Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.356
Filtrar
1.
EFSA J ; 22(7): e8902, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055666

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on Lactococcus lactis DSM 34262 when used as a technological additive to improve ensiling of fresh plant material. The additive is intended for use in easy and moderately difficult to ensile fresh plant material for all animal species at a proposed minimum concentration of 1 × 108 colony forming units (CFU)/kg fresh plant material. The bacterial species L. lactis is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment. The identity of the strain was established and no acquired antimicrobial resistance genes of concern were detected. Therefore, the FEEDAP Panel concluded that the use of the strain as a silage additive is considered safe for all the animal species, for consumers of products from animals fed the treated silage and for the environment. Regarding user safety, the additive containing Lactococcus lactis DSM 34262 should be considered as a potential skin and respiratory sensitiser, and any exposure through skin and respiratory tract is considered a risk. One preparation was shown not to be irritant to skin or eyes. However, the Panel cannot assess the irritation potential of other possible preparations. The FEEDAP Panel concluded that Lactococcus lactis DSM 34262 has the potential to improve the fermentation of the silage prepared from fresh plant material with a DM range of 30-35% at a minimum concentration of 1 × 108 CFU/kg fresh material.

2.
EFSA J ; 22(7): e8903, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055664

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on Lactiplantibacillus plantarum DSM 34271 when used as a technological additive to improve ensiling of fresh plant material. The additive is intended for use in easy and moderately difficult to ensile fresh plant material for all animal species at a proposed minimum concentration of 1 × 108 colony forming units (CFU)/kg fresh plant material. The bacterial species L. plantarum is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment. The identity of the strain was established and no acquired antimicrobial resistance genes of concern were detected. Therefore, the FEEDAP Panel concluded that the use of the strain as a silage additive is considered safe for all the animal species, for consumers of products from animals fed the treated silage and for the environment. Regarding user safety, the additive containing Lactiplantibacillus plantarum DSM 34271 should be considered as a potential skin and respiratory sensitiser, and any exposure through skin and respiratory tract is considered a risk. One preparation was shown not to be irritant to skin or eyes. However, the Panel cannot assess the irritation potential of other possible preparations. The FEEDAP Panel concluded that Lactiplantibacillus plantarum DSM 34271 has the potential to improve the fermentation of the silage prepared from fresh plant material with a DM range of 30%-35% at a minimum concentration of 1 × 108 CFU/kg fresh material.

3.
Sci Rep ; 14(1): 17032, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043883

RESUMO

Corn silage can usually improve the growth performance and the meat quality of ruminants, and subsequently increase the economic benefits of farming. However, little is known about the effects of corn silage on donkeys. This experiment investigated the effects of corn silage on the weight gain, gut microbiota and metabolites of Dezhou donkeys. A total of 24 Dezhou donkeys, sourced from the same farm and exhibiting similar age and average body weight, were utilized in this experiment. The donkeys were allocated into two groups: a control group receiving a basic diet and a test group receiving a basic diet supplemented with 30% corn silage. Each group comprised 12 donkeys, evenly distributed by sex (6 males and 6 females). The experiment lasted for 100 days. Results showed that dietary supplementation with corn silage significantly (P < 0.05) improved the weight gain of Dezhou donkeys at the end of the experiment. And the supplementation of corn silage in the diet significantly altered the bacterial community composition and metabolome in the feces of the donkeys. Notably, the relative abundance ratio of Bacteroidetes to Firmicutes was 0.76 in the control group compared to 0.96 in the test group. Furthermore, members of the Bacteroidetes and Firmicutes phyla were associated with differentiated metabolites enriched in the arachidonic acid metabolism and pentose and glucuronate interconversion pathways, both of which have been reported to be related to animal growth. Specifically, Bacteroidia exhibited statistically (P < 0.05) positive correlations with 15S-HpETE, while Bacilli demonstrated statistically (P < 0.05) negative correlations with D-Xylulose. The findings of this study can advance our mechanistic understanding of the remodeling of intestinal microbiota and metabolome induced by corn silage, as well as their relationships with the growth performance of Dezhou donkeys, which in turn favor the improvement in nutrition of Dezhou donkeys.


