Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
J Urol ; : 101097JU0000000000004137, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968141

RESUMO

PURPOSE: Mixed gonadal dysgenesis is a difference of sex development that is often confused with other conditions. Individuals have a 45,X/46,XY karyotype. Gonads are characterized by a streak gonad and a dysgenetic testis at varying levels of descent. Persistent Müllerian structures are typical (eg, hemi-uterus). There is significant phenotypic heterogeneity of the internal and external genitalia that, together with different interpretations of the definition, have contributed to a poor understanding of the condition among pediatric urologists. Mixed gonadal dysgenesis is one manifestation of the 45,X/46,XY karyotype. 45,X/46,XY mosaicism can also be associated with typical female or male external genitalia. This review aims to clarify the mixed gonadal dysgenesis definition and to provide urologists with diagnostic and management considerations for affected individuals. MATERIALS AND METHODS: We searched 3 medical databases for articles related to mixed gonadal dysgenesis. Two hundred eighty-seven full-text abstracts and manuscripts were reviewed for content pertinent to: (1) clarifying the definition of mixed gonadal dysgenesis, and (2) describing the following related to the care of affected individuals: prenatal and neonatal evaluation and management, genital surgery, gonadal malignancy risk and management, fertility, gender dysphoria/incongruence, puberty and long-term outcomes, systemic comorbidities, and transitional care. RESULTS: Fifty articles were included. Key points and implications for each of the above topics were summarized. CONCLUSIONS: Mixed gonadal dysgenesis exists on a wide phenotypic spectrum and management considerations reflect this heterogeneity. Care for individuals with mixed gonadal dysgenesis is complex, and decisions should be made in a multidisciplinary setting with psychological support.

2.
Proc Biol Sci ; 291(2026): 20240693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981518

RESUMO

The evolution of separate sexes from cosexuality requires at least two mutations: a feminizing allele to cause female development and a masculinizing allele to cause male development. Classically, the double mutant is assumed to be sterile, which leads to two-factor sex determination where male and female sex chromosomes differ at two loci. However, several species appear to have one-factor sex determination where sexual development depends on variation at a single locus. We show that one-factor sex determination evolves when the double mutant develops as a male or a female. The feminizing allele fixes when the double mutant is male, and the masculinizing allele fixes when the double mutant is female. The other locus then gives XY or ZW sex determination based on dominance: for example, a dominant masculinizer becomes a Y chromosome. Although the resulting sex determination system differs, the conditions required for feminizers and masculinizers to spread are the same as in classical models, with the important difference that the two alleles do not need to be linked. Thus, we reveal alternative pathways for the evolution of sex determination and discuss how they can be distinguished using new data on the genetics of sex determination.


Assuntos
Mutação , Processos de Determinação Sexual , Masculino , Feminino , Animais , Cromossomos Sexuais , Evolução Biológica , Modelos Genéticos , Alelos , Ligação Genética
3.
J Biochem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982631

RESUMO

Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.

4.
Front Cell Dev Biol ; 12: 1343800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961864

RESUMO

Background: The classical concept of brain sex differentiation suggests that steroid hormones released from the gonads program male and female brains differently. However, several studies indicate that steroid hormones are not the only determinant of brain sex differentiation and that genetic differences could also be involved. Methods: In this study, we have performed RNA sequencing of rat brains at embryonic days 12 (E12), E13, and E14. The aim was to identify differentially expressed genes between male and female rat brains during early development. Results: Analysis of genes expressed with the highest sex differences showed that Xist was highly expressed in females having XX genotype with an increasing expression over time. Analysis of genes expressed with the highest male expression identified three early genes, Sry2, Eif2s3y, and Ddx3y. Discussion: The observed sex-specific expression of genes at early development confirms that the rat brain is sexually dimorphic prior to gonadal action on the brain and identifies Sry2 and Eif2s3y as early genes contributing to male brain development.

5.
Sci Rep ; 14(1): 16548, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020011

RESUMO

When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1-4.5 million years (Myr). We show that the translocated regions have maintained 68.3-97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.


