Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
Sci Total Environ ; : 174389, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960170

RESUMO

Climate change leads to more frequent and intense heavy rainfall events, posing significant challenges for urban stormwater management, particularly in rapidly urbanizing cities of developing countries with constrained infrastructure. However, the quantitative assessment of urban stormwater, encompassing both its volume and quality, in these regions is impeded due to the scarcity of observational data and resulting limited understanding of drainage system dynamics. This study aims to elucidate the present and projected states of urban flooding, with a specific emphasis on fecal and organic contamination caused by combined sewer overflow (CSO). Leveraging a hydrological model incorporating physical and biochemical processes validated against invaluable observational data, we undertake simulations to estimate discharge, flood volume, and concentrations of suspended solids (SS), Escherichia coli (E. coli), and chemical oxygen demand (COD) within the drainage channel network of Phnom Penh City, Cambodia. Alterations in flood volumes, and pollutant concentrations and loads in overflow under two representative concentration pathways (RCPs 4.5 and 8.5) for extreme rainfall events are projected. Furthermore, we employ a multi-criteria decision analysis (MCDA) framework to evaluate flood risk, incorporating diverse indicators encompassing physical, social, and ecological dimensions. Our results demonstrate the exacerbating effects of climate change on flood volumes, expansion of flooded areas, prolonged durations of inundation, elevated vulnerability index, and heightened susceptibility to pollutant contamination under both scenarios, underscoring increased risks of flooding and fecal contamination. Spatial analysis identifies specific zones exhibiting heightened vulnerability to flooding and climate change, suggesting priority zones for investment in flood mitigation measures. These findings provide crucial insights for urban planning and stormwater management in regions with limited drainage infrastructure, offering essential guidance for decision-making in locales facing similar challenges.

2.
J Environ Manage ; 366: 121594, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971061

RESUMO

In the management of urban drainage networks, great interest has been generated in the removal of sediments from sewer systems. The unsteady three-dimensional (3D) flow and turbulent coherent structures surrounding sediment reduction plates in a sewer system are investigated by means of the detached-eddy simulation (DES). Particular emphasis is given to detailing the instantaneous velocity and vorticity fields within the grooves, along with an examination of the three-dimensional, long-term, average flow structure at a Reynolds number of approximately 105. Velocity vectors demonstrate continuous flapping of the flow on the groove wall, periodically interacting with ejections of positive and negative vorticity originating from the grooves. The interaction between the three-dimensional groove flow and the shear flow leads to the downstream transport of patches of positive and negative vorticity, which significantly influence sediment transport. The high-velocity shear flows and strong vortices generated in undulating topography, as identified by the Q-criteria, are the key factors contributing to the efficient sediment reduction capabilities of the sediment reduction plates. The sediment reduction plates with partially enclosed structures exhibit low sedimentation rates in grooves on the plate, a broader acceleration region, and a lesser impact on the flow capacity. The results improve the understanding of the hydrodynamics and turbulent coherent structures surrounding the sediment reduction plates while elucidating the driving factors behind the enhancement of sediment scouring and suspension capacities. These results indicate that the redesign of the plates as partially enclosed structures contributes to further improving their sediment reduction performance.

3.
Water Res ; 260: 121959, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38909420

RESUMO

Combined sewer overflows (CSOs) introduce microbial contaminants into the receiving water bodies, thereby posing risks to public health. This study systematically investigated the disinfection performance and mechanisms of the combined process of ultraviolet and peracetic acid (UV/PAA) in CSOs with selecting Escherichia coli (E. coli) as a target microbial contaminant. The UV/PAA process exhibited superior performance in inactivating E. coli in simulated CSOs compared with UV, PAA, and UV/H2O2 processes. Increasing the PAA dosage greatly enhanced the disinfection efficiency, while turbidity and organic matter hindered the inactivation performance. Singlet oxygen (1O2), hydroxyl (•OH) and organic radicals (RO•) contributed to the inactivation of E. coli, with •OH and RO• playing the prominent role. Variations of intracellular reactive oxygen species, malondialdehyde, enzymes activities, DNA contents and biochemical compositions of E. coli cells suggested that UV/PAA primarily caused oxidative damage to intracellular molecules rather than the damage to the lipids of the cell membrane, therefore effectively limited the regrowth of E. coli. Additionally, the UV/PAA process displayed an outstanding performance in disinfecting actual raw CSOs, achieving a 2.90-log inactivation of total bacteria after reaction for 4 min. These results highlighted the practical applicability and effectiveness of the UV/PAA process in the disinfection of CSOs.