Assuntos
Equidae , Microbioma Gastrointestinal , Metaboloma , Silagem , Zea mays , Animais , Zea mays/metabolismo , Zea mays/microbiologia , Masculino , Feminino , Ração Animal , Fezes/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Aumento de Peso , Suplementos Nutricionais
4.
Foods ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998639

RESUMO

Silaging can be used as preservation technology to valorize currently discarded raw material into protein hydrolysate on board deep-sea vessels. The aim of this study was to investigate the effect of sorting and raw material freshness on the quality and yield of protein hydrolysates obtained through silaging of saithe (Pollachius virens) viscera. Additionally, the effect of using acid-containing antioxidants was tested. Out sorting of the liver prior to silaging resulted in slightly higher hydrolysate yields. The hydrolysates with the highest protein contents were obtained from silages made from fresh raw materials (day 0), and the content decreased significantly after longer storage of the raw material (2-3 days at 4 °C). Storage of the raw material for 1 day did not affect the quality. However, a significantly higher degree of hydrolysis (DH), content of free amino acids (FAA), and total volatile basic nitrogen (TVB-N) were obtained when raw materials were stored for 3 days. The FAA composition was influenced by the raw material's freshness, with increases in free glutamic acid and lysine and a decrease in free glutamine after longer storage. None of the studied parameters were significantly affected by out sorting of liver or the addition of antioxidants. Overall, the results indicate that the whole fraction of the viscera can be utilized without reducing the quality of the hydrolysate and that the raw material should be stored for a maximum of 1 day prior to preservation to optimize the quality.

5.
Animals (Basel) ; 14(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061502

RESUMO

Laiwu black goats comprise an excellent local germplasm resource; however, a shortage of feed resources has led to the application of unconventional feed. Ginger straw feed has good physiological effects, but research on this feed source for ruminant animals is lacking. The aim of this study was to determine the effects of enzymatic silage ginger straw on Laiwu black goat performance. The experiment used an independent sample t-test analysis method; 24 healthy Laiwu black goats with a body weight of 20.05 ± 1.15 kg and age of 5.67 ± 0.25 months were randomly divided into two groups with three replicates (bars) per group and four goats per replicate. The experimental diet was composed of mixed concentrate, silage, and garlic peel at a 2:7:1 ratio. The silage used in the two groups was whole corn silage (CON group) and 60% whole corn silage plus 40% enzymatic silage ginger straw (SG group), and the other components were identical. Daily feed intake/daily gain (F/G) was significantly higher in the SG group than in the CON group (p < 0.05), but there were no significant differences in dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility between the groups. The shear force, cooking loss, centrifugal loss, and pressure loss of the longissimus dorsi muscle group were significantly lower in the SG than in the CON group (p < 0.05). Compared with those in the CON group, the serum and liver total antioxidant capacity was significantly increased in the SG group, and in the liver, the O2·-, malondialdehyde, and OH· contents were significantly decreased. Collectively, the rumen fluid microbial diversity was changed in the SG group. It was concluded that enzymatic silage ginger straw usage instead of 40% whole silage corn as feed for Laiwu black goats can significantly improve the muscle quality, antioxidant capacity, and intestinal flora, with no adverse effects on production performance. In conclusion, our study provides a basis for ginger straw processing and storage and its rational application in the Laiwu black goat diet.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38954457

