Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Inn Med (Heidelb) ; 65(8): 787-797, 2024 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-38977442

RESUMO

Genetic arrhythmia disorders are rare diseases; however, they are a common cause of sudden cardiac death in children, adolescents, and young adults. In principle, a distinction can be made between channelopathies and cardiomyopathies in the context of genetic diseases. This paper focuses on the channelopathies long and short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Early diagnosis of these diseases is essential, as drug therapy, behavioral measures, and if necessary, implantation of a cardioverter defibrillator can significantly improve the prognosis and quality of life of patients. This paper highlights the pathophysiological and genetic basis of these channelopathies, describes their clinical manifestations, and comments on the principles of diagnosis, risk stratification and therapy.


Assuntos
Arritmias Cardíacas , Síndrome de Brugada , Canalopatias , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Arritmias Cardíacas/fisiopatologia , Canalopatias/genética , Canalopatias/diagnóstico , Canalopatias/terapia , Síndrome de Brugada/genética , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/fisiopatologia , Síndrome de Brugada/terapia , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Adolescente , Criança , Síndrome do QT Longo/genética , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/terapia , Síndrome do QT Longo/fisiopatologia , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Adulto , Desfibriladores Implantáveis , Eletrocardiografia
2.
Adv Exp Med Biol ; 1441: 1057-1090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884769

RESUMO

Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.


Assuntos
Arritmias Cardíacas , Modelos Animais de Doenças , Animais , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/metabolismo , Transdução de Sinais/genética
3.
Adv Exp Med Biol ; 1441: 1033-1055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884768

RESUMO

Inherited forms of cardiac arrhythmias mostly are rare diseases (prevalence <1:2000) and considered to be either "primary electrical heart disorders" due to the absence of structural heart abnormalities or "cardiac ion channel disorders" due to the myocellular structures involved. Precise knowledge of the electrocardiographic features of these diseases and their genetic classification will enable early disease recognition and prevention of cardiac events including sudden cardiac death.The genetic background of these diseases is complex and heterogeneous. In addition to the predominant "private character" of a mutation in each family, locus heterogeneity involving many ion channel genes for the same familial arrhythmia syndrome is typical. Founder pathogenic variants or mutational hot spots are uncommon. Moreover, phenotypes may vary and overlap even within the same family and mutation carriers. For the majority of arrhythmias, the clinical phenotype of an ion channel mutation is restricted to cardiac tissue, and therefore, the disease is nonsyndromic.Recent and innovative methods of parallel DNA analysis (so-called next-generation sequencing, NGS) will enhance further mutation and other variant detection as well as arrhythmia gene identification.


Assuntos
Arritmias Cardíacas , Predisposição Genética para Doença , Mutação , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Predisposição Genética para Doença/genética , Canais Iônicos/genética , Fenótipo , Eletrocardiografia
4.
J Electrocardiol ; 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38714466

RESUMO

Congenital short QT syndrome is a very low prevalence inherited primary arrhythmia syndrome first reported in 2000 by Gussak et al., who described two families with a short QT interval, syncope, and sudden cardiac death. In 2004, Ramon Brugada et al. identified the first genetic type of this entity. To date, a total of nine genotypes have been described. The diagnosis is easy from the electrocardiogram (ECG), not only due to the short QT duration, but also based on other aspects covered in this review. During 24-h Holter monitoring, paroxysmal atrial fibrillation spontaneously converting to sinus rhythm may be found. Even though the T wave may appear symmetric on the ECG, the T loop of the vectorcardiogram confirms that the T wave is constantly asymmetric due to the presence of dashes closer to each other in the efferent branch. In this review, we also describe the minus-plus T wave sign that we have described in a previously published article. In addition to congenital causes, we briefly highlight the existence of numerous acquired causes of short QT interval.

5.
Biochemistry (Mosc) ; 89(3): 543-552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648771

RESUMO

Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.