4.
J Environ Manage ; 365: 121465, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901320

RESUMO

By infiltrating and retaining stormwater, Blue-Green Infrastructure (BGI) can help to reduce Combined Sewer Overflows (CSOs), one of the main causes of urban water pollution. Several studies have evaluated the ability of individual BGI types to reduce CSOs; however, the effect of combining these elements, likely to occur in reality, has not yet been thoroughly evaluated. Moreover, the CSO volume reduction potential of relevant components of the urban drainage system, such as detention ponds, has not been quantified using hydrological models. This study presents a systematic way to assess the potential of BGI combinations to mitigate CSO discharge in a catchment near Zurich (Switzerland). Sixty BGI combinations, including four BGI elements (bioretention cells, permeable pavement, green roofs, and detention ponds) and four different implementation rates (25%, 50%, 75%, and 100% of the available sewer catchment area) are evaluated for four runoff routing schemes. Results reveal that BGI combinations can provide substantial CSO volume reductions; however, combinations including detention ponds can potentially increase CSO frequency, due to runoff prolongation. When runoff from upstream areas is routed to the BGI, the CSO discharge reductions from combinations of BGI elements differ from the cumulative CSO discharge reductions achieved by individual BGI types, indicating that the sum of effects from individual BGI types cannot accurately predict CSO discharge in combined BGI scenarios. Moreover, larger BGI implementation areas are not consistently more cost-effective than small implementation areas, since the additional CSO volume reduction does not outweigh the additional costs. The best-performing BGI combination depends on the desired objective, being CSO volume reduction, CSO frequency reduction or cost-effectiveness. This study emphasizes the importance of BGI combinations and detention ponds in CSO mitigation plans, highlighting their critical factors-BGI types, implementation area, and runoff routing- and offering a novel and systematic approach to develop tailored BGI strategies for urban catchments facing CSO challenges.

5.
J Environ Manage ; 362: 121320, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843750

RESUMO

The efficient removal of volatile sulfur compounds (VSCs), such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), is crucial due to their foul odor and corrosive potential in sewer systems. Biofilters (BFs) offer promise for VSCs removal, but face challenges related to pH control and changing conditions at full scale. Two BFs, operated under acidophilic conditions for 78 days, were evaluated for their performance at varying inlet concentrations and empty bed residence times (EBRTs). BF1, incorporating 4-6 mm marble limestone for pH control, outperformed BF2, which used NaHCO3 in the nutrient solution. BF1 displayed better resilience, maintained a stable pH of 4.6 ± 0.6, and achieved higher maximum elimination capacities (ECmax, 41 mg DMS m-3 h-1 (RE 38.3%), 146 mg DMDS m-3 h-1 (RE 83.1%), 47 mg DMTS m-3 h-1 (RE 93.1%)) at an EBRT of 56 s compared to BF2 (9 mg DMS m-3 h-1 (RE 7.1%), 9 mg DMDS m-3 h-1 (RE 4.8%) and 11 mg DMTS m-3 h-1 (RE 26.6%)). BF2 exhibited pH stratification and decreased performance after feeding interruptions. The biodegradability of VSCs followed the order DMTS > DMDS > DMS, and several microorganisms were identified contributing to VSCs degradation in BF1, including Bacillus (14%), Mycobacterium (11%), Acidiphilium (7%), and Acidobacterium (3%).


Assuntos
Dissulfetos , Filtração , Sulfetos , Sulfetos/química , Concentração de Íons de Hidrogênio
6.
Water Res ; 260: 121952, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38906083

RESUMO

Antimicrobial resistance (AMR) is a global public health threat, and the environment has been identified as an important reservoir for resistant microorganisms and genes. Storm overflows (SOs) discharge wastewater and stormwater, and are found throughout many wastewater networks. While there are no data currently showing the impact of SOs on the environment with respect to AMR in the UK, there is a small but growing body of evidence globally highlighting the potential role of SOs on environmental AMR. This review aims to provide an overview of the current state of SOs, describe global data investigating the impact of SOs on environmental AMR, and discuss the implications of SOs regarding AMR and human health. In addition, the complexities of studying the effects of SOs are discussed and a set of priority research questions and policy interventions to tackle a potentially emerging threat to public health are presented.