RESUMO

Four rod-shaped, non-motile, non-spore-forming, facultative anaerobic, Gram-stain-positive lactic acid bacteria, designated as EB0058T, SCR0080, LD0937T and SCR0063T, were isolated from different corn and grass silage samples. The isolated strains were characterized using a polyphasic approach and EB0058T and SCR0080 were identified as Lacticaseibacillus zeae by 16S rRNA gene sequence analysis. Based on whole-genome sequence-based characterization, EB0058T and SCR0080 were separated into a distinct clade from Lacticaseibacillus zeae DSM 20178T, together with CECT9104 and UD2202, whose genomic sequences are available from NCBI GenBank. The average nucleotide identity (ANI) values within the new subgroup are 99.9 % and the digital DNA-DNA hybridization (dDDH) values are 99.3-99.9 %, respectively. In contrast, comparison of the new subgroup with publicly available genomic sequences of L. zeae strains, including the type strain DSM 20178T, revealed dDDH values of 70.2-72.5 % and ANI values of 96.2-96.6 %. Based on their chemotaxonomic, phenotypic and phylogenetic characteristics, EB0058T and SCR0080 represent a new subspecies of L. zeae. The name Lacticaseibacillus zeae subsp. silagei subsp. nov. is proposed with the type strain EB0058T (=DSM 116376T=NCIMB 15474T). According to the results of 16S rRNA gene sequencing, LD0937T and SCR0063T are members of the Lacticaseibacillus group. The dDDH value between the isolates LD0937T and SCR0063T was 67.6 %, which is below the species threshold of 70 %, clearly showing that these two isolates belong to different species. For both strains, whole genome-sequencing revealed that the closest relatives within the Lacticaseibacillus group were Lacticaseibacillus huelsenbergensis DSM 115425 (dDDH 66.5 and 65.9 %) and Lacticaseibacillus casei DSM 20011T (dDDH 64.1 and 64.9 %). Based on the genomic, chemotaxonomic and morphological data obtained in this study, two novel species, Lacticaseibacillus parahuelsenbergensis sp. nov. and Lacticaseibacillus styriensis sp. nov. are proposed and the type strains are LD0937T (=DSM 116105T=NCIMB 15471T) and SCR0063T (=DSM 116297T=NCIMB 15473T), respectively.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , Poaceae , RNA Ribossômico 16S , Análise de Sequência de DNA , Silagem , Zea mays , RNA Ribossômico 16S/genética , Zea mays/microbiologia , Silagem/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Poaceae/microbiologia , Composição de Bases , Sequenciamento Completo do Genoma , Lacticaseibacillus
7.
J Dairy Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969000

RESUMO

This study was conducted to determine if the decreased MP supply predicted by the NRC (2001) when canola meal (CM) substitutes soybean meal (SBM) was supported by direct measurement of net portal absorption of AA or energy-yielding nutrients, plus the impact of the type of forage in CM-based rations. Nine Holstein cows with indwelling catheters in splanchnic blood vessels, 8 also with a ruminal cannula were used to examine the effects of protein source in corn silage-based diets, comparing SBM versus CM, and forage source in CM-based diets, comparing corn versus grass silage. The cows were allocated to a triple 3 × 3 Latin square design with 21-d periods. The 3 experimental diets, formulated to be isoenergetic and isonitrogenous, were based on: 1) SBM and corn silage (SoyCorn); 2) CM and corn silage (CanCorn) and 3) CM and cool-season grass silage (CanGrass). Averages of intake, milk yield and milk composition of the last 3 d of each period were used for statistical analyses. On d 21 of each period, 6 sets of arterial, portal, hepatic and mammary blood samples and 2 ruminal fluid samples were collected. On d 12 of period 2, the protein sources were incubated in nylon bags to determine 16h-ruminal disappearance of DM and N and to obtain 16-h residues. Finally, 5 d after the completion of the Latin square design, the mobile bag technique was used to determine DM and N intestinal disappearance of the 16-h residues of SBM and CM. Pre-planned contrasts were used to compare the effect of the protein source in cows fed corn silage, i.e., SoyCorn versus CanCorn, and the effect of forage in cows fed CM, i.e., CanCorn versus CanGrass. Data of the cow without a rumen canula could not be used because of health problem. In corn silage-based diets, substitution of SBM by CM tended to increase milk (6%) and milk fat (7%) yields. The 8% higher ruminal N disappearance and the 19% decreased MP supply from RUP predicted by NRC (2001) were not supported by the 25% decrease in ruminal ammonia concentration, similar net portal absorption of AA (except 22% higher for Met), and the 14% decrease in urea hepatic removal when CM substituted SBM. Ruminal incubation of CM in nylon bags does not appear suitable for adequate determination of the rumen by-pass of a protein source like CM. Inclusion of grass silage rather than corn silage in CM-based diets tended to increase milk (6%) and increased milk lactose (8%) yields. Neither protein nor forage source resulted in variations of metabolism of energy-yielding nutrients that could explain observed increments in cow performance. The present study indicates no decreased AA availability when CM substitutes SBM. Therefore, substitution of SBM by CM in diets based on corn silage and CM in corn- or grass silage-diets can be used successfully in high producing dairy cows.