Assuntos
Síndrome de Brugada , Canal de Potássio ERG1 , Mutação com Ganho de Função , Adulto , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Células CHO , Cricetulus , Eletrocardiografia , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação de Sentido Incorreto
6.
EBioMedicine ; 103: 105108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653189

RESUMO

The clinical significance of optimal pharmacotherapy for inherited arrhythmias such as short QT syndrome (SQTS) and long QT syndrome (LQTS) has been increasingly recognised. The advancement of gene technology has opened up new possibilities for identifying genetic variations and investigating the pathophysiological roles and mechanisms of genetic arrhythmias. Numerous variants in various genes have been proven to be causative in genetic arrhythmias. Studies have demonstrated that the effectiveness of certain drugs is specific to the patient or genotype, indicating the important role of gene-variants in drug response. This review aims to summarize the reported data on the impact of different gene-variants on drug response in SQTS and LQTS, as well as discuss the potential mechanisms by which gene-variants alter drug response. These findings may provide valuable information for future studies on the influence of gene variants on drug efficacy and the development of genotype-guided or precision treatment for these diseases.


Assuntos
Variação Genética , Genótipo , Síndrome do QT Longo , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/tratamento farmacológico , Predisposição Genética para Doença , Antiarrítmicos/uso terapêutico , Resultado do Tratamento , Variantes Farmacogenômicos
7.
Front Cardiovasc Med ; 11: 1369250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455723

RESUMO

Background: The use of SGLT-2 inhibitors has revolutionized heart failure therapy. Evidence suggests a reduced incidence of ventricular and atrial arrhythmias in patients with dapagliflozin or empagliflozin treatment. It is unclear to what extent the reduced arrhythmia burden is due to direct effects of the SGLT2 inhibitors or is solely a marker of improved cardiac function. Methods: One hundred five rabbit hearts were allocated to eight groups and retrogradely perfused, employing a Langendorff setup. Action potential duration at 90% of repolarization (APD90), QT intervals, effective refractory periods, conduction velocity, and dispersion of repolarization were obtained with monophasic action potential catheters. A model for tachyarrhythmias was established with the IKr blocker erythromycin for QT prolongation associated proarrhythmia as well as the potassium channel opener pinacidil for a short-QT model. An atrial fibrillation (AF) model was created with isoproterenol and acetylcholine. With increasing concentrations of both SGLT2 inhibitors, reductions in QT intervals and APD90 were observed, accompanied by a slight increase in ventricular arrhythmia episodes. During drug-induced proarrhythmia, empagliflozin succeeded in decreasing QT intervals, APD90, and VT burden whereas dapagliflozin demonstrated no significant effects. In the presence of pinacidil induced arrhythmogenicity, neither SGLT2 inhibitor had a significant impact on cardiac electrophysiology. In the AF setting, perfusion with dapagliflozin showed significant suppression of AF in the course of restitution of electrophysiological parameters whereas empagliflozin showed no significant effect on atrial fibrillation incidence. Conclusion: In this model, empagliflozin and dapagliflozin demonstrated opposite antiarrhythmic properties. Empagliflozin reduced ventricular tachyarrhythmias whereas dapagliflozin showed effective suppression of atrial arrhythmias.

8.
Cardiovasc Res ; 120(2): 114-131, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38195920

RESUMO

Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.


Assuntos
Síndrome de Brugada , Canalopatias , Síndrome do QT Longo , Taquicardia Ventricular , Humanos , Morte Súbita Cardíaca/etiologia , Arritmias Cardíacas , Sistema Nervoso Autônomo
9.
Diagnostics (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38066791

RESUMO

Sudden cardiac death (SCD) in children is a devastating event, often linked to primary electrical diseases (PED) of the heart. PEDs, often referred to as channelopathies, are a group of genetic disorders that disrupt the normal ion channel function in cardiac cells, leading to arrhythmias and sudden cardiac death. This paper investigates the unique challenges of risk assessment and stratification for channelopathy-related SCD in pediatric patients-Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, long QT syndrome, Anderson-Tawil syndrome, short QT syndrome, and early repolarization syndrome. We explore the intricate interplay of genetic, clinical, and electrophysiological factors that contribute to the complex nature of these conditions. Recognizing the significance of early identification and tailored management, this paper underscores the need for a comprehensive risk stratification approach specifically designed for pediatric populations. By integrating genetic testing, family history, and advanced electrophysiological evaluation, clinicians can enhance their ability to identify children at the highest risk for SCD, ultimately paving the way for more effective preventive strategies and improved outcomes in this vulnerable patient group.