Assuntos
Evolução Molecular , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Masculino , Feminino , Filogenia , Aves Canoras/genética , Translocação Genética
6.
Genet Med ; : 101212, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39011769

RESUMO

INTRODUCTION: Klinefelter syndrome (KS), a sex chromosome aneuploidy, is associated with a 47,XXY chromosomal complement and is diagnosed in ∼1:600 live male births. Individuals with a 46,XX cell line in addition to 47,XXY are less common with a limited number of published case reports. METHODOLOGY: To better understand the implications of a 47,XXY/46,XX karyotype, we conducted a retrospective, multi-center analysis of the cytogenetic findings and associated clinical records of 34 patients diagnosed with this SCA across 14 institutions. RESULTS: Presence of the XX cell line ranged from 5-98% in patient specimens. Phenotypes also exhibited significant heterogeneity with some reporting a single reason for referral and others presenting with a constellation of symptoms, including ambiguous genitalia and ovotestes. Ovotestes were present in 12% of individuals in this cohort, who had a significantly higher percentage of XX cells. Notably, two patients were assigned female sex at birth DISCUSSION: These findings highlight the variability of the clinical phenotypes associated with this SCA as well as the challenges of clinical management for this population. Karyotype or FISH analysis, which offer single-cell resolution, rather than chromosomal microarray or molecular testing, is the ideal test strategy in these instances as mosaicism can occur at low levels.

7.
Insect Mol Biol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949741

RESUMO

Transcriptomic data have been used to study sex chromosome dosage compensation (SCDC) in approximately 10 Lepidoptera ZW species, yielding a consensus compensation pattern of Z ≈ ZZ < AA . $$ \approx \mathrm{ZZ}<\mathrm{AA}. $$ It remains unclear whether this compensation pattern holds when examining more Lepidoptera ZW species and/or using proteomic data to analyse SCDC. Here we combined transcriptomic and proteomic data as well as transcriptional level of six individual Z genes to reveal the SCDC pattern in Helicoverpa armigera, a polyphagous lepidopteran pest of economic importance. Transcriptomic analysis showed that the Z chromosome expression of H. armigera was balanced between male and female but substantially reduced relative to autosome expression, exhibiting an SCDC pattern of Z ≈ ZZ < AA $$ \approx \mathrm{ZZ}<\mathrm{AA} $$ . When using H. amigera midgut proteomic data, the SCDC pattern of this species changed from Z ≈ ZZ < AA $$ \approx \mathrm{ZZ}<\mathrm{AA} $$ at transcriptomic level to Z = ZZ = AA at the proteomic level. RT-qPCR analysis of transcript abundance of six Z genes found that compensation for each Z gene could vary from no compensation to overcompensation, depending on the individual genes and tissues tested. These results demonstrate for the first time the existence of a translational compensation mechanism, which is operating in addition to a translational mechanism, such as has been reported in other lepidopteran species. And the transcriptional compensation mechanism functions to accomplish Z chromosome dosage balance between the sexes (M = F on the Z chromosome), whereas the translation compensation mechanism operates to achieve dosage compensation between Z chromosome and autosome (Z = AA).

8.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38950035

RESUMO

Natural selection is less efficient in the absence of recombination. As a result, nonrecombining sequences, such as sex chromosomes, tend to degenerate over time. Although the outcomes of recombination arrest are typically observed after many millions of generations, recent neo-sex chromosomes can give insight into the early stages of this process. Here, we investigate the evolution of neo-sex chromosomes in the Spanish marbled white butterfly, Melanargia ines, where a Z-autosome fusion has turned the homologous autosome into a nonrecombining neo-W chromosome. We show that these neo-sex chromosomes are likely limited to the Iberian population of M. ines, and that they arose around the time when this population split from North-African populations, around 1.5 million years ago. Recombination arrest of the neo-W chromosome has led to an excess of premature stop-codons and frame-shift mutations, and reduced gene expression compared to the neo-Z chromosome. Surprisingly, we identified two regions of ∼1 Mb at one end of the neo-W that are both less diverged from the neo-Z and less degraded than the rest of the chromosome, suggesting a history of rare but repeated genetic exchange between the two neo-sex chromosomes. These plateaus of neo-sex chromosome divergence suggest that neo-W degradation can be locally reversed by rare recombination between neo-W and neo-Z chromosomes.


Assuntos
Borboletas , Recombinação Genética , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Masculino , Borboletas/genética , Feminino , Evolução Molecular , Seleção Genética
9.
Animals (Basel) ; 14(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38997961

RESUMO

Sex determination is remarkably diverse, with frequent transitions between sex chromosomes, in amphibians. Under these transitions, some chromosomes are more likely to be recurrently co-opted as sex chromosomes, as they are often observed across deeply divergent taxa. However, little is known about the pattern of sex chromosome evolution among closely related groups. Here, we examined sex chromosome and sex determination in two spiny frogs, Nanorana quadranus and Quasipaa yei. We conducted an analysis of genotyping-by-sequencing (GBS) data from a total of 34 individuals to identify sex-specific makers, with the results verified by PCR. The results suggest that chromosome 1 is a homologous sex chromosome with an XY pattern in both species. This chromosome has been evolutionarily conserved across these closely related groups within a period of time. The DMRT1 gene is proposed to be implicated in homology across two distantly related spiny frog species as a putative candidate sex-determining gene. Harboring the DMRT1 gene, chromosome 1 would have been independently co-opted for sex determination in deeply divergent groups of anurans.