8.
J Dairy Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033922

RESUMO

The nutritive value of grass silage can be improved by harvesting herbage at a less mature growth stage, which in practice usually involves more frequent harvests. This study examined the performance of dairy cows offered grass silages produced from perennial ryegrass (Lolium perenne) based swards harvested at 2 different frequencies during the growing season (3-harvest (3H) vs. 5-harvest (5H)). Thirty-four mid-lactation (av. 147 d in milk) dairy cows (30 multiparous, 4 primiparous) were offered either 3H or 5H silages in a continuous design (21 wk) experiment. Within each treatment cows were offered silage from each harvest (in harvest number order) for a pre-determined number of days in proportion to herbage DM yield at each harvest. Silages were offered ad libitum while a common concentrate was offered to all cows at 12.0 kg per cow/d over the first 15 wk of the study, 8.0 kg per cow/d during wk 16 -19 and 6.0 kg cow/d during wk 20 - 21. Total yield of herbage harvested over the season from within 3H and 5H were 12.6 and 11.2 t DM/ha, respectively. Across all harvests the mean ME and CP concentration of silages were 10.9 MJ/kg DM and 131 g/kg DM for 3H, and 11.5 MJ/kg DM and 152 g/kg DM for 5H. Silage DMI was greater for cows offered 5H silages compared with 3H silages (14.1 vs. 11.7 kg/d, respectively). Cows offered 5H silages had a greater daily milk yield (33.5 vs. 31.9 kg) and ECM yield (37.4 vs. 35.6 kg) compared with cows offered 3H silages. Treatment had no effect on milk fat or protein concentration. Cows offered 5H silages produced milk with greater concentrations of CLA and n-3 fatty acids. Treatment had no effect on mean BW or BCS, or on efficiency metrics such as milk yield or ECM yield per kg of DMI. Molar proportions of VFA in ruminal fluid differed between the treatments, with cows offered 3H silages having higher proportion of total butyrate (15.9 vs. 14.4% of total VFA) and lower total valerate (3.2 vs. 3.7% of total VFA) compared with those offered 5H. The acetate: propionate and acetate plus butyrate: propionate ratios were unaffected by treatment. In conclusion, increasing herbage harvesting frequency from 3 to 5 times per year improved the nutritional value of the resulting silages, and this led to higher silage DMI, milk yield and ECM yield. However, overall production efficiency (ECM/DMI) was unaffected by treatment.

9.
J Dairy Sci ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067748

RESUMO

There is an increasing interest in the microbiota of the dairy value chain, from field to fork. Studies to understand the effects of environmental, feed and management factors on the raw milk microbiota have been performed to elucidate the origin of the bacteria and find ways to control the presence or absence of specific bacteria. In this study, we explored the microbiota in feedstuff, bedding material and milk on a Swedish dairy farm to investigate the effects of feeding different silages on the bacterial compositions throughout the dairy value chain. Three ensiling treatments were evaluated: without additive, with acid treatment, and with inoculation of starter culture. The silage treatments were fed as partial mixed rations to 67 dairy cows for 3 weeks each, with one treatment fed twice to evaluate if a potential change in milk microbiota could be repeated. The highest average total bacteria counts were found in the used bedding material (9.6 log10 cfu/g), while milk showed the lowest (3.5 log10 cfu/g). Principal coordinate analysis of the weighted UniFrac distance matrix showed clear separation between 3 clusters of materials: 1) herbage, 2) silage and partial mixed ration, and 3) used bedding material and milk. Surprisingly, the expected effect of the ensiling treatments on silage microbiota was not clear. Transfer of major bacteria from the silages and resulting partial mixed rations to the used bedding material was observed, but rarely to milk. The milk microbiota showed most resemblance to that of the used bedding material. Lactobacillus was a major genus in both feed and milk, but investigations at amplicon sequence variant level showed that in most cases the sequences differed between materials. However, low total bacteria count in the milk in combination with a high diversity suggests that results may be biased due to environmental contamination of the milk samples. Considering that the study was performed on a research farm, strict hygienic measures during the feeding experiment may have contributed to the low transfer of bacteria from feed to milk.