7.
Water Res ; 259: 121852, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889662

RESUMO

The purpose of this study was to evaluate the performance of HF183 Bacteroides for estimating pathogen exposures during recreational water activities. We compared the use of Bacteroides-based exposure assessment to exposure assessment that relied on pathogen measurements. We considered two types of recreational water sites: those impacted by combined sewer overflows (CSOs) and those not impacted by CSOs. Samples from CSO-impacted and non-CSO-impacted urban creeks were analysed by quantitative polymerase chain reaction (qPCR) for HF183 Bacteroides and eight human gastrointestinal pathogens. Exposure assessment was conducted two ways for each type of site (CSO-impacted vs. non-CSO impacted): 1) by estimating pathogen concentrations from HF183 Bacteroides concentrations using published ratios of HF183 to pathogens in sewage and 2) by estimating pathogen concentrations from qPCR measurements. QMRA (quantitative microbial risk assessment) was then conducted for swimming, wading, and fishing exposures. Overall, mean risk estimates varied from 0.27 to 53 illnesses per 1,000 recreators depending on exposure assessment, site, activity, and norovirus dose-response model. HF183-based exposure assessment identified CSO-impacted sites as higher risk, and the recommended HF183 risk-based threshold of 525 genomic copies per 100 mL was generally protective of public health at the CSO-impacted sites but was not as protective at the non-CSO-impacted sites. In the context of our urban watershed, HF183-based exposure assessment over- and under-estimated risk relative to exposure assessment based on pathogen measurements, and the etiology of predicted pathogen-specific illnesses differed significantly. Across all sites, the HF183 model overestimated risk for norovirus, adenovirus, and Campylobacter jejuni, and it underestimated risk for E. coli and Cryptosporidium. To our knowledge, this study is the first to directly compare health risk estimates using HF183 and empirical pathogen measurements from the same waterways. Our work highlights the importance of site-specific hazard identification and exposure assessment to decide whether HF183 is applicable for monitoring risk.


Assuntos
Bacteroides , Recreação , Microbiologia da Água , Medição de Risco , Bacteroides/isolamento & purificação , Bacteroides/genética , Humanos , Cidades , Norovirus , Esgotos/microbiologia , Monitoramento Ambiental/métodos
8.
Water Sci Technol ; 89(11): 3021-3034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877628

RESUMO

Drainage modeling that accurately captures urban storm inundation serves as the foundation for flood warning and drainage scheduling. In this paper, we proposed a novel coupling ideology that, by integrating 2D-1D and 1D-2D unidirectional processes, overcomes the drawback of the conventional unidirectional coupling approach that fails to properly represent the rainfall surface catchment dynamics, and provides more coherent hydrological implications compared to the bidirectional coupling concept. This paper first referred to a laboratory experimental case from the literature, applied and analyzed the coupling scheme proposed in this paper and the bidirectional coupling scheme that has been widely studied in recent years, compared the two coupling solutions in terms of the resulting accuracy and applicability, and discussed their respective strengths and weaknesses to validate the reliability of the proposed method. The verified proposed coupling scheme was then applied to the modeling of a real drainage system in a region of Nanjing, China, and the results proved that the coupling mechanism proposed in this study is of practical application value.


Assuntos
Cidades , Inundações , Hidrodinâmica , Modelos Teóricos , China , Esgotos , Drenagem Sanitária
9.
Artigo em Inglês | MEDLINE | ID: mdl-38928987

