Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fitoterapia ; 176: 105988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703915

RESUMO

Traditional medicinal plants have been used for centuries for their immunomodulatory properties and therapeutic potentials. The present study aims to investigate the immunomodulatory constituents from traditional medicinal plant, Tinospora cordifolia (willd.). Our study resulted in the isolation of new compound, 27-hydroxy octacosyl ferulate (1) along with eleven known compounds (2-12). The structures of the isolated compounds were characterized by combination of NMR (1D and 2D) and Mass spectroscopic methods. The hemisynthesis of compound 12 (ferulic acid) yielded (12a-12d and 12e-12 m) derivatives. Further, the isolated compounds and synthesized derivatives were assessed for their immunomodulatory potentials by evaluating their cytotoxicity and pro-inflammatory effects against macrophage cells (IL-6) and DC activation markers (CD 11c and 86). The biological results indicated that crude extract displayed potent immunomodulatory activity while isolated compounds and synthetic analogues showed moderate activity. Among the tested compounds, new compound (1), quercetin (10) and derivatives 12b, 12c found to be non-cytotoxic and displayed immunomodulatory potentials. Therefore, these compounds can be studied for autoimmunity and other immune suppressing conditions.


Assuntos
Agentes de Imunomodulação , Compostos Fitoquímicos , Tinospora , Tinospora/química , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Animais , Camundongos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Interleucina-6
2.
Chem Biodivers ; 21(6): e202400471, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594210

RESUMO

Natural compounds are important sources for the treatment of chronic disorders such as cancer and microbial infectious disorders. In this research, Gypsogenin and its derivatives (2 a-2 f) have been tested against different cancer cell lines (MCF-7, HeLa, Jurkat and K562 cell lines) and further analyzed for cell proliferation, cell death type, and for act of the mechanism. Cell proliferation was determined by the MTT method and cell death types were analyzed with HO/PI staining. Fibroblast Growth Factor 1 (FGF-1), Interleukin 1 (IL-1), Interleukin 6 (IL-6), and Tumor Necrosis Factor Alpha (TNF-α), key players in breast cancer development and progression, were determined by Elisa kits. Results showed that compound 2 e inhibited the MCF-7 cell line proliferation with an IC50 value of 0.66±0.17 µM with 93.38 % apoptosis rate. Compound 2 e also decreased FGF-1, IL-1, IL-6, and TNF-α levels. Molecular docking studies performed in the binding site of FGFR-1 indicated that compound 2 e formed key hydrogen bonding with Arg627 and Asn568. Besides, compounds 2 a-2 f were evaluated for their antimicrobial activities against gram-negative and gram-positive bacteria and C. albicans via the microdilution method. Overall, compound 2 e stands out as a potential anticancer agent for future studies.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Bactérias Gram-Negativas/efeitos dos fármacos , Estrutura Molecular , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Anti-Infecciosos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral
3.
Chempluschem ; 89(6): e202300676, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38414152

RESUMO

Ent-kaurane diterpenes are a large group of natural products, with more than 1,000 compounds since their discovery. Due to their excellent biological activities and complex polycyclic structures, these compounds have attracted organic synthesis chemists around the world to be devoted to achieve their total synthesis. At present, the isolated C-20-oxygenated ent-kaurane diterpenes are the most abundant of these natural products, reaching more than 350 in number. However, only total syntheses of 3,20-epoxy, 7,20-epoxy and 19,20-lactone ent-kaurane diterpenes have been reported. In this review, we elaborate the synthesis of these three types of C-20 oxygenated ent-kaurane natural products, discuss these synthetic strategies in detail, and provide good guidance and reference for the synthesis of other C-20 oxygenated compounds.