10.
Chemosphere ; 362: 142920, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053774

RESUMO

Feeding ruminants with high-quality forage can enhance digestibility and reduce methane production. Development of high-quality silage from leguminous plants with lactic acid bacteria can improve digestibility and it mitigate the greenhouse gas emissions. In this study, we developed a high-quality alfalfa silage with improved fermentation index and microbial dynamics using Levilactobacillus brevis-KCC-44 at low or high moisture (LM/HM) conditions and preserved it for 75 or 150 days. Alfalfa fermentation with L. brevis enhances acidification and fermentation characteristics primarily due to the dominance of lactic acid bacteria (LAB) L. brevis (>95%) compared to alfalfa fermented with epiphytic LAB. The inoculant L. brevis improved the anaerobic fermentation indexes resulting in a higher level of lactic acid in both high (10.0 ± 0.12 & 8.90 ± 0.31%DM) and low moisture (0.55 ± 0.08 & 0.39 ± 0.0 %DM) in 75 and 150 days respectively, compared to control silage. In addition, the marginal amount of acetic acid (range from 0.23 ± 0.07 to 2.04 ± 0.27 %DM) and a reduced level of butyric acid (range between 0.03 ± 0.0 to 0.13 ± 02 %DM) was noted in silage treated with LAB than the control. The LAB count and abundance of Levilactobacillus were higher in alfalfa silage fermented with L. brevis. Microbial richness and diversity were reduced in alfalfa silage treated with L. brevis which prompted lactic acid production at a higher level even for a prolonged period of time. Therefore, this L.brevis is an effective inoculant for producing high-quality alfalfa silage since it improves fermentation indexes and provides reproducible ensiling properties.

11.
Transl Anim Sci ; 8: txae101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077105

RESUMO

Objectives were to determine the effect of corn silage inclusion within dry-rolled corn (DRC) or steam-flaked corn (SFC) finishing diets on cattle growth performance and carcass characteristics. The experiment used British and continental crossbred steers (n = 480; initial body weight [BW] = 389 ±â€…17 kg) in a 4 × 2 factorial arrangement of treatments with six replications per treatment. Treatments consist of four inclusions of corn silage (0%, 15%, 30%, or 45%; dry matter [DM] basis) within either a DRC or SFC diet. A corn silage by corn processing interaction was observed for dry-matter intake (DMI; P = 0.05). As corn silage inclusion increased in the diet, DMI increased linearly (P < 0.01) for both corn processing methods. DM intake was not different between SFC and DRC-fed cattle at 0% (P = 0.33), 30% (P = 0.90), or 45% (P = 0.31) corn silage inclusion. The interaction was due to the DMI of cattle fed 15% silage, as cattle-fed DRC consumed 0.5 kg/d less (P < 0.01) than cattle on the SFC diet. Quadratic effects were observed for final BW, hot carcass weight (HCW), average daily gain (ADG), feed efficiency (G:F), marbling, and fat depth (P < 0.01), regardless of corn processing. Cattle fed 15% or 30% corn silage gained faster (P < 0.01) than those fed 0% or 45% corn silage. Feed efficiency decreased quadratically (P < 0.01) as silage inclusion increased in the diet with G:F similar for cattle fed 0% and 15% silage and decreased curvilinearly for cattle fed 30% and 45% silage. The incidence of liver abscesses was greater (P = 0.03) in cattle fed 0% corn silage than for steers fed 15%, 30%, or 45% corn silage. Corn processing method, independent of silage, had no effect (P = 0.42) on liver abscess incidence. Feeding SFC increased (P < 0.01) steer final BW and HCW when compared to cattle-fed DRC, regardless of silage inclusion. Corn silage inclusion had similar effects on performance in both DRC diets and SFC diets except for DMI. As corn silage inclusion increased in the diet, feed efficiency decreased linearly (P < 0.01). Cattle-fed SFC gained 7.9% more (P < 0.01) and were 6.7% more efficient (P < 0.01) than cattle-fed DRC. In diets containing either DRC or SFC, corn silage can be included at up to 30% of the diet without negative impacts on ADG or HCW.

