Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 225: 106583, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39168394

RESUMO

In recombinant protein purification, differences in isoelectric point (pI)/surface charge and hydrophobicity between the product and byproducts generally form the basis for separation. For bispecific antibodies (bsAbs), in many cases the physicochemical difference between product and byproducts is subtle, making byproduct removal considerably challenging. In a previous report, with a bsAb case study, we showed that partition coefficient (Kp) screening for the product and byproducts under various conditions facilitated finding conditions under which effective separation of two difficult-to-remove byproducts was achieved by anion exchange (AEX) chromatography. In the current work, as a follow-up study, we demonstrated that the same approach enabled identification of conditions allowing equally good byproduct removal by mixed-mode chromatography with remarkably improved yield. Results from the current and previous studies proved that separation factor determination based on Kp screening for product and byproduct is an effective approach for finding conditions enabling efficient and maximum byproduct removal, especially in challenging cases.


Assuntos
Anticorpos Biespecíficos , Proteínas Recombinantes , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Humanos
2.
Compr Rev Food Sci Food Saf ; 23(5): e70017, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39289806

RESUMO

Petrochemical solvents are widely used for the extraction and fractionation of biomolecules from edible oils and fats at an industrial scale. However, owing to its safety concerns, toxicity, price fluctuations, and sustainability, alternative solvents and technologies have been actively explored in recent years. Technologies, such as ultrasound and microwave-assisted extraction, supercritical carbon dioxide extraction, supercritical fluid fractionation, and sub-critical water extraction, and solvents, like ionic liquids and deep eutectic solvents, are reported for extraction and fractionation of biomolecules. Among them, supercritical carbon dioxide extraction and fractionation are some of the most promising green technologies with the potential to replace petrochemical-based conventional techniques. The addition of cosolvents, such as water, ethanol, and acetone, improves the extraction of amphiphilic and polar compounds from edible oils and fats. Supercritical fluid processing has diverse applications, including concentration of solutes, selective separation of desired molecules, and separation of undesirable compounds from the feed material. Temperature, pressure, particle size, porosity, flow rate, solvent-to-feed ratio, density, viscosity, diffusivity, solubility, partition coefficient, and separation factor are the fundamental factors governing the extraction and fractionation of desired biomolecules from lipids. Supercritical fluids stand alone compared to conventional fluids, because of their tunable solvent properties. Overall, it is to be noted that supercritical fluid-based methods have lots of scope to replace conventional solvent-based methods and progress toward the creation of sustainable food-processing techniques. This review critically evaluates the parameters responsible for the extraction and fractionation of biomolecules from edible oils and fats under supercritical conditions.


Assuntos
Cromatografia com Fluido Supercrítico , Óleos de Plantas , Cromatografia com Fluido Supercrítico/métodos , Óleos de Plantas/química , Solventes/química , Gorduras/química
3.
Membranes (Basel) ; 14(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39195418

RESUMO

In this study, nanofiltration experiments using synthetic solutions containing acetate, butyrate, and lactate are carried out to assess the impact of the feed composition, i.e., feed concentration and feed proportions, on the separation factor of couples of solutes in binary and ternary solutions. In binary solutions, no influence of the solute proportions in the feed was pointed out, whatever the couple of solutes. The separation factor of acetate/butyrate and acetate/lactate was found to decrease with increasing feed concentration, while that of lactate/butyrate remained constant. The separation factors of acetate/lactate and lactate/butyrate were identical in ternary solutions compared to binary ones, showing no impact of the addition of the third solute. In ternary solutions, the presence of lactate decreased the separation factor of acetate/butyrate, but this decrease was not influenced by the proportion of lactate.