Assuntos
Diterpenos do Tipo Caurano , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/síntese química , Oxigênio/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Estrutura Molecular
4.
Int J Biol Macromol ; 260(Pt 1): 129483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242385

RESUMO

Diabolican is an exopolysaccharide (EPS) produced by Vibrio diabolicus HE800, a mesophilic bacterium firstly isolated from a deep-sea hydrothermal field. Its glycosaminoglycan (GAG)-like structure, consisting of a tetrasaccharide repeating unit composed of two aminosugars (N-acetyl-glucosamine and N-acetyl-galactosamine) and two glucuronic acid units, suggested to subject it to regioselective sulfation processes, in order to obtain some sulfated derivatives potentially acting as GAG mimics. To this aim, a multi-step semi-synthetic approach, relying upon tailored sequence of regioselective protection, sulfation and deprotection steps, was employed in this work. The chemical structure of the obtained sulfated diabolican derivatives was characterized by a multi-technique analytic approach, in order to define both degree of sulfation (DS) and sulfation pattern within the polysaccharide repeating unit, above all. Finally, binding affinity for some growth factors relevant for biomedical applications was measured for both starting diabolican and sulfated derivatives thereof. Collected data suggested that sulfation pattern could be a key structural element for the selective interaction with signaling proteins not only in the case of native GAGs, as already known, but also for GAG-like structures obtained by regioselective sulfation of naturally unsulfated polysaccharides.


Assuntos
Polissacarídeos , Sulfatos , Sulfatos/química , Polissacarídeos/química , Glicosaminoglicanos , Oligossacarídeos , Peptídeos e Proteínas de Sinalização Intercelular
5.
Evol Bioinform Online ; 19: 11769343231217916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046652

RESUMO

The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.

6.
Mol Divers ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064107

RESUMO

Xanthohumol (Xn) is a chalcone compound isolated from Humulus lupulus Linn., that has various biological activities. In this study, eight Xn derivatives were synthesized by Williamson, Mannich, Reimer-Tiemann, and Schiff base reactions, and evaluated for their in vitro cytotoxic activity against five human cancer cell lines (MDA-MB-231, MCF-7, CNE-2Z, SMMC-7721, and H1975). Among these compounds, 2-((E)-2,4-dihydroxy-5-((E)-3-(4-hydroxyphenyl)acryloyl)-6-methoxy-3-(3- methylbut-2-en-1-yl)benzylidene)hydrazine-1-carboximidamide (8) exhibited the most potent cytotoxic activity against the five cancer cells, with IC50 values ranging from 4.87 to 14.35 µM. Wound-healing and transwell assays showed that compound 8 inhibited the migration and invasion of MDA-MB-231 cells by down-regulation HIF-1α, MMP-2 and MMP-9 protein expression. We further demonstrated that compound 8 induced apoptosis of MDA-MB-231 cells by increasing of Bax/Bcl-2 ratio and down-regulation of Akt protein expression.

7.
Food Chem X ; 20: 100940, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144809

RESUMO

Red Monascus pigments (MPs) are a large group of polyketides from the fungus Monascus which have been widely used as food colorants. In this study, a variety of red MPs congeners were prepared to explore promising water-soluble candidates for application in liquid food formulations. The results showed that by combining the two-stage, low-pH fermentation strategy with a downstream purification step of fractional crystallization, precursors of red MPs, namely monascorubrin and rubropunctatin, were obtained with a purity of 91.9%. Then, via the azaphilic addition reaction, 18 types of red MPs congeners carrying different amino acid moieties (MPs-aa) were semi-synthesized. Compared to rubropunctamine and monascorubramine, the water solubility, pH and thermal stability of MPs-aa were improved greatly. MPs-His, MPs-Phe, MPs-Tyr and MPs-Trp were identified to be the most resistant to pasteurization. These findings provide water-soluble red MPs candidates with high thermal stability and an attractive approach for their large scale production.