12.
Plants (Basel) ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891280

RESUMO

Enhancing the aerobic stability of whole-plant corn silage is essential for producing high-quality silage. Our research assessed the effect of inoculation with Lactobacillus buchneri or Bacillus licheniformis and its modulation of the bacterial and fungal microbial community structure in an aerobic stage of whole-plant corn silage. Following treatment with a distilled sterile water control, Lactobacillus buchneri, and Bacillus licheniformis (2 × 105 cfu/g), whole-plant corn was ensiled for 60 days. Samples were taken on days 0, 3, and 7 of aerobic exposure, and the results showed that inoculation with Lactobacillus buchneri or Bacillus licheniformis improved the aerobic stability of silage when compared to the effect of the control (p < 0.05). Inoculation with Bacillus licheniformis attenuated the increase in pH value and the decrease in lactic acid in the aerobic stage (p < 0.05), reducing the filamentous fungal counts. On the other hand, inoculation with Lactobacillus buchneri or Bacillus licheniformis increased the diversity of the fungal communities (p < 0.05), complicating the correlation between bacteria or fungi, reducing the relative abundance of Acetobacter and Paenibacillus in bacterial communities, and inhibiting the tendency of Monascus to replace Issatchenkia in fungal communities, thus delaying the aerobic spoilage process. Due to the prevention of the development of aerobic spoilage microorganisms, the silage injected with Lactobacillus buchneri or Bacillus licheniformis exhibited improved aerobic stability.

13.
Animals (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891748

RESUMO

This study investigated the effects of replacing maize silage (MZS) with high-sugar sorghum silage (HSS) or forage sorghum silage (FSS) without additional grain supplement in the diets of dairy cows on nutrient digestibility, milk composition, nitrogen (N) use, and rumen fermentation. Twenty-four Chinese Holstein cows (545 ± 42.8 kg; 21.41 ± 0.62 kg milk yield; 150 ± 5.6 days in milk) were randomly assigned to three dietary treatments (n = 8 cows/treatment). The cows were fed ad libitum total mixed rations containing (dry matter basis) either 40% MZS (MZS-based diet), 40% HSS (HSS-based diet), or 40% FSS (FSS-based diet). The study lasted for 42 days, with 14 days devoted to adaptation, 21 days to daily feed intake and milk production, and 7 days to the sampling of feed, refusals, feces, urine, and rumen fluid. Milk production was measured twice daily, and digestibility was estimated using the method of acid-insoluble ash. The data were analyzed using a one-way ANOVA in SPSS 22.0 according to a completely randomized design. Dietary treatments were used as fixed effects and cows as random effects. The results indicate that MZS and HSS had greater crude protein but less neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and a lower pH than FSS (p ≤ 0.04). High starch contents in MZS and water-soluble carbohydrate (WSC) contents in HSS were observed (p < 0.01). While the highest starch intake was observed for the MZS-based diet, the highest WSC intake was noted for the HSS-based diet, and the highest NDF, ADF, ADL intake was observed for the FSS-based diet (p ≤ 0.05). The diets, including MZS and HSS, had greater digestibility than that of FSS (p ≤ 0.03). Feeding MZS- and HSS-based diets increased the yield, fat, and protein content of the milk, as well as feed conversion efficiency (p ≤ 0.03). However, feeding the MZS- and HSS-based diets decreased the contents of milk urea N, urinary urea N, and urinary N excretion more than the FSS-based diet (p ≤ 0.05). The N use efficiency tended to increase relative to diets containing MZS and HSS compared with FSS (p = 0.06 and p = 0.09). Ruminal ammonia-N and pH were lower, but total volatile fatty acids, acetate, and propionate were higher in cows fed the HSS- and MZS-based diets compared to those fed the FSS-based diet (p ≤ 0.03). It appears as though replacing MZS with HSS in the diet of cows without additional grain supplements has no negative influence on feed intake, milk yield, N utilization, or ruminal fermentation.

14.
Front Microbiol ; 15: 1360343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846571

RESUMO

Aspergillus flavus (A. flavus), a frequent contaminant in silage, is a significant producer of aflatoxins, notably the potent carcinogen aflatoxin B1. This contaminant poses a potential risk during the initial aerobic phase of ensiling. The present work studied the impact of temperature on A. flavus growth and aflatoxin B1 production in laboratory-scale sorghum silos during the initial aerobic phase. Growth curves of A. flavus were generated at various temperatures and modeled with the Gompertz model. Results indicated that the optimal temperature range for the maximum growth rate in sorghum mini-silos is between 25 and 30°C. Mold biomass and aflatoxin B1 levels were quantified using qPCR and HPLC, respectively. A predictive model for aflatoxin B1 synthesis in the initial ensiling phase was established, in function of grain moisture, external temperature, and time. Within the studied range, A. flavus's initial concentration did not significantly influence aflatoxin B1 production. According to the model maximum aflatoxin production is expected at 30% moisture and 25°C temperature, after 6 days in the aerobic phase. Aflatoxin B1 production in such conditions was corroborated experimentally. Growth curves and aflatoxin B1 production highlighted that at 48 h of incubation under optimal conditions, aflatoxin B1 concentrations in mini-silos exceeded national legislation limits, reaching values close to 100 ppb. These results underscore the risk associated with A. flavus presence in ensiling material, emphasizing the importance of controlling its development in sorghum silos.