4.
Environ Sci Pollut Res Int ; 31(39): 52523-52539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39153064

RESUMO

Solvent extraction of lithium from brine with a high Mg/Li ratio was investigated. Tributyl phosphate (TBP), ferric chloride (FeCl3), and kerosene were used as the extractant, co-extractant, and diluent, respectively. The mechanism of the extraction process was studied by LC-MS, UV-VIS, and FT-IR analyses. Effects of organic to aqueous phase volume ratio (O/A) on the extraction efficiency and separation factor were optimized. The effects of major parameters including Fe/Li molar ratio, hydrochloric acid concentration, and TBP volume percent as well as their interactions on the lithium extraction efficiency were evaluated using central composite design. These major parameters represent interactions within their selected ranges. While the lithium extraction efficiency as the response value in the experimental design showed the most sensitivity to the acid concentration, the separation factors were more affected by alteration in the TBP volume percent with the fixed optimum values of the other major parameters. The highest one-stage extraction efficiency of 76.3% and Li/Mg separation factor of 304 were obtained at the optimum conditions of Fe/Li = 2.99, HCl = 0.01 M, and TBP = 55%. The Mg/Li mass ratio could be significantly reduced from 192 in the feed to 1.5 in the stripping solution. Based on the findings, a schematic diagram of the process including extraction, stripping, and saponification steps was proposed.


Assuntos
Lítio , Magnésio , Solventes , Lítio/química , Solventes/química , Magnésio/química , Sais/química
5.
Membranes (Basel) ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921506

RESUMO

The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene-methanol-water. This work investigates the effects of feed temperature, feed flow rate, and vacuum on pervaporation and compares the energy consumption of pervaporation with that of distillation. The results showed that at the optimized flow rate of 50 L/h and a permeate side vacuum of 60 kPa at 50 °C, the water and methanol content in the permeate was about 63.2 wt.% and 36.8 wt.%, respectively, the water/ methanol separation factor was 24.04, the permeate flux was 510.7 g/m2·h, the water content in the feed out was reduced from 2.5 wt.% to less than 0.66 wt.%, and the dehydration of toluene methanol could be realized. Without taking into account the energy consumption of pumps and other power equipment, pervaporation requires an energy consumption of 43.53 kW·h to treat 1 ton of raw material, while the energy consumption of distillation to treat 1 ton of raw material is about 261.5 kW·h. Compared to the existing distillation process, the pervaporation process consumes much less energy (about one-sixth of the energy consumption of distillation). There is almost no effect on the surface morphology and chemical composition of the membrane before and after use. The method provides an effective reference for the dehydration of organic solvents from ternary mixtures containing toluene/methanol/water.

6.
Isotopes Environ Health Stud ; 60(3): 272-285, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597681

RESUMO

In earlier quantum chemical calculations of isotope effects, chemical species in the liquid phase were generally treated as existing in the gas phase. In recent years, however, advances in computational programs have made it easier for the self-consistent reaction field (SCRF) method to handle chemical species in the liquid phase, and as a result, it has become easier to apply the SCRF method to isotope effect calculations. This paper concerns the scope of application of the DFT-SCRF method to reversible processes for hydrogen isotope enrichment. It is found that the applicability of the method depends on the type of the intermolecular interaction in the liquid phase and the degree of hydrogen isotope effect (separation factor) on which the process is based. When the magnitude of the isotope effect of the separation system is greater than 10-1, the simple SCRF method is fully applicable; when the magnitude is around 10-2, SCRF with a dimer model, in which the monomer is replaced by a dimer, is applicable for the analysis of the liquid phase with relatively strong intermolecular interactions. Anharmonic correction to the separation factor calculated based on harmonic frequencies may be effective to systems with the liquid phase with weak intermolecular interactions.


Assuntos
Hidrogênio , Modelos Químicos , Hidrogênio/química , Teoria da Densidade Funcional , Deutério/química , Deutério/análise , Isótopos/química , Isótopos/análise
7.
Chemosphere ; 355: 141824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548082

RESUMO

The complexity and high cost to separate and recover short chain fatty acids (SCFAs), ammonium ions, and phosphates in the sludge fermentation liquid hinder the application of sludge anaerobic fermentation. In this study, an interesting phenomenon was found in a sludge anaerobic fermenter with a dynamic membrane (DM) which could not only enhance SCFAs production but also retain most SCFAs in fermenter. The separation factor of DM for NH3-N/SCFAs and PO43-/SCFAs throughout the DM development were about 40 and 80, respectively. Analysis reveals that rejection of SCFAs by DM could not be simply correlated to molecular weight or membrane pore size. The rejection mechanisms might be dominated by Donnan rejection. In addition, biodegradation in the DM may also have contribution. Findings of this study suggest the potential of DM as an economical technology for nutrients and SCFAs recover.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Fermentação , Nutrientes , Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio
8.
Chemistry ; 30(26): e202303923, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38314903