8.
Saudi Pharm J ; 31(12): 101852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028225

RESUMO

VEGFR-2 is a significant target in cancer treatment, inhibiting angiogenesis and impeding tumor growth. Utilizing the essential pharmacophoric structural properties, a new semi-synthetic theobromine analogue (T-1-MBHEPA) was designed as VEGFR-2 inhibitor. Firstly, T-1-MBHEPA's stability and reactivity were indicated through several DFT computations. Additionally, molecular docking, MD simulations, MM-GPSA, PLIP, and essential dynamics (ED) experiments suggested T-1-MBHEPA's strong binding capabilities to VEGFR-2. Its computational ADMET profiles were also studied before the semi-synthesis and indicated a good degree of drug-likeness. T-1-MBHEPA was then semi-synthesized to evaluate the design and the in silico findings. It was found that, T-1-MBHEPA inhibited VEGFR-2 with an IC50 value of 0.121 ± 0.051 µM, as compared to sorafenib which had an IC50 value of 0.056 µM. Similarly, T-1-MBHEPA inhibited the proliferation of HepG2 and MCF7 cell lines with IC50 values of 4.61 and 4.85 µg/mL respectively - comparing sorafenib's IC50 values which were 2.24 µg/mL and 3.17 µg/mL respectively. Interestingly, T-1-MBHEPA revealed a noteworthy IC50 value of 80.0 µM against the normal cell lines exhibiting exceptionally high selectivity indexes (SI) of 17.4 and 16. 5 against the examined cell lines, respectively. T-1-MBHEPA increased the percentage of apoptotic MCF7 cells in early and late stages, respectively, from 0.71 % to 7.22 % and from 0.13 % to 2.72 %, while the necrosis percentage was increased to 11.41 %, in comparison to 2.22 % in control cells. Furthermore, T-1-MBHEPA reduced the production of pro-inflammatory cytokines TNF-α and IL-2 in the treated MCF7 cells by 33 % and 58 %, respectively indicating an additional anti-angiogenic mechanism. Also, T-1-MBHEPA decreased significantly the potentialities of MCF7 cells to heal and migrate from 65.9 % to 7.4 %. Finally, T-1-MBHEPA's oral treatment didn't show toxicity on the liver function (ALT and AST) and the kidney function (creatinine and urea) levels of mice.

9.
Biomolecules ; 13(11)2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002314

RESUMO

A fungal endophyte originating from the Canary Islands was identified as a potent antagonist against the fungal phytopathogen Hymenoscyphus fraxineus, which causes the devastating ash dieback disease. This endophyte was tentatively identified as Pezicula cf. ericae, using molecular barcoding. Isolation of secondary metabolites by preparative high-performance liquid chromatography (HPLC) yielded the known compounds CJ-17,572 (1), mycorrhizin A (3) and cryptosporioptides A-C (4-6), besides a new N-acetylated dihydroxyphenylalanin derivative 2, named peziculastatin. Planar structures were elucidated by NMR and HRMS data, while the relative stereochemistry of 2 was assigned by H,H and C,H coupling constants. The assignment of the unknown stereochemistry of CJ-17,572 (1) was hampered by the broadening of NMR signals. Nevertheless, after semisynthetic conversion of 1 into its methyl derivatives 7 and 8, presumably preventing tautomeric effects, the relative configuration could be assigned, whereas comparison of ECD data to those of related compounds determined the absolute configuration. Metabolites 1 and 3 showed significant antifungal effects in vitro against H. fraxineus. Furthermore, 4-6 exhibited significant dispersive effects on preformed biofilms of S. aureus at concentrations up to 2 µg/mL, while the biofilm formation of C. albicans was also inhibited. Thus, cryptosporioptides might constitute a potential source for the development of novel antibiofilm agents.


Assuntos
Antifúngicos , Staphylococcus aureus , Pirrolidinonas/farmacologia
10.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005238

RESUMO

Paclitaxel, a natural secondary metabolite isolated and purified from the bark of the Taxus tree, is considered one of the most successful natural anticancer drugs due to its low toxicity, high potency and broad-spectrum anticancer activity. Taxus trees are scarce and slow-growing, and with extremely low paclitaxel content, the contradiction between supply and demand in the market is becoming more and more intense. Therefore, researchers have tried to obtain paclitaxel by various methods such as chemical synthesis, artificial culture, microbial fermentation and tissue cell culture to meet the clinical demand for this drug. This paper provides a comprehensive overview of paclitaxel extraction, combination therapy, total synthesis, semi-synthesis and biosynthesis in recent years and provides an outlook, aiming to provide a theoretical basis and reference for further research on the production and application of paclitaxel in the future.