RESUMO

The study investigated the application of Wastewater-Based Epidemiology (WBE) as a tool for monitoring the SARS-CoV-2 prevalence in a city in northern Italy from October 2021 to May 2023. Based on a previously used deterministic model, this study proposed a variation to account for the population characteristics and virus biodegradation in the sewer network. The model calculated virus loads and corresponding COVID-19 cases over time in different areas of the city and was validated using healthcare data while considering viral mutations, vaccinations, and testing variability. The correlation between the predicted and reported cases was high across the three waves that occurred during the period considered, demonstrating the ability of the model to predict the relevant fluctuations in the number of cases. The population characteristics did not substantially influence the predicted and reported infection rates. Conversely, biodegradation significantly reduced the virus load reaching the wastewater treatment plant, resulting in a 30% reduction in the total virus load produced in the study area. This approach can be applied to compare the virus load values across cities with different population demographics and sewer network structures, improving the comparability of the WBE data for effective surveillance and intervention strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Itália/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Águas Residuárias/virologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Carga Viral , Análise Espaço-Temporal , Cidades/epidemiologia
10.
Talanta ; 277: 126401, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38876037

RESUMO

Tobacco-specific alkaloids and nitrosamines are important biomarkers for the estimation of tobacco use and human exposure to tobacco-specific nitrosamines that can be monitored by wastewater analysis. Thus far their analysis has used solid phase extraction, which is costly and time-consuming. In this study, we developed a direct injection liquid chromatography-tandem mass spectrometry method for the quantification of two tobacco-specific alkaloids and five nitrosamines in wastewater. The method achieved excellent linearity (R2 > 0.99) for all analytes, with calibration ranging from 0.10 to 800 ng/L. Method limits of detection and quantification were 0.17 ng/L (N-nitrosonornicotine, NNN) and 1.0 ng/L (N-nitrosoanatabine (NAT) and NNN), with acceptable accuracy (100 % ± 20 %) and precision (± 15 %). Analyte loss during filtration was < 15 %, and the relative matrix effect was < 10 %. The method was applied to 43 pooled wastewater samples collected from three wastewater treatment plants in Australia between 2017 and 2021. Anabasine and anatabine were detected in all samples at concentrations of 5.0 - 33 ng/L and 12 - 41 ng/L, respectively. Three of the five tobacco-specific nitrosamines (NAT, NNN, and (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol) (NNAL)) were detected, in < 50 % of the wastewater samples, with concentrations nearly ten times lower than the tobacco alkaloids (< 1.0 - 6.2 ng/L). In-sewer stability of the nitrosamines was also assessed in this study, with four (NAT, NNAL, NNN, and N-nitrosoanabasine (NAB)) being stable (i.e. < 20 % transformation over 12 h in both control reactor (CR) and rising main reactor (RM) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) being moderately stable (< 40 % loss over 12 h in RM). This direct injection method provides a high-throughput approach in simultaneous investigation of tobacco use and assessment of public exposure to tobacco-specific nitrosamines.

11.
Water Sci Technol ; 89(9): 2498-2511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747963

RESUMO

Ventilation is paramount in sanitary and stormwater sewer systems to mitigate odor problems and avert pressure surges. Existing numerical models have constraints in practical applications in actual sewer systems due to insufficient airflow modeling or suitability only for steady-state conditions. This research endeavors to formulate a mathematical model capable of accurately simulating various operational conditions of sewer systems under the natural ventilation condition. The dynamic water flow is modeled using a shock-capturing MacCormack scheme. The dynamic airflow model amalgamates energy and momentum equations, circumventing laborious pressure iteration computations. This model utilizes friction coefficients at interfaces to enhance the description of the momentum exchange in the airflow and provide a logical explanation for air pressure. A systematic analysis indicates that this model can be easily adapted to include complex boundary conditions, facilitating its use for modeling airflow in real sewer networks. Furthermore, this research uncovers a direct correlation between the air-to-water flow rate ratio and the filling ratio under natural ventilation conditions, and an empirical formula encapsulating this relationship is derived. This finding offers insights for practical engineering applications.


Assuntos
Modelos Teóricos , Esgotos , Movimentos da Água , Drenagem Sanitária
12.
Environ Sci Technol ; 58(19): 8518-8530, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693060