10.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960599

RESUMO

Short QT syndrome (SQTS) is an inherited cardiac ion-channel disease related to an increased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is often the first clinical presentation in patients with SQTS. However, arrhythmia risk stratification is presently unsatisfactory in asymptomatic patients. In this context, artificial intelligence-based electrocardiogram (ECG) analysis has never been applied to refine risk stratification in patients with SQTS. The purpose of this study was to analyze ECGs from SQTS patients with the aid of different AI algorithms to evaluate their ability to discriminate between subjects with and without documented life-threatening arrhythmic events. The study group included 104 SQTS patients, 37 of whom had a documented major arrhythmic event at presentation and/or during follow-up. Thirteen ECG features were measured independently by three expert cardiologists; then, the dataset was randomly divided into three subsets (training, validation, and testing). Five shallow neural networks were trained, validated, and tested to predict subject-specific class (non-event/event) using different subsets of ECG features. Additionally, several deep learning and machine learning algorithms, such as Vision Transformer, Swin Transformer, MobileNetV3, EfficientNetV2, ConvNextTiny, Capsule Networks, and logistic regression were trained, validated, and tested directly on the scanned ECG images, without any manual feature extraction. Furthermore, a shallow neural network, a 1-D transformer classifier, and a 1-D CNN were trained, validated, and tested on ECG signals extracted from the aforementioned scanned images. Classification metrics were evaluated by means of sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve. Results prove that artificial intelligence can help clinicians in better stratifying risk of arrhythmia in patients with SQTS. In particular, shallow neural networks' processing features showed the best performance in identifying patients that will not suffer from a potentially lethal event. This could pave the way for refined ECG-based risk stratification in this group of patients, potentially helping in saving the lives of young and otherwise healthy individuals.


Assuntos
Arritmias Cardíacas , Inteligência Artificial , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/complicações , Redes Neurais de Computação , Eletrocardiografia/métodos , Morte Súbita Cardíaca/etiologia
11.
Mol Genet Metab ; 140(4): 107733, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979236

RESUMO

BACKGROUND: Systemic primary carnitine deficiency (PCD) is characterized by cardiomyopathy and arrhythmia. Without carnitine supplementation, progression is usually towards fatal cardiac decompensation. While the cardiomyopathy is most likely secondary to energy deficiency, the mechanism of arrhythmia is unclear, and may be related to a short QT interval. OBJECTIVE: We aim to describe rhythmic manifestations at diagnosis and with carnitine supplementation. METHODS: French patients diagnosed for PCD were retrospectively included. Clinical and para clinical data at diagnosis and during follow-up were collected. Electrocardiograms with QT interval measurements were blinded reviewed by two paediatric cardiologists. RESULTS: Nineteen patients (median age at diagnosis 2.3 years (extremes 0.3-28.9)) followed in 8 French centres were included. At diagnosis, 21% of patients (4/19) had arrhythmia (2 ventricular fibrillations, 1 ventricular tachycardia and 1 sudden death), and 84% (16/19) had cardiomyopathy. Six electrocardiograms before treatment out of 11 available displayed a short QT (QTc < 340 ms). Median corrected QTc after carnitine supplementation was 404 ms (extremes 341-447) versus 350 ms (extremes 282-421) before treatment (p < 0.001). The whole QTc was prolonged, and no patient reached the criterion of short QT syndrome with carnitine supplementation. Three patients died, probably from rhythmic cause without carnitine supplementation (two extra-hospital sudden deaths and one non-recoverable rhythmic storm before carnitine supplementation), whereas no rhythmic complication occurred in patients with carnitine supplementation. CONCLUSION: PCD is associated with shortening of the QT interval inducing severe arrhythmia. A potential explanation would be a toxic effect of accumulated fatty acid and metabolites on ionic channels embedded in the cell membrane. Carnitine supplementation normalizes the QTc and prevents arrhythmia. Newborn screening of primary carnitine deficiency would prevent avoidable deaths.


Assuntos
Cardiomiopatias , Síndrome do QT Longo , Recém-Nascido , Criança , Humanos , Pré-Escolar , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Estudos Retrospectivos , Arritmias Cardíacas/complicações , Cardiomiopatias/complicações , Carnitina/metabolismo , Eletrocardiografia/efeitos adversos
12.
Ann Noninvasive Electrocardiol ; 28(6): e13077, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37658577

RESUMO

We report the case of a 13-year-old female patient presenting with presyncope and palpitations. Her electrocardiogram revealed an abbreviation of the rate-corrected QT interval with imaging showing significant left ventricular dysfunction. Carnitine levels were measured as part of her diagnostic workup, discovering a rare, reversible cause of short QT syndrome (SQTS) and associated cardiomyopathy-primary carnitine deficiency (PCD) caused by a homozygous mutation in the SLC22A5 gene, leading to an in-frame deletion mutation (NP_003051.1:p.Phe23del) affecting the organic cation transporter 2 (OCTN2) protein. Following the treatment with oral carnitine supplementation, her QT interval returned to within the normal range with significant improvement in left ventricular function.