Assuntos
Paclitaxel , Taxus , Paclitaxel/química , Fermentação , Taxus/química
11.
Front Microbiol ; 14: 1305848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029209

RESUMO

Protein splicing is a posttranslational process in which an intein segment excises itself from two flanking peptides, referred to as exteins. In the native context, protein splicing results in two separate protein products coupled to the activation of the intein-containing host protein. Inteins are generally described as either full-length inteins, mini-inteins or split inteins, which are differentiated by their genetic structure and features. Inteins can also be divided into three classes based on their splicing mechanisms, which differ in the location of conserved residues that mediate the splicing pathway. Although inteins were once thought to be selfish genetic elements, recent evidence suggests that inteins may confer a genetic advantage to their host cells through posttranslational regulation of their host proteins. Finally, the ability of modified inteins to splice and cleave their fused exteins has enabled many new applications in protein science and synthetic biology. In this review, we briefly cover the mechanisms of protein splicing, evidence for some inteins as environmental sensors, and intein-based applications in protein engineering.

12.
Pathol Res Pract ; 251: 154894, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857034

RESUMO

BACKGROUND: The overexpression of VEGFR-2 receptors in breast cancer provides a valuable approach to anticancer strategies. Targeting VEGFR-2, a new semisynthetic compound (T-1-MCPAB) has been designed. METHODS: Computational methods (ADMET, toxicity, DFT, Molecular Docking, Molecular Dynamics Simulations, MM-GBSA, PLIP, and PCAT) were conducted. In addition to the semi-synthesis, in vitro studies (anti-VEGFR-2, anti-proliferative, flow cytometry, and wound scratch assay) were employed. RESULTS: ADME and toxicity profiles of T-1-MCPAB studies indicated its overall drug-likeness showing results much better than Sorafenib. Then, T-1-MCPAB's exact 3D structure, stability, and reactivity were evoked by the DFT calculations. Molecular docking, molecular dynamics simulations, MM-GPSA, PLIP, and PCAT studies denoted the correct binding and inhibiting potential of T-1-MCPAB, towards VEGFR-2 protein. After the semisynthesis, T-1-MCPAB inhibited VEGFR-2 with an IC50 of 0.135 µM, which was comparable to sorafenib's IC50 of 0.0591 µM. T-1-MCPAB also showed a notable performance against MCF7 and T47D breast cancer cell lines with IC50 values of 30.95 µM and 63.64 µM, respectively, and had high selectivity index values of 3.7 and 1.8, respectively. Furthermore, T-1-MCPAB influenced early and late apoptosis and significantly decreased the potential of MCF7 cells to heal and migrate. CONCLUSION: T-1-MCPAB is a promising VEGFR-2 inhibitor with potential for breast cancer treatment. Further chemical and biological studies are needed to explore its potential as a therapeutic agent.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Sorafenibe/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Proliferação de Células , Inibidores de Proteínas Quinases
13.
Chem Biodivers ; 20(9): e202301089, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37596247

RESUMO

Herein, new derivatives of α,ß-unsaturated ketones based on oleanolic acid (4 a-i) were designed, synthesized, characterized, and tested against human prostate cancer (PC3). According to the in vitro cytotoxic study, title compounds (4 a-i) showed significantly lower toxicity toward healthy cells (HUVEC) in comparison with the reference drug doxorubicin. The compounds with the lowest IC50 values on PC3 cell lines were 4 b (7.785 µM), 4 c (8.869 µM), and 4 e (8.765 µM). The results of the ADME calculations showed that the drug-likeness parameters were within the defined ranges according to Lipinski's and Jorgensen's rules. For the most potent compounds 4 b, 4 c, and 4 e, a molecular docking analysis using the induced fit docking (IFD) protocol was performed against three protein targets (PARP, PI3K, and mTOR). Based on the IFD scores, compound 4 b had the highest calculated affinity for PARP1, while compound 4 c had higher affinities for mTOR and PI3K. The MM-GBSA calculations showed that the most potent compounds had high binding affinities and formed stable complexes with the protein targets. Finally, a 50 ns molecular dynamics simulation was performed to study the behavior of protein target complexes under in silico physiological conditions.