RESUMO

A simple, efficient, direct and economical method for the mutual separation of Nd and Pr was developed by the selective dissolution of Nd2O3 from their oxide mixtures in an ionic liquid containing 2-thenoyltrifluoroacetone (HTTA) resulting in an unprecedented separation factor (ßNd/Pr)>500, which is 277 times more than the thus far reported ßNd/Pr values. The proposed mechanism was supported by DFT computations.

9.
Membranes (Basel) ; 14(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38392676

RESUMO

Isoamyl alcohol is an important biomass fermentation product that can be used as a gasoline surrogate, jet fuel precursor, and platform molecule for the synthesis of fine chemicals and pharmaceuticals. This study reports on the use of graphene oxide immobilized membra (GOIMs) for the recovery of isoamyl alcohol from an aqueous matrix. The separation was performed using air-sparged membrane distillation (ASMD). In contrast to a conventional PTFE membrane, which exhibited minimal separation, preferential adsorption on graphene oxide within GOIMs resulted in highly selective isoamyl alcohol separation. The separation factor reached 6.7, along with a flux as high as 1.12 kg/m2 h. Notably, the overall mass transfer coefficients indicated improvements with a GOIM. Optimization via response surfaces showed curvature effects for the separation factor due to the interaction effects. An empirical model was generated based on regression equations to predict the flux and separation factor. This study demonstrates the potential of GOIMs and ASMD for the efficient recovery of higher alcohols from aqueous solutions, highlighting the practical applications of these techniques for the production of biofuels and bioproducts.

10.
Environ Sci Technol ; 57(14): 5934-5946, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972410

RESUMO

The extraction of acetic acid and other carboxylic acids from water is an emerging separation need as they are increasingly produced from waste organics and CO2 during carbon valorization. However, the traditional experimental approach can be slow and expensive, and machine learning (ML) may provide new insights and guidance in membrane development for organic acid extraction. In this study, we collected extensive literature data and developed the first ML models for predicting separation factors between acetic acid and water in pervaporation with polymers' properties, membrane morphology, fabrication parameters, and operating conditions. Importantly, we assessed seed randomness and data leakage problems during model development, which have been overlooked in ML studies but will result in over-optimistic results and misinterpreted variable importance. With proper data leakage management, we established a robust model and achieved a root-mean-square error of 0.515 using the CatBoost regression model. In addition, the prediction model was interpreted to elucidate the variables' importance, where the mass ratio was the topmost significant variable in predicting separation factors. In addition, polymers' concentration and membranes' effective area contributed to information leakage. These results demonstrate ML models' advances in membrane design and fabrication and the importance of vigorous model validation.


Assuntos
Ácido Acético , Ácidos Carboxílicos , Polímeros , Aprendizado de Máquina , Água
11.
Molecules ; 27(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956755

RESUMO

The purpose of this study was to optimize the extraction conditions for separating Co2+ from Ni2+ using N-butylamine phosphinate ionic liquid of [C4H9NH3][Cyanex 272]. A Box-Behnken design of response surface methodology was used to analyze the effects of the initial pH, extraction time, and extraction temperature on the separation factor of Co2+ from sulfuric acid solution containing Ni2+. The concentrations of Co2+ and Ni2+ in an aqueous solution were determined using inductively coupled plasma-optical emission spectrometry. The optimized extraction conditions were as follows: an initial pH of 3.7, an extraction time of 55.8 min, and an extraction temperature of 330.4 K. The separation factor of Co2+ from Ni2+ under optimized extraction conditions was 66.1, which was very close to the predicted value of 67.2, and the error was 1.7%. The equation for single-stage extraction with high reliability can be used for optimizing the multi-stage extraction process of Co2+ from Ni2+. The stoichiometry of chemical reaction for ion-exchange extraction was also investigated using the slope method.