15.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825100

RESUMO

The purpose of this experiment was to determine if nicotinic acid (NA) effects on dairy cows and rumen microbial characteristics are forage type dependent (corn silage, CS; grass silage, GS). Four late lactation (days in milk = 225 +/- 12 d) Holstein cows were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. The main effects were a CS (66.10% CS) based diet or a GS (79.59%) based diet with or without 12 g/d NA. Each experimental period lasted for 28 d. Milk production and milk components, blood metabolites, apparent total-tract nutrient digestibilities, minutes rumen pH were below 5.8 as an indicator of ruminal acidosis, and body temperature changes were analyzed as indicators of heat stress. Nicotinic acid supplementation did not improve apparent total-tract nutrient digestibility. Feeding a GS-based diet improved NDF and hemicellulose digestibility. Feeding a CS-based diet increased the apparent total-tract digestibility of fat, and minutes rumen pH below 5.8 for a greater proportion of the time. The CS-based diet also improved milk yield, milk fat and protein yields, and energy-corrected milk yield; however, somatic cell count and BHB were also increased. Supplementing NA tended to decrease nonesterified fatty acids, especially when combined with GS where DMI was low. There was a trend for the total protozoa population to increase when GS and NA were fed but decreased when CS and NA were fed. Nicotinic acid tended to decrease rumen protozoal populations of Dasytricha, but increased populations of Ophryoscolex and Diplodiniinae with GS diets and decreased with CS diets. Entodiniinae were increased with CS but NA had no effect. Body temperature was increased when a CS-based diet was fed when compared with a GS-based diet. More research is needed to determine how NA can affect rumen microbial protein synthesis and what kind of diets will provide the optimum effect.

17.
BMC Plant Biol ; 24(1): 490, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825718

RESUMO

The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.


Assuntos
Silagem , Zea mays , Zea mays/genética , Genótipo , Clima Tropical , Fermentação , Amido , Carboidratos , Proteínas de Plantas , Paquistão , Agricultura
18.
Front Microbiol ; 15: 1415290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903783

RESUMO

Objective: The aim of this study was to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) and propionic acid (PA) on fermentation characteristics and microbial community of amaranth (Amaranthus hypochondriaus) silage with different moisture contents. Methods: Amaranth was harvested at maturity stage and prepared for ensiling. There were two moisture content gradients (80%: AhG, 70%: AhS; fresh material: FM) and three treatments (control: CK, L. plantarum: LP, propionic acid: PA) set up, and silages were opened after 60 d of ensiling. Results: The results showed that the addition of L. plantarum and PA increased lactic acid (LA) content and decreased pH of amaranth after fermentation. In particular, the addition of PA significantly increased crude protein content (p < 0.05). LA content was higher in wilted silage than in high-moisture silage, and it was higher with the addition of L. plantarum and PA (p < 0.05). The dominant species of AhGLP, AhSCK, AhSLP and AhSPA were mainly L. plantarum, Lentilactobacillus buchneri and Levilactobacillus brevis. The dominant species in AhGCK include Enterobacter cloacae, and Xanthomonas oryzae was dominated in AhGPA, which affected fermentation quality. L. plantarum and PA acted synergistically after ensiling to accelerate the succession of dominant species from gram-negative to gram-positive bacteria, forming a symbiotic microbial network centred on lactic acid bacteria. Both wilting and additive silage preparation methods increased the degree of dominance of global and overview maps and carbohydrate metabolism, and decreased the degree of dominance of amino acid metabolism categories. Conclusion: In conclusion, the addition of L. plantarum to silage can effectively improve the fermentation characteristics of amaranth, increase the diversity of bacterial communities, and regulate the microbial community and its functional metabolic pathways to achieve the desired fermentation effect.