RESUMO

Wastewater-based epidemiology (WBE) has been widely implemented around the world as a complementary tool to conventional surveillance techniques to inform and improve public health responses. Currently, wastewater surveillance programs in the U.S. are evaluating integrated approaches to address public health challenges across multiple domains, including substance abuse. In this work, we demonstrated the potential of online solid-phase extraction coupled with liquid chromatography-high-resolution mass spectrometry to support targeted quantification and nontargeted analysis of psychoactive and lifestyle substances as a step toward understanding the operational feasibility of a statewide wastewater surveillance program for substance use assessment in New York. Target screening confirmed 39 substances in influent samples collected from 10 wastewater treatment plants with varying sewershed characteristics and is anticipated to meet the throughput demands as the statewide program scales up to full capacity. Nontarget screening prioritized additional compounds for identification at three confidence levels, including psychoactive substances, such as opioid analgesics, phenethylamines, and cathinone derivatives. Consumption rates of 12 target substances detected in over 80% of wastewater samples were similar to those reported by previous U.S.-based WBE studies despite the uncertainty associated with back-calculations. For selected substances, the relative bias in consumption estimates was sensitive to variations in monitoring frequency, and factors beyond human excretion (e.g., as indicated by the parent-to-metabolite ratios) might also contribute to their prevalence at the sewershed scale. Overall, our study marks the initial phase of refining analytical workflows and data interpretation in preparation for the incorporation of substance use assessment into the statewide wastewater surveillance program in New York.


Assuntos
Águas Residuárias , Águas Residuárias/química , New York , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Extração em Fase Sólida
13.
Water Res ; 257: 121701, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733962

RESUMO

Nitrate or nitrite-dependent anaerobic methane oxidation (n-DAMO) is a microbial process that links carbon and nitrogen cycles as a methane sink in many natural environments. This study demonstrates, for the first time, that the nitrite-dependent anaerobic methane oxidation (nitrite-DAMO) process can be stimulated in sewer systems under continuous nitrate dosing for sulfide control. In a laboratory sewer system, continuous nitrate dosing not only achieved complete sulfide removal, but also significantly decreased dissolved methane concentration by ∼50 %. Independent batch tests confirmed the coupling of methane oxidation with nitrate and nitrite reduction, revealing similar methane oxidation rates of 3.68 ± 0.5 mg CH4 L-1 h-1 (with nitrate as electron acceptor) and 3.57 ± 0.4 mg CH4 L-1 h-1 (with nitrite as electron acceptor). Comprehensive microbial analysis unveiled the presence of a subgroup of the NC10 phylum, namely Candidatus Methylomirabilis (n-DAMO bacteria that couples nitrite reduction with methane oxidation), growing in sewer biofilms and surface sediments with relative abundances of 1.9 % and 1.6 %, respectively. In contrast, n-DAMO archaea that couple methane oxidation solely to nitrate reduction were not detected. Together these results indicated the successful enrichment of n-DAMO bacteria in sewerage systems, contributing to approx. 64 % of nitrite reduction and around 50 % of dissolved methane removal through the nitrite-DAMO process, as estimated by mass balance analysis. The occurrence of the nitrite-DAMO process in sewer systems opens a new path to sewer methane emissions.


Assuntos
Metano , Nitratos , Nitritos , Oxirredução , Esgotos , Metano/metabolismo , Anaerobiose
14.
J Environ Manage ; 359: 121107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728984

RESUMO

Microbial induced concrete corrosion (MICC) is the primary deterioration affecting global sewers. Disentangling ecological mechanisms in the sewer system is meaningful for implementing policies to protect sewer pipes using trenchless technology. It is necessary to understand microbial compositions, interaction networks, functions, alongside assembly processes in sewer microbial communities. In this study, sewer wastewater samples and microbial samples from the upper part (UP), middle part (MP) and bottom part (BP) of different pipes were collected for 16S rRNA gene amplicon analysis. It was found that BP harbored distinct microbial communities and the largest proportion of unique species (1141) compared to UP and MP. The community in BP tended to be more clustered. Furthermore, significant differences in microbial functions existed in different spatial locations, including the carbon cycle, nitrogen cycle and sulfur cycle. Active microbial sulfur cycling indicated the corrosion risk of MICC. Among the environmental factors, the oxidation‒reduction potential drove changes in BP, while sulfate managed changes in UP and BP. Stochasticity dominated community assembly in the sewer system. Additionally, the sewer microbial community exhibited numerous positive links. BP possessed a more complex, modular network with higher modularity. These deep insights into microbial ecology in the sewer system may guide engineering safety and disaster prevention in sewer infrastructure.