Assuntos
Líquidos Iônicos , Concentração de Íons de Hidrogênio , Líquidos Iônicos/química , Ácidos Fosfínicos/química , Reprodutibilidade dos Testes
12.
ACS Appl Mater Interfaces ; 14(15): 17878-17888, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35266395

RESUMO

High-performance carbon molecular sieves (CMSs) for the separation of propylene (C3H6) and propane (C3H8) were synthesized in this study by chemical vapor deposition (CVD) of benzene on the pore entrances of activated carbon. The C3H6 and C3H8 separation characteristics of the CMSs were controlled by altering the amount of carbon deposited during CVD, and the resulting characteristic curve featuring the kinetic selectivity of C3H6 over C3H8 as a function of the adsorption rate constant of C3H6 is considered to be the upper bound of the C3H6-C3H8 separation factor for current CMSs because of the presence of previously reported CMS data under this curve. Additionally, CMS models were constructed using grand canonical molecular dynamics (GCMD) simulations mimicking the process of CVD, which revealed that the kinetic selectivity of C3H6 over C3H8 strongly depended on the size of the pore entrances at the level of 0.01 nm, and that strict control of the pore-entrance size was crucial for obtaining high-performance CMSs for C3H6-C3H8 separation. This was essentially achieved by controlling the duration of CVD, which led to the experimental realization of CMSs with a C3H6 selectivity over C3H8 of >2000 and a high uptake rate of C3H6. A design guideline for the development of high-performance CMSs for C3H6-C3H8 separation was proposed based on theoretical calculations performed using idealized carbon structures, which extracted the characteristics of the CMS models obtained from the GCMD simulations.

13.
Appl Radiat Isot ; 182: 110149, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35202920

RESUMO

The electrochemical behavior of lanthanides (La, Pr) and actinide (U) on inert W and liquid Ga electrodes in LiCl-KCl molten salt as well as their related thermodynamic properties were experimentally determined for further Lns/Ans separation. The results indicate that the reductions of La3+ and Pr3+ in LiCl-KCl melts are both one-step process with three electrons exchanged, and the reactions are quasi-reversible processes at low scan rate. Temperature dependencies of apparent standard redox potentials of La(Ga), Pr(Ga) and U(Ga) alloys were determined by open-circuit chronopotentiometry versus Cl-/Cl2 reference electrode. The activity and activity coefficients of lanthanum, praseodymium and uranium on the liquid Ga electrode in the temperature interval 723-813 K were calculated. The separation factors for La/U and Pr/U on the liquid Ga electrode in the molten salt were determined by logθU/La=-10.39+11440.69T±0.0125 and logθU/Pr=-5.84+7763.27T±0.07. The separation factors of La/U and Pr/U on the liquid Ga electrode indicate that lower temperature should be more effective for separating uranium.

14.
Appl Petrochem Res ; 11(3): 335-351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603906

RESUMO

Deep eutectic solvents (DESs) have high viscosities, but known to be mitigated by addition of suitable co-solvent. The effect of such co-solvent on the extraction efficiency of the hybrid solvent is hardly known. This study examined the effect of ethanol on three choline chloride-based DESs (glyceline, reline, and ethaline) by mixing each in turn with ethanol in various volume proportions. The hybrid solvents were evaluated for the extraction of benzene from n-hexane. Pseudo-ternary liquid-liquid equilibrium data were obtained using the refractive index method at 303 K and 1 atm for the systems, n-hexane (1) + benzene (2) + hybrid solvent (glyceline/ethanol, ethaline/ethanol, reline/ethanol) (3), and used to evaluate distribution coefficient (D) and selectivity (S). Furthermore, the physicochemical properties of the hybrid solvents were also determined. The results indicate increase in selectivity with increasing ethanol addition up to 50% and decrease with further addition. All hybrid solvents with 50% ethanol outperform sulfolane and are suitable replacement for same as green and sustainable extractant for aromatics from aliphatics. The glyceline + 50% ethanol emerged the overall best with 49.73% elevation in selectivity and 41.15% reduction in viscosity relative to the neat glyceline. The finding of this study is expected to fillip the drive for paradigm shift in petrochemical industries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13203-021-00282-y.