19.
Front Microbiol ; 15: 1399907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915298

RESUMO

Mulberry has also been regarded as a valuable source of forage for ruminants. This study was developed to investigate the impact of four additives and combinations thereof on fermentation quality and bacterial communities associated with whole-plant mulberry silage. Control fresh material (FM) was left untreated, while other groups were treated with glucose (G, 20 g/kg FM), a mixture of Lactobacillus plantarum and L. buchneri (L, 106 CFU/g FM), formic acid (A, 5 mL/kg FM), salts including sodium benzoate and potassium sorbate (S, 1.5 g/kg FM), a combination of G and L (GL), a combination of G and A (GA), or a combination of G and S (GS), followed by ensiling for 90 days. Dry matter content in the A, S, GA, and GS groups was elevated relative to the other groups (p < 0.01). Relative to the C group, all additives and combinations thereof were associated with reductions in pH and NH3-N content (p < 0.01). The A groups exhibited the lowest pH and NH3-N content at 4.23 and 3.27 g/kg DM, respectively (p < 0.01), whereas the C groups demonstrated the highest values at 4.43 and 4.44 g/kg DM, respectively (p < 0.01). The highest levels of lactic acid were observed in the GA and A groups (70.99 and 69.14 g/kg DM, respectively; p < 0.01), followed by the GL, L, and GS groups (66.88, 64.17 and 63.68 g/kg DM, respectively), with all of these values being higher than those for the C group (53.27 g/kg DM; p < 0.01). Lactobacillus were the predominant bacteria associated with each of these samples, but the overall composition of the bacterial community was significantly impacted by different additives. For example, Lactobacillus levels were higher in the G, A, and GA groups (p < 0.01), while those of Weissella levels were raised in the L, GL, and GS groups (p < 0.01), Pediococcus levels were higher in the A and GA groups (p < 0.01), Enterococcus levels were higher in the G and S groups (p < 0.01), and Lactococcus levels were raised in the S group (p < 0.01). Relative to the C group, a reduction in the levels of undesirable Enterobacter was evident in all groups treated with additives (p < 0.01), with the greatest reductions being evident in the A, S, GA, and GS groups. The additives utilized in this study can thus improve the quality of whole-plant mulberry silage to varying extents through the modification of the associated bacterial community, with A and GA addition achieving the most efficient reductions in pH together with increases in lactic acid content and the suppression of undesirable bacterial growth.

20.
J Dairy Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876224

RESUMO

This study investigated the feasibility of integrating hydroponic barley forage (HBF) production into dairy ruminant production, focusing on its effect on milk yield and components, energy and water footprints, and economic implications. Maize silage (MS) was used as a benchmark for comparison. The research was conducted on a water buffalo dairy farm equipped with a fully automated hydroponic system producing approximately 6,000 kg/d of HBF as fed (up 1,000 kg/d on DM basis). Thirty-three lactating water buffaloes were assigned to 3 dietary treatments based on the level of MS or HBF in the diet: D0 (100% MS), D50 (50% MS and 50% HBF), and D100 (100% HBF). The feeding trial lasted 5 weeks plus a 2-week adaptation period during which each cow underwent a weighing, BCS scoring, recording of milk yield and components, including somatic cell count and coagulation characteristics. Based on the data obtained from the in vivo study, the water and energy footprints for the production of MS and HBF and buffalo milk, as well as income over feed cost, were evaluated. Complete replacement of MS with HBF resulted in a slight increase in milk yield without significant impact on milk component. The resource footprint analysis showed potential benefits associated with HBF in terms of water consumption. However, the energy footprint assessment showed that the energy ratio of HBF was less than 1 (0.88) compared with 11.89 for MS. This affected the energy efficiency of milk yield in the 3 diets, with the D50 diet showing poorer performance due to similar milk yield compared with D0, but higher energy costs due to the inclusion of HBF. The production cost of HBF was about 4 times higher than that of farm-produced MS, making feed costs for milk yield more expensive. Nevertheless, HBF can potentially improve income over feed costs if it increases milk yield enough to offset its higher production costs. Overall, the results suggest that the current practice of using HBF to replace high quality feedstuffs as concentrates is likely to result in energy and economic losses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...