10.
Cell Genom ; : 100607, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38996479

RESUMO

Chondrichthyes is an important lineage to reconstruct the evolutionary history of vertebrates. Here, we analyzed genome synteny for six chondrichthyan chromosome-level genomes. Our comparative analysis reveals a slow evolutionary rate of chromosomal changes, with infrequent but independent fusions observed in sharks, skates, and chimaeras. The chondrichthyan common ancestor had a proto-vertebrate-like karyotype, including the presence of 18 microchromosome pairs. The X chromosome is a conversed microchromosome shared by all sharks, suggesting a likely common origin of the sex chromosome at least 181 million years ago. We characterized the Y chromosomes of two sharks that are highly differentiated from the X except for a small young evolutionary stratum and a small pseudoautosomal region. We found that shark sex chromosomes lack global dosage compensation but that dosage-sensitive genes are locally compensated. Our study on shark chromosome evolution enhances our understanding of shark sex chromosomes and vertebrate chromosome evolution.

11.
Am J Med Genet A ; : e63819, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016627

RESUMO

Turner syndrome (TS) is defined by partial or complete absence of a sex chromosome. Little is known about the phenotype of individuals with TS mosaic with trisomy X (45,X/47,XXX or 45,X/46,XX/47,XXX) (~3% of TS). We compared the diagnostic, perinatal, medical, and neurodevelopmental comorbidities of mosaic 45,X/47,XXX (n = 35, 9.4%) with nonmosaic 45,X (n = 142) and mosaic 45,X/46,XX (n = 66). Females with 45,X/47,XXX had fewer neonatal concerns and lower prevalence of several TS-related diagnoses compared with 45,X; however the prevalence of neurodevelopmental and psychiatric diagnoses were not different. Compared to females with 45,X/46,XX, the 45,X/47,XXX group was significantly more likely to have structural renal anomalies (18% vs. 3%; p = 0.03). They were twice as likely to have congenital heart disease (32% vs. 15%, p = 0.08) and less likely to experience spontaneous menarche (46% vs. 75% of those over age 10, p = 0.06), although not statistically significant. Congenital anomalies, hypertension, and hearing loss were primarily attributable to a higher proportion of 45,X cells, while preserved ovarian function was most associated with a higher proportion of 46,XX cells. In this large TS cohort, 45,X/47,XXX was more common than previously reported, individuals were phenotypically less affected than those with 45,X, but did have trends for several more TS-related diagnoses than individuals with 45,X/46,XX.

12.
Ecol Evol ; 14(7): e11701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39050657

RESUMO

An advantage of sex chromosomes may be the potential to reduce sexual conflict because they provide a basis for selection to operate separately on females and males. However, evaluating the relationship between sex chromosomes and sexual conflict is challenging owing to the difficulty in measuring sexual conflict and substantial divergence between species with and without sex chromosomes. We therefore examined sex-biased gene expression as a proxy for sexual conflict in three sets of Drosophila species with and without young sex chromosomes, the so-called neo-sex chromosomes. In all sets, we detected more sex-biased genes in the species with neo-sex chromosomes than in the species without neo-sex chromosomes in larvae, pupae, and adult somatic tissues but not in gonads. In particular, many unbiased genes became either female- or male-biased after linkage to the neo-sex chromosomes in larvae, despite the low sexual dimorphism. For example, genes involved in metabolism, a key determinant for the rate of development in many animals, were enriched in the genes that acquired sex-biased expression on the neo-sex chromosomes at the larval stage. These genes may be targets of sexually antagonistic selection (i.e., large size and rapid development are selected for in females but selected against in males). These results indicate that acquiring neo-sex chromosomes may have contributed to a reduction in sexual conflict, particularly at the larval stage, in Drosophila..