15.
Glob Chall ; 5(7): 2000124, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34267928

RESUMO

A porous fluorocarbon sorbent is synthesized from rice husk (RH) in a microwave reactor and then evaluated for the adsorption of different gases (CH4, CO2, and N2). The fluorocarbon is characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, Thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Significant enhancement in the surface area of activated carbon material is obtained from 29 to 531 m2 g-1 after removing naturally present silica in RH. Results reveal that rice husk fluorocarbon (RHF) has a higher adsorption affinity for CO2 (1.8 mmol g-1) than that of the sulfonated rice husk (RHS) (1.4 mmol g-1) at 298 K while the corresponding separation factor of CO2/CH4 is 4 and 3; respectively. Higher separation factors of 12 and 10 are observed for the binary system of CO2/N2, respectively. Quantum chemical density functional theory (DFT) calculations agree with the experimental observations. They reveal that RHF exhibits strong columbic interactions with considerable interaction energies of -87.85, -76.75, and -55.65 kcal mol-1 with CO2, CH4, and N2 gases; respectively. Finally, the adsorption process results are highly reproducible, with a small decrease in the adsorption capacity of less than 5% after repeated trials.

16.
Membranes (Basel) ; 11(2)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672853

RESUMO

In this work, the synthesis of a series of the functionalized inorganic/organic composite anion exchange membranes (AEMs) was carried out by employing the varying amount of inorganic filler consist of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride (TMSP-TMA+Cl-) into the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) matrix for acid recovery via diffusion dialysis (DD) process. Fourier transform infrared (FTIR) spectroscopy clearly demonstrated the fabrication of the functionalized inorganic/organic composite AEMs and the subsequent membrane characteristic measurements such as ion exchange capacity (IEC), linear swelling ratio (LSR), and water uptake (WR) gave us the optimum loading condition of the filler without undesirable filler particle aggregation. These composite AEMs exhibited IEC of 2.18 to 2.29 meq/g, LSR of 13.33 to 18.52%, and WR of 46.11 to 81.66% with sufficient thermal, chemical, and mechanical stability. The diffusion dialysis (DD) test for acid recovery from artificial acid wastewater of HCl/FeCl2 showed high acid DD coefficient (UH+) (0.022 to 0.025 m/h) and high separation factor (S) (139-260) compared with the commercial membrane. Furthermore, the developed AEMs was acceptably stable (weight loss < 20%) in the acid wastewater at 60 °C as an accelerated severe condition for 2 weeks. These results clearly indicated that the developed AEMs have sufficient potential for acid recovery application by DD process.

17.
Materials (Basel) ; 13(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172108

RESUMO

In this paper, we propose mixed metal ions in the node of the zeolitic imidazolate framework (ZIF) structure. The hybrid metal ZIF is formed for the gas separation of hydrogen and carbon dioxide. In the first stage, the nanoparticles were prepared as a coating on a substrate, and acting as secondary growing nuclei. The hybrid metal ZIF structures were characterized by X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). N2 adsorption-desorption isotherms determined surface area, and scanning electron microscopy (SEM) was used to observe the microstructure and surface morphology. The hybrid metal ZIF-8-67 powder had the largest surface area (1260.40 m2 g-1), and the nanoparticles (100 nm) could be fully dense-coated on the substrate to benefit the subsequent membrane growth. In the second stage, we prepared the hybrid metal ZIF-8-67 membrane on the pre-seeding substrate with mixed metal nanoparticles of cobalt and zinc, by the microwave hydrothermal method. Cobalt ions were identified in the tetrahedral coordination through UV-Vis, and the membrane structure and morphology were determined by XRD and SEM. Finally, a gas permeation analyzer (GPA) was used to determine the gas separation performance of the hybrid metal ZIF-8-67 membrane. We successfully introduced zinc ions and cobalt ions into the ZIF structure, where cobalt had a strong interaction with CO2. Therefore, GPA analysis showed an excellent H2/CO2 separation factor due to lower CO2 permeability. The CO2 permeance was ~0.65 × 10-8 mol m-2 s-1 Pa-1, and the separation factors for H2/CO2 and H2/N2 were 9.2 and 2.9, respectively. Our results demonstrate that the hybrid metal ZIF-8-67 membrane has a superior H2/CO2 separation factor, which can be attributed to its very high specific surface area and structure. Based on the above, hybrid metal ZIF-8-67 membranes are expected to be applied in hydrogen or carbon dioxide gas separation and purification.