Assuntos
Arritmias Cardíacas , Cardiomiopatias , Carnitina/deficiência , Hiperamonemia , Doenças Musculares , Proteínas de Transporte de Cátions Orgânicos , Feminino , Humanos , Adolescente , Proteínas de Transporte de Cátions Orgânicos/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Eletrocardiografia , Cardiomiopatias/complicações , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Mutação , Carnitina/uso terapêutico , Carnitina/genética , Síndrome
13.
J Mol Cell Cardiol ; 183: 42-53, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579942

RESUMO

BACKGROUND: Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE: To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS: SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS: Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.


Assuntos
Fibrilação Atrial , Células-Tronco Pluripotentes Induzidas , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Potenciais de Ação/genética
14.
Heart Rhythm ; 20(8): 1197-1198, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37517862
15.
J Pharmacol Toxicol Methods ; 123: 107293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37468081

RESUMO

Pharmacological blockade of the IKr channel (hERG) by diverse drugs in clinical use is associated with the Long QT Syndrome that can lead to life threatening arrhythmia. Various computational tools including machine learning models (MLM) for the prediction of hERG inhibition have been developed to facilitate the throughput screening of drugs in development and optimise thus the prediction of hERG liabilities. The use of MLM relies on large libraries of training compounds for the quantitative structure-activity relationship (QSAR) modelling of hERG inhibition. The focus on inhibition omits potential effects of hERG channel agonist molecules and their associated QT shortening risk. It is instructive, therefore, to consider how known hERG agonists are handled by MLM. Here, two highly developed online computational tools for the prediction of hERG liability, Pred-hERG and HergSPred were probed for their ability to detect hERG activator drug molecules as hERG interactors. In total, 73 hERG blockers were tested with both computational tools giving overall good predictions for hERG blockers with reported IC50s below Pred-hERG and HergSPred cut-off threshold for hERG inhibition. However, for compounds with reported IC50s above this threshold such as disopyramide or sotalol discrepancies were observed. HergSPred identified all 20 hERG agonists selected as interacting with the hERG channel. Further studies are warranted to improve online MLM prediction of hERG related cardiotoxicity, by explicitly taking into account channel agonism as well as inhibition.


Assuntos
Canais de Potássio Éter-A-Go-Go , Bloqueadores dos Canais de Potássio , Humanos , Bloqueadores dos Canais de Potássio/farmacologia , Arritmias Cardíacas , Aprendizado de Máquina , Internet
16.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220165, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122211

RESUMO

The congenital short QT syndrome (SQTS) is a rare condition characterized by abbreviated rate-corrected QT (QTc) intervals on the electrocardiogram and by increased susceptibility to both atrial and ventricular arrhythmias and sudden death. Although mutations to multiple genes have been implicated in the SQTS, evidence of causality is particularly strong for the first three (SQT1-3) variants: these result from gain-of-function mutations in genes that encode K+ channel subunits responsible, respectively, for the IKr, IKs and IK1 cardiac potassium currents. This article reviews evidence for the impact of SQT1-3 missense potassium channel gene mutations on the electrophysiological properties of IKr, IKs and IK1 and of the links between these changes and arrhythmia susceptibility. Data from experimental and simulation studies and future directions for research in this field are considered. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Mutação com Ganho de Função , Canais de Potássio , Humanos , Canais de Potássio/genética , Canais de Potássio/farmacologia , Arritmias Cardíacas/genética , Mutação , Potenciais de Ação
18.
Herzschrittmacherther Elektrophysiol ; 34(2): 101-108, 2023 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-37103573

RESUMO

In general, asymptomatic patients with channelopathies are at increased risk of sudden cardiac death (SCD), due to pathogenic variants in genes encoding ion channels that result in pathological ion currents. Channelopathies include long-QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and short-QT syndrome (SQTS). In addition to the patient's clinical presentation, history and clinical tests, the main diagnostic tools are electrocardiography and genetic testing to identify known gene mutations. Early and correct diagnosis as well as further risk stratification of affected individuals and their relatives are paramount for prognosis. The recent availability of risk score calculators for LQTS and BrS allows SCD risk to be accurately estimated. The extent to which these improve patient selection for treatment with an implantable cardioverter-defibrillator (ICD) system is currently unknown. In most cases, initiation of basic therapy in asymptomatic patients in the form of avoidance of triggers, which are usually medication or stressful situations, is sufficient and contributes to risk reduction. In addition, there are other risk-reducing prophylactic measures, such as permanent medication with nonselective ß­ blockers (for LQTS and CPVT) or mexiletine for LQTS3. Patients and their family members should be referred to specialized outpatient clinics for individual risk stratification in the sense of primary prophylaxis.


Assuntos
Síndrome de Brugada , Canalopatias , Síndrome do QT Longo , Taquicardia Ventricular , Humanos , Canalopatias/diagnóstico , Canalopatias/genética , Canalopatias/prevenção & controle , Arritmias Cardíacas/diagnóstico , Morte Súbita Cardíaca/prevenção & controle , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Síndrome do QT Longo/prevenção & controle , Taquicardia Ventricular/diagnóstico , Antagonistas Adrenérgicos beta , Medição de Risco
19.
Heart Rhythm ; 20(8): 1136-1143, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36806574

RESUMO

BACKGROUND: A variant in the SLC4A3 anion exchanger has been identified as a novel cause of short QT syndrome (SQTS), but the clinical importance of SLC4A3 as a cause of SQTS or sudden cardiac death remains unknown. OBJECTIVE: The purpose of this study was to investigate the prevalence of potential disease-causing variants in SQTS patients using gene panels including SLC4A3. METHODS: In this multicenter study, genetic testing was performed in 34 index patients with SQTS. The pathogenicity of novel SLC4A3variants was validated in a zebrafish embryo heart model. RESULTS: Potentially disease-causing variants were identified in 9 (26%) patients and were mainly (15%) located in SLC4A3: 4 patients heterozygous for novel nonsynonymous SLC4A3 variants-p.Arg600Cys, p.Arg621Trp, p.Glu852Asp, and p.Arg952His-and 1 patient with the known p.Arg370His variant. In other SQTS genes, potentially disease-causing variants were less frequent (2× in KCNQ1, 1× in KCNJ2, and CACNA1C each). SLC4A3 variant carriers (n = 5) had a similar heart rate but shorter QT and J point to T wave peak intervals than did noncarriers (n = 29). Knockdown of slc4a3 in zebrafish resulted in shortened heart rate-corrected QT intervals (calculated using the Bazett formula) that could be rescued by overexpression of the native human SLC4A3-encoded protein (AE3), but neither by the mutated AE3 variants p.Arg600Cys, p.Arg621Trp, p.Glu852Asp nor by p.Arg952His, suggesting pathogenicity of these variants. Dysfunction in slc4a3/AE3 was associated with alkaline cytosol and shortened action potential of cardiomyocytes. CONCLUSION: In about a quarter of patients with SQTS, a potentially disease-causing variant can be identified. Nonsynonymous variants in SLC4A3 represent the most common cause of SQTS, underscoring the importance of including SLC4A3 in the genetic screening of patients with SQTS or sudden cardiac death.


Assuntos
Eletrocardiografia , Peixe-Zebra , Animais , Humanos , Arritmias Cardíacas , Morte Súbita Cardíaca/prevenção & controle , Eletrocardiografia/métodos
20.
JACC Clin Electrophysiol ; 9(1): 124-138, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697193

RESUMO

Abnormal cardiac repolarization is at the basis of life-threatening arrhythmias in various congenital and acquired cardiac diseases. Dysfunction of ion channels involved in repolarization at the cellular level are often the underlying cause of the repolarization abnormality. The expression pattern of the gene encoding the affected ion channel dictates its impact on the shape of the T-wave and duration of the QT interval, thereby setting the stage for both the occurrence of the trigger and the substrate for maintenance of the arrhythmia. Here we discuss how research into the genetic and electrophysiological basis of repolarization has provided us with insights into cardiac repolarization in health and disease and how this in turn may provide the basis for future improved patient-specific management.


Assuntos
Arritmias Cardíacas , Coração , Humanos , Arritmias Cardíacas/genética , Fenômenos Eletrofisiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...