13.
Int J Neonatal Screen ; 10(3)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39051404

RESUMO

Sex chromosome aneuploidies (SCAs) collectively occur in 1 in 500 livebirths, and diagnoses in the neonatal period are increasing with advancements in prenatal and early genetic testing. Inevitably, SCA will be identified on either routine prenatal or newborn screening in the near future. Tetrasomy SCAs are rare, manifesting more significant phenotypes compared to trisomies. Prenatal cell-free DNA (cfDNA) screening has been demonstrated to have relatively poor positive predictive values (PPV) in SCAs, directing genetic counseling discussions towards false-positive likelihood rather than thoroughly addressing all possible outcomes and phenotypes, respectively. The eXtraordinarY Babies study is a natural history study of children prenatally identified with SCAs, and it developed a longitudinal data resource and common data elements with the Newborn Screening Translational Research Network (NBSTRN). A review of cfDNA and diagnostic reports from participants identified a higher than anticipated rate of discordance. The aims of this project are to (1) compare our findings to outcomes from a regional clinical cytogenetic laboratory and (2) describe discordant outcomes from both samples. Twenty-one (10%), and seven (8.3%) cases were found to be discordant between cfDNA (result or indication reported to lab) and diagnosis for the Babies Study and regional laboratory, respectively. Discordant results represented six distinct discordance categories when comparing cfDNA to diagnostic results, with the largest groups being Trisomy cfDNA vs. Tetrasomy diagnosis (66.7% of discordance in eXtraordinarY Babies study) and Mosaicism (57.1% in regional laboratory). Traditional genetic counseling for SCA-related cfDNA results is inadequate given a high degree of discordance that jeopardizes the accuracy of the information discussed and informed decision making following prenatal genetic counseling.

14.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928079

RESUMO

Proteasome 26S Subunit, Non-ATPase 9 (psmd9) plays an important role in the balance of protamine and the stability of the nucleolar structure during spermatogenesis. In this study, we cloned the psmd9 of Cynoglossus semilaevis and analyzed its expression pattern. psmd9 was identified on the Z chromosome of C. semilaevis, which is considered an interesting candidate gene for spermatogenesis. qRT-PCR and FISH experiments showed that the psmd9 gene was significantly highly expressed in the testes. It is worth noting that the expression level of psmd9 in male fish testes is significantly higher than that in pseudomales. In order to further explore the role of psmd9 in spermatogenesis, a male testicular cell line was used as the experimental material. The results of the psmd9-RNAi and overexpression experiments showed that psmd9 had a synergistic effect with spermatogenesis-related genes dnd1, cfap69, dnah3 and dnajb13, but had an antagonistic effect with ccne2. Our findings offer a scientific foundation for comprehending the role of psmd9 in the spermatogenesis regulatory network of C. semilaevis.


Assuntos
Espermatogênese , Testículo , Animais , Espermatogênese/genética , Masculino , Testículo/metabolismo , Cromossomos Sexuais/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Clonagem Molecular
16.
BMC Biol ; 22(1): 102, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693535

RESUMO

BACKGROUND: Sex-limited chromosomes Y and W share some characteristics, including the degeneration of protein-coding genes, enrichment of repetitive elements, and heterochromatin. However, although many studies have suggested that Y chromosomes retain genes related to male function, far less is known about W chromosomes and whether they retain genes related to female-specific function. RESULTS: Here, we built a chromosome-level genome assembly of the Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae, Pyraloidea), an economically important pest in corn, from a female, including both the Z and W chromosome. Despite deep conservation of the Z chromosome across Lepidoptera, our chromosome-level W assembly reveals little conservation with available W chromosome sequence in related species or with the Z chromosome, consistent with a non-canonical origin of the W chromosome. The W chromosome has accumulated significant repetitive elements and experienced rapid gene gain from the remainder of the genome, with most genes exhibiting pseudogenization after duplication to the W. The genes that retain significant expression are largely enriched for functions in DNA recombination, the nucleosome, chromatin, and DNA binding, likely related to meiotic and mitotic processes within the female gonad. CONCLUSIONS: Overall, our chromosome-level genome assembly supports the non-canonical origin of the W chromosome in O. furnacalis, which experienced rapid gene gain and loss, with the retention of genes related to female-specific function.


Assuntos
Cromossomos de Insetos , Mariposas , Cromossomos Sexuais , Animais , Mariposas/genética , Feminino , Cromossomos Sexuais/genética , Cromossomos de Insetos/genética , Masculino , Evolução Molecular , Genoma de Inseto
17.
Acta Biotheor ; 72(2): 6, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819710

RESUMO

The Y chromosome in the XY sex-determination system is often shorter than its X counterpart, a condition attributed to degeneration after Y recombination ceases. Contrary to the traditional view of continuous, gradual degeneration, our study reveals stabilization within large mating populations. In these populations, we demonstrate that both mutant and active alleles on the Y chromosome can reach equilibrium through a mutation-selection balance. However, the emergence of a new species, particularly through the founder effect, can disrupt this equilibrium. Specifically, if the male founders of a new species carry only a mutant allele for a particular Y-linked gene, this allele becomes fixed, leading to the loss of the corresponding active gene on the Y chromosome. Our findings suggest that the rate of Y-chromosome degeneration may be linked to the frequency of speciation events associated with single-male founder events.


