RESUMO
The selection of highly recombinant protein (RP)-productive Chinese hamster ovary (CHO) cell lines is widely carried out in shake flasks. It is assumed that increases in the operating parameters in shake flasks lead to impairments in cell growth and RP production. These effects in cells metabolism are widely associated with high mass transfers and hydrodynamic stress. This study examined the impact of commonly used operational parameters on growth and specific productivity (qP) of two CHO cell lines differentially secreting a humanized anti-hIL8 monoclonal antibody (mAb) and cultured in 250 ml flasks. The evaluated parameters are filling volume (10, 15, and 20%), shaking frequency (60 and 120 revolutions per minute -rpm-), and orbital diameter (25.4 and 19 mm). The analysis of the oxygen transfer was done in terms of the measured volumetric mass transfer coefficient (kLa) and of the hydrodynamics in terms of power input per unit volume of liquid (P/V), the turbulent eddy length scale measured by the Kolmogorov's microscale of turbulence, the energy dissipation rate, the average shear stress, and the shear rate. Though almost all measured kinetic and stoichiometric parameters remained unchanged, mAb titer included, significant differences were found in maximum cell concentration, 10-45% higher in conditions with lower values of kLa and P/V. Changes in glucose metabolism contributing to qP were only shown in the higher producer cell line. Non-lethal responses to elevated oxygen transfer and shear stress might be present and must be considered when evaluating CHO cell cultures in shake flasks.
Assuntos
Reatores Biológicos , Oxigênio , Animais , Células CHO , Cricetinae , Cricetulus , Oxigênio/metabolismo , Proteínas RecombinantesRESUMO
The heat-inducible expression system has been widely used to produce recombinant proteins in Escherichia coli. However, the rise in temperature affects cell growth, activates the bacterial Heat-Shock Response (HSR), and promotes the formation of insoluble protein aggregates known as inclusion bodies (IBs). In this work, we evaluate the effect of the culture scale (shake flasks and bioreactors) and induction temperature (39 and 42 °C) on the kinetic behavior of thermoinducible recombinant E. coli ATCC 53606 producing rESAT-6 (6-kDa early-secretory antigenic target from Mycobacterium tuberculosis), compared with cultures grown at 30 °C (without induction). Also, the expression of the major E. coli chaperones (DnaK and GroEL) was analyzed. We found that almost twice maximum biomass and rESAT-6 production were obtained in bioreactors (~ 3.29 g/L of biomass and ~ 0.27 g/L of rESAT-6) than in shake flasks (~ 1.41 g/L of biomass and ~ 0.14 g/L of rESAT-6) when induction was carried out at 42 °C, but similar amounts of rESAT-6 were obtained from cultures induced at 39 °C (~ 0.14 g/L). In all thermo-induced conditions, rESAT-6 was trapped in IBs. Furthermore, DnaK was preferably expressed in the soluble fraction, while GroEL was present in IBs. Importantly, IBs formed at 39 °C, in both shake flasks and bioreactors, were more susceptible to degradation by proteinase-K, indicating a lower amyloid content compared to IBs formed at 42 °C. Our work presents evidence that the culture scale and the induction temperature modify the E. coli metabolic response, expression of chaperones, and structure of the IBs during rESAT-6 protein production in a thermoinducible system.