Assuntos
Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia , Ecologia , Corrosão , Microbiota
15.
J Med Educ Curric Dev ; 11: 23821205241252069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706937

RESUMO

Doctors are well-trained in the collection, analysis, and interpretation of individual stool or urine sample data; however, wastewater-based epidemiology (WBE) combines the excretion of many community members into an anonymous health sample tied to a geographic location. We advocate for the inclusion of WBE in medical education. WBE offers physicians an opportunity to better care for patients with diseases seen at health clinics and doctors' offices, customize and inform treatment, and accept positive results as true positives, backed by the contextual information provided by wastewater findings. It is also a tool to combat biased or misinformed risk perceptions. Medical education should include how to evaluate wastewater information presented, detect inconsistencies, and determine applicability; just as medical students are taught to do with data from other sources.

16.
Environ Sci Technol ; 58(22): 9582-9590, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780619

RESUMO

Wastewater treatment contributes substantially to methane (CH4) emissions, yet monitoring and tracing face challenges because the treatment processes are often treated as a "black box". Particularly, despite growing interest, the amount of CH4 carryover and influx from the sewer and its impacts on overall emissions remain unclear. This study quantified CH4 emissions from six wastewater treatment plants (WWTPs) across China, utilizing existing multizonal odor control systems, with a focus on Beijing and Guiyang WWTPs. In the Beijing WWTP, almost 90% of CH4 emissions from the wastewater treatment process were conveyed through sewer pipes, affecting emissions even in the aerobic zone of biological treatment. In the Guiyang WWTP, where most CH4 from the sewer was released at the inlet well, a 24 h online monitoring revealed CH4 fluctuations linked to neighborhood water consumption and a strong correlation to influent COD inputs. CH4 emission factors monitored in six WWTPs range from 1.5 to 13.4 gCH4/kgCODrem, higher than those observed in previous studies using A2O technology. This underscores the importance of considering CH4 influx from sewer systems to avoid underestimation. The odor control system in WWTPs demonstrates its potential as a cost-effective approach for tracing, monitoring, and mitigating CH4.


Assuntos
Metano , Esgotos , Águas Residuárias , Metano/análise , Águas Residuárias/química , Eliminação de Resíduos Líquidos , China , Monitoramento Ambiental
17.
J Environ Manage ; 360: 121133, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763119

RESUMO

With climate change and urbanization, existing urban drainage systems are being stressed beyond their design capacity in many parts of the world. Real-time control (RTC) can improve the performance of these systems and reduce the need for system upgrades. However, developing optimal control policies for RTC is a challenging research area due to computational demands, high uncertainties and system dynamics. This study presents a new RTC method using neuro-evolution for controlling combined sewer overflow (CSO) in urban drainage systems. Neuro-evolution is an approach to neural network research by evolutionary algorithms. Neuro-evolution realizes RTC by training the control policy in advance, thus avoiding the online optimization process in the application period. The simulation results of the benchmark Astlingen network indicate that the trained control policy outperforms the equal filling degree strategy in terms of CSO volume reduction and robustness in the face of tank level uncertainty. The performance analysis of the typical CSO events shows that the control policy mainly makes positive contributions during 'small' CSO events rather than 'large' ones. In particular, the effectiveness of the control policy in 'small' CSO events is more prominent in the initial phase of the events compared with the final phase. This work stands to support a foundation for future studies in the control of urban water systems based on neuro-evolution.


Assuntos
Urbanização , Redes Neurais de Computação , Algoritmos , Mudança Climática , Esgotos , Drenagem Sanitária
18.
Sci Total Environ ; 939: 173595, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810738

RESUMO

Several studies have reported vapor intrusion (VI) occurring when volatile organic compound (VOC) vapors are transported through subsurface piping systems into building spaces (e.g. conduit VI). Site-specific risk assessment and risk management practices are complicated and evolving for conduit VI, especially at large hazardous waste sites, like Superfund sites, where many stakeholders are involved and have varied interests. Here, we propose a social ecological system (SES) framework as a decision-making tool to inform risk mitigation decisions. We demonstrate the SES framework using field data associated with a Superfund site near San Francisco, California. We evaluate sewer invert elevation and groundwater elevation data, as well as pre- and post- mitigation VOC concentration data within a sewer system. Unexpectedly, the sewer located above the groundwater table was determined to be a potential source of conduit VI risks. The SES framework describes how typical stakeholders associated with the site can affect and be affected by mitigation activities. It informs decisions about mitigation implementation and long-term operation efficacy by considering stakeholder roles and interests. Ultimately, gas siphons were selected as the mitigation technology for the example site. To date, approximately 6 gas siphons have been installed to mitigate conduit VI risks throughout the community. Collectively, our findings advance risk management decisions and highlight key considerations for risk mitigation approaches at hazardous waste sites, including Superfund sites, especially where VI risks are a concern.