18.
Membranes (Basel) ; 10(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138087

RESUMO

Copper-based metal-organic frameworks (MOFs) with different oxidation states and near-uniform particle sizes have been successfully synthesized. Mixed-matrix polyimide membranes incorporating 0.1-7 wt% of Cu(II) benzene-1,2,5-tricarboxylic acid (Cu(II)BTC), Cu(I/II)BTC and Cu(I) 1,2-ethanedisulfonic acid (EDS) (Cu(I)EDS) MOFs were fabricated via non-solvent-induced phase inversion process. These membranes are found to be solvent resistant and mechanically stable. Liquid phase nanofiltration experiments were performed to separate toluene from n-heptane at room temperature. These membranes demonstrate preferential adsorption and permeation of the aromatic toluene over aliphatic n-heptane. The amount of MOF particles incorporated, the oxidation state of the Cu ion and membrane, and barrier layer thickness have a significant impact on the separation factor. Toluene/heptane separation factor at 1.47, 1.67 and 1.79 can be obtained for membranes incorporating 7 wt% Cu(II)BTC, Cu(I/II)BTC and Cu(I)EDS respectively at room temperature.

19.
Turk J Chem ; 44(4): 1134-1147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488218

RESUMO

This study deals with selective separation of mono- and divalent cations from aqueous salt solutions using polymeric films based on polyethylene (PE) and polyamide6 (PA6), and two different commercial nanofiltration (NF) membranes. The diffusion rates (D) of ions (Na+ and Ca2+), separation factors (α) and ion rejections (R) of the films and NF membranes are examined comparatively as well as their surface morphology and hydrophilicity. It is observed that the diffusion rates of Na+ are in the range of 0.7-1.8 × 10-8cm2 .s-1 in the decreasing order of PE > NF90 > NF270 > PA6 while Ca2+ shows diffusion rates of 7.4-18.4 × 10-8 cm2 .s-1 in the increasing order of NF270 > NF90 ≈ PA6 > PE. Rejection values of the polymeric films and NF membranes against to Na+ and Ca2+ vary between 90% and 99.6%.The highest α(Ca2+/Na+) is found to be 20 for PA6 film. D, α, and R value of both polymeric films and NF membranes are strongly affected by the existence of osmosis during diffusion-dialysis and the sizes of hydrated sodiu and calcium ions. In conclusion, the film based on PA6 may be a good alternative for selective separation of mono- an divalent cations.

20.
Anal Sci ; 36(2): 241-245, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31564678

RESUMO

To investigate the effective separation of actinides (Ans) from lanthanides (Lns), single-stage batch extraction experiments were performed with a novel extractant, tetradodecyl-1,10-phenanthroline-2,9-diamide (TDdPTDA) with various diluents such as 3-nitrobenzotrifluoride (F-3), nitrobenzene, and n-dodecane for Am, Cm, and Lns. The extraction kinetics with TDdPTDA was rapid enough to perform continuous extraction experiments using mixer-settler extractors. The slopes of the distribution ratio versus the TDdPTDA concentration and the distribution ratio versus the nitric acid concentration were similar for F-3 and nitrobenzene systems, but different from the n-dodecane system. These differences were attributed to the characteristics of the diluents. This study revealed high distribution ratios of Am (DAm) and Cm (DCm) for TDdPTDA, with the high separation factors (SFs) of Am from Lns enough for their separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA