RESUMO
The objective of this exploratory study was to assess the changes on lipidome and metabolome profiling of Longissimus lumborum bull muscle with different ultimate pH (pHu) and aging periods. The bull muscles classified as normal, intermediate, or high pHu were collected from a Brazilian commercial slaughterhouse, cut into steaks, individually vacuum-packaged, and aged for 3 days (3-d) or 21 days (21-d) at 2 °C. Muscle extracts were analyzed for the profiles of both lipids, by mass spectrometry (via direct flow-injection), and metabolites, by nuclear magnetic resonance, with downstream multivariate data analysis. As major results, pairwise comparisons identified C12:0 and C14:0 acylcarnitines as potential biomarkers of the intermediate pHu-muscle, which are related to lipid catabolism for alternative energy metabolism and indicate less protein breakage postmortem. Interestingly, the concentration of arginine at early postmortem aging (3-d) may influence the previously reported improved tenderness in normal and high pHu-muscles. Moreover, upregulation of fumarate, formate, and acetate with increased pHu muscle at 21-d aging indicate more intense tricarboxylic acid cycle, amino acid degradation, and pyruvate oxidation by reactive oxygen species, respectively. These three compounds (fumarate, formate, and acetate) discriminated statistically the muscle with high pHu at 21-d aging. The normal pHu-muscle showed higher concentrations of glycogenolysis and glycolysis metabolites, including glucose, mannose, and pyruvate. Hence, our results enhance knowledge of postmortem biochemical changes of beef within different pHu groups aged up to 21 days, which is essential to understand the mechanisms underpinning bull meat quality changes.
Assuntos
Metaboloma , Músculo Esquelético , Carne Vermelha , Animais , Bovinos , Carne Vermelha/análise , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Lipidômica/métodos , Mudanças Depois da Morte , Brasil , Manipulação de Alimentos/métodos , Formiatos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/análiseRESUMO
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.