19.
J Environ Manage ; 358: 120852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608577

RESUMO

Hydrogen sulfide (H2S) is one of the sewer gases commonly found in wastewater collection systems. This anaerobic degradation product causes issues, ranging from odor nuisances and health hazards to pipe corrosion. Several studies have provided an understanding of H2S formation mechanism, including simulations of H2S emissions in sewers, especially in pressurized systems. However, the present models necessitate a large amount of data due to the complexity of the H2S processes and common routine-monitoring water quality parameters may not fit the requirements. This study aims to simulate the fate and transport of H2S in both air and water phases in combined sewers, with a realization of practicableness of the application. The study case is centered around a fresh market in Bangkok, where the sewers are commonly plagued with garbage-related issues. These challenges pose difficulties for site monitoring across various aspects, necessitating the application of unconventional methods. On-site hydrodynamics, wastewater quality, and H2S gas concentration data were monitored on hourly and daily bases. It was found that the sulfides in the combined sewerage were correlated with sewage quality, e.g., COD, sulfate (SO42-), and pH concentrations in particular. The model results were in an acceptable range of accuracy (R2 = 0.63; NSE = 0.52; RMSE = 1.18) after being calibrated with the measured hydrogen sulfide gas concentration. The results lead to the conclusion that the simplified model is practical and remains effective even in sewers with untraditional conditions. This could hold promise as a fundamental tool in shaping effective H2S mitigation strategies.


Assuntos
Sulfeto de Hidrogênio , Esgotos , Sulfeto de Hidrogênio/análise , Esgotos/química , Águas Residuárias/química , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Monitoramento Ambiental
20.
Chemosphere ; 358: 142183, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685332

RESUMO

The accumulation of fat, oil and grease (FOG) deposits in sanitary sewer systems is a significant cause of sewer overflows, mainly due to their tendency to adhere to pipe walls. The aim of this study is to (i) develop laboratory-prepared FOG deposits using a mixture of iron (Fe) and aluminium (Al) metal ions, fatty acids, saccharides and cooked oils, in addition to various sanitary waste materials such as paper towels, wipes and pads and (ii) examine the characteristics of these FOG deposits. The goals of this study were to (i) gain a deeper understanding of the impact of sanitary waste on the formation of FOG deposits and (ii) discuss the detailed physiochemical properties of these FOG deposits. The findings revealed that FOG deposits can vary in nature, appearing as either a smooth, paste-like substance or a coarse, semi-solid material, depending on the types of waste present in the sewer. Analysis of the fatty acid profile indicated that the FOG deposits with wipes have the highest viscosity (3.2 × 104 Pa s) and larger composition of smaller chain saturated fatty acids (caprylic acid 0.64%, undecanoic acid 5.61%, lauric acid 4.65%, myristic acid 3.21% and palmitic 8.38%). In contrast, FOG deposits with Fe and Al metal impurities have higher heat resistance and thermal stability (melting point of 125 °C) and have larger composition of long chain fatty acids. Furthermore, FTIR analysis confirmed that these FOG deposits are composed of metallic salts of fatty acids, aligning with samples from sewer lines. Our results suggest that FOG deposit formation involves the aggregation of excess calcium, which compresses free fatty acid micelles, and a saponification reaction between the calcium aggregates and free fatty acids. This research illuminates the complex processes behind FOG deposit formation and their varied characteristics, providing valuable insights into potential strategies for preventing FOG-related sewer blockages.


Assuntos
Gorduras , Ácidos Graxos , Óleos , Esgotos , Esgotos/química , Gorduras/análise , Gorduras/química , Ácidos Graxos/análise , Óleos/química , Ferro/química , Ferro/análise , Eliminação de Resíduos Líquidos/métodos , Drenagem Sanitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...