Assuntos
Antineoplásicos , Ácido Oleanólico , Neoplasias da Próstata , Humanos , Masculino , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Ácido Oleanólico/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células
14.
Mol Divers ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468705

RESUMO

Natural products (NPs) continue to serve as a structural model for the development of new bioactive molecules and improve the process of identifying novel medicines. The biological effects of coumarins, one of the most researched compounds among NPs, are currently being thoroughly investigated. In the present investigation, we reported the synthesis of nineteen semi-synthetic 3-substituted scoparone analogues, followed by their characterization using analytical methods such as NMR, HPLC, and HRMS. All compounds screened for in vitro and in vivo study for their ability to reduce inflammation. The SAR study worked effectively for this particular scoparone 3-substitution, as compounds 3, 4, 9, 16, 18, and 20 displayed improved in vitro results for TNF-α than the parent molecule. Similarly, compounds 3, and 17 showed a higher percentage of IL-6 inhibition. Compounds 3, 4, and 12 have also been identified by in vivo studies as promising candidates with higher percent inhibition than the parent scoparone molecule. As evident from all in vitro and in vivo studies, compound 3 showed the most potent anti-inflammatory activity among all.

15.
J Biomol Struct Dyn ; : 1-20, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261471

RESUMO

Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.

16.
Pharmaceutics ; 15(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376226

RESUMO

Morphine and codeine, two of the most common opioids, are widely used in the clinic for different types of pain. Morphine is one of the most potent agonists for the µ-opioid receptor, leading to the strongest analgesic effect. However, due to their association with serious side effects such as respiratory depression, constriction, euphoria, and addiction, it is necessary for derivatives of morphine and codeine to be developed to overcome such drawbacks. The development of analgesics based on the opiate structure that can be safe, orally active, and non-addictive is one of the important fields in medicinal chemistry. Over the years, morphine and codeine have undergone many structural changes. The biological investigation of semi-synthetic derivatives of both morphine and codeine, especially morphine, shows that studies on these structures are still significant for the development of potent opioid antagonists and agonists. In this review, we summarize several decade-long attempts to synthesize new analogues of morphine and codeine. Our summary placed a focus on synthetic derivatives derived from ring A (positions 1, 2, and 3), ring C (position 6), and N-17 moiety.

17.
Mol Divers ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162644

RESUMO

A new theobromine-derived EGFR inhibitor (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(2,6-dimethylphenyl)acetamide) has been developed that has the essential structural characteristics to interact with EGFR's pocket. The designed compound is 2,6-di ortho methylphenyl)acetamide derivative of the well-known alkaloid, theobromine, (T-1-DOMPA). Firstly, deep DFT studies have been conducted to study the optimized chemical structure, molecular orbital and chemical reactivity analysis of T-1-DOMPA. Then, T-1-DOMPA's anticancer potentialities were estimated first through a structure-based computational approach. Utilizing molecular docking, molecular dynamics, MD, simulations over 100 ns, MM-PBSA and PLIP studies, T-1-DOMPA bonded to and inhibited the EGFR protein effectively. Subsequently, the ADMET profiles of T-1-DOMPA were computed before preparation, and its drug-likeness was anticipated. Therefore, T-1-DOMPA was prepared for the purposes of scrutinizing both the design and the results obtained in silico. The in vitro potential of T-1-DOMPA against triple-negative breast cancer cell lines, MDA- MB-231, was very promising with an IC50 value of1.8 µM, comparable to the reference drug (0.9 µM), and a much higher selectivity index of 2.6. Interestingly, T-1-DOMPA inhibited three other cancer cell lines (CaCO-2, HepG-2, and A549) with IC50 values of 1.98, 2.53, and 2.39 µM exhibiting selectivity index values of 2,4, 1.9, and 2, respectively. Additionally, T-1-DOMPA prevented effectively the MDA-MB-231cell line's healing and migration abilities. Also, T-1-DOMPA's abilities to induce apoptosis were confirmed by acridine orange/ethidium bromide (AO/EB) staining assay. Finally, T-1-DOMPA caused an up-regulation of the gene expression of the apoptotic gene, Caspase-3, in the treated MDA-MB-231cell.

