spinal cord-derived NSCs significantly express Sema3A in the SCI environment, potentially facilitating inhibition of cell proliferation after transplantation. METHODS: siRNA-Sema3A was conjugated with poly-l-lysin-coated gold nanoparticles (AuNPs) through a charge interaction process. NSCs were isolated from embryonic spinal cords of rats. Then, the cells were embedded into a dual-degradable hydrogel with the siRNA- Sema3A loaded-AuNPs and transplanted after complete SCI in rats. RESULTS: The knockdown of Sema3A by delivering siRNA nanoparticles via dual-degradable hydrogels led to a significant increase in cell survival and neuronal differentiation of the transplanted NSCs after SCI. Of note, the knockdown of Sema3A increased the synaptic connectivity of transplanted NSC in the injured spinal cord. Moreover, extracellular matrix molecule and functional recovery were significantly improved in Sema3A-inhibited rats compared to those in rats with only NSCs transplanted. CONCLUSIONS: These findings demonstrate the important role of Sema3A in NSC transplantation therapy, which may be considered as a future cell transplantation therapy for SCI cases.

19.
Oral Dis ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37771213

RESUMO

Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.

20.
Am J Cancer Res ; 13(8): 3417-3432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693128

RESUMO

Perineural invasion and neurogenesis are frequently observed in pancreatic ductal adenocarcinoma (PDAC), and they are associated with a poor prognosis. Axon guidance factor semaphorin 3A (SEMA3A) is upregulated in PDAC. However, it remains unclear whether cancer-derived SEMA3A influences nerve innervation and pancreatic tumorigenesis. In silico analyses were performed using PROGgene and NetworkAnalyst to clarify the importance of SEMA3A and its receptors, plexin A1 (PLXNA1) and neuropilin 2 (NRP2), in pancreatic cancer. In vitro assays, including migration, neurite outgrowth, and 3D recruitment, were performed to study the effects of SEMA3A on neuronal behaviors. Additionally, an orthotopic animal study using C57BL/6 mice was performed to validate the in vitro findings. Expression of SEMA3A and its receptors predicted worse prognosis for PDAC. Cancer-derived SEMA3A promoted neural migration, neurite outgrowth, and neural recruitment. Furthermore, SEMA3A-induced effects depended on PLXNA1, NRP2, and MAPK activation. Trametinib, an approved MAPK kinase (MEK) inhibitor, counteracted SEMA3A-enhanced neuronal activity in vitro. Inhibition of SEMA3A by shRNA in pancreatic cancer cells resulted in decreased neural recruitment, tumor growth, and dissemination in vivo. Our results suggested that cancer-secreted SEMA3A plays an important role in promoting neo-neurogenesis and progression of PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...