Assuntos
Efeito Fundador , Cromossomo Y , Masculino , Cromossomo Y/genética , Animais , Alelos , Especiação Genética , Mutação , Feminino , Humanos , Modelos Genéticos
18.
Children (Basel) ; 11(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790600

RESUMO

This retrospective study aimed to analyze the treatment effect and prognostic factors of pediatric acute myeloid leukemia (AML) patients with t(8;21). A total of 268 newly diagnosed pediatric AML (pAML) enrolled from 1 January 2005 to 31 December 2022 were retrospectively reviewed, and 50 (18.7%) patients harbored t(8;21) translocation. CR rate, OS, EFS, and RFS were assessed by multivariate Logistic and Cox regression models in these patients. Of the 50 patients, 2 patients abandoned treatment during the first induction course. Of the remaining 48 patients who received double-induction therapy and were included in the final analyses, CR1 and CR2 were 75.0% (36/48) and 95.8% (46/48), respectively. The overall three-year OS, EFS, and RFS were 68.4% (95% CI, 55.0-85.1), 64.2% (95% CI, 50.7-81.4), and 65.5% (95% CI, 51.9-82.8), respectively. The presence of loss of sex chromosome (LOS) at diagnosis (n = 21) was associated with a better 3-year OS [87.5% (95% CI, 72.7-100) vs. 52.7% (95% CI, 35.1-79.3), p = 0.0089], 3-year EFS [81.6% (95% CI, 64.7-100) vs. 49.7% (95% CI, 32.4-76.4), p = 0.023], and 3-year RFS [81.6% (95% CI, 64.7-100) vs. 51.7% (95% CI, 33.9-78.9), p = 0.036] than those without LOS (n = 27), and it was also an independent good prognostic factor of OS (HR, 0.08 [95% CI, 0.01-0.48], p = 0.005), EFS (HR, 0.22 [95% CI, 0.05-0.85], p = 0.029), and RFS (HR, 0.21 [95% CI, 0.05-0.90], p = 0.035). However, extramedullary leukemia (EML) featured the independent risk factors of inferior OS (HR, 10.99 [95% CI, 2.08-58.12], p = 0.005), EFS (HR, 4.75 [95% CI, 1.10-20.61], p = 0.037), and RFS (HR, 6.55 [95% CI, 1.40-30.63], p = 0.017) in pediatric individuals with t(8;21) AML. Further analysis of combining LOS with EML indicated that the EML+LOS- subgroup had significantly inferior OS (92.9%, [95% CI, 80.3-100]), EFS (86.2%, [95% CI, 70.0-100]), and RFS (86.2%, [95% CI, 80.3-100]) compared to the other three subgroups (all p < 0.001). LOS and EML are independent prognostic factors of OS, EFS, and RFS with t(8;21) pAML patients. LOS combined with EML may help improve risk stratification.

19.
J Hered ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757192

RESUMO

The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the A+T content ranging between 38,1 and 68,1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.

20.
J Genet Couns ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610065

RESUMO

The introduction of cell-free DNA screening has resulted in increased prenatal identification of sex chromosome aneuploidies (SCAs). This study aimed to evaluate genetic counselor experiences disclosing SCAs positive prenatal screening or testing results and genetic counselor-reported parental questions regarding sex, gender, and sexual orientation. Forty-eight prenatal genetic counselors completed the survey. When asked to quantify their experiences, 97.9% of counselors reported disclosing a SCAs positive screen result within the previous year, and 81.3% disclosed a diagnostic result. Of those counselors, 53.8% reported always or often receiving parental questions about sex, 33% always or often about gender, and 25% always or often regarding sexual orientation. Counselors were asked to share examples of parental questions following a positive screen or diagnostic testing for SCAs. Parental questions were stratified by karyotype and content analysis revealed questions about the fetus' sex, anatomy, reproduction, being cisgender, gender expression, behavior, being transgender, and sexual orientation. The examples of parental questions provided by genetic counselors suggested some parents may have misconceptions about the intersection of SCAs with sex, gender, and sexual orientation following prenatal screening or diagnostic testing. The majority of counselors (83.3%) agreed to some extent that they desired further education on responding to parental questions about SCAs. Findings from this research suggest a need for genetic counseling strategies that accurately and respectfully discuss SCAs in the context of sex, gender, and sexual orientation with prenatal patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...