18.
Carbohydr Res ; 530: 108851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257206

RESUMO

Saponins are a large family of natural glycosides showing a wide range of biological activities. Current research efforts on saponins as vaccine adjuvants have been mainly focused on the development of synthetic analogs. By mimicking the immunomodulatory saponins from Quillaja saponaria (QS), less complex and readily accessible analogs have been synthesized to improve the industrial applicability and efficacy of saponins as vaccine adjuvants. Through the exploration of several structural modifications on the skeleton of QS saponins, including changes in the sugar and aglycone compositions as well as in the nature and configuration of the glycosidic bonds, structure-activity relationship (SAR) studies developed by Pr. Gin in the early 2010s were taken as a starting point for the development of a new generation of immunomodulatory candidates. In this review, the recent synthetic strategies and SAR studies of mono- and bidesmosidic QS saponins are discussed. Original concepts of vaccination including self-adjuvanticity and the development of saponin-based glycoconjugates are described. The synthesis and semi-synthesis of saponin alternatives to QS, such as Momordica saponin and onjisaponin derivatives, are also discussed in this review.


Assuntos
Saponinas , Saponinas/farmacologia , Adjuvantes de Vacinas , Glicosídeos , Imunomodulação , Compostos Radiofarmacêuticos , Adjuvantes Imunológicos/farmacologia
19.
Methods Mol Biol ; 2620: 177-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010763

RESUMO

Solid-phase peptide synthesis and protein semi-synthesis are powerful methods for site-specific modification of peptides and proteins. We describe protocols using these techniques for the syntheses of peptides and proteins bearing glutamate arginylation (EArg) at specific sites. These methods overcome challenges posed by enzymatic arginylation methods and allow for a comprehensive study of the effects of EArg on protein folding and interactions. Potential applications include biophysical analyses, cell-based microscopic studies, and profiling of EArg levels and interactomes in human tissue samples.


Assuntos
Ácido Glutâmico , Processamento de Proteína Pós-Traducional , Humanos , Ácido Glutâmico/metabolismo , Proteínas/metabolismo , Peptídeos/metabolismo , Arginina/metabolismo
20.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992079

RESUMO

Astragaloside VII (AST VII), a triterpenic saponin isolated from Astragalus species, shows promise as a vaccine adjuvant, as it supported a balanced Th1/Th2 immune response in previous in vivo studies. However, the underlying mechanisms of its adjuvant activity have not been defined. Here, we investigated the impact of AST VII and its newly synthesized semi-synthetic analogs on human whole blood cells, as well as on mouse bone marrow-derived dendritic cells (BMDCs). Cells were stimulated with AST VII and its derivatives in the presence or absence of LPS or PMA/ionomycin and the secretion of cytokines and the expression of activation markers were analyzed using ELISA and flow cytometry, respectively. AST VII and its analogs increased the production of IL-1ß in PMA/ionomycin-stimulated human whole blood cells. In LPS-treated mouse BMDCs, AST VII increased the production of IL-1ß and IL-12, and the expression of MHC II, CD86, and CD80. In mixed leukocyte reaction, AST VII and derivatives increased the expression of the activation marker CD44 on mouse CD4+ and CD8+ T cells. In conclusion, AST VII and its derivatives strengthen pro-inflammatory responses and support dendritic cell maturation and T cell activation in vitro. Our results provide insights into the mechanisms of the adjuvant activities of AST VII and its analogs, which will be instrumental to improve their utility as a vaccine adjuvant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...