Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Zhen Ci Yan Jiu ; 49(4): 376-383, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649205

RESUMO

OBJECTIVES: To observe the effects of moxibustion on blood lipid metabolism, pathological morphology of thoracic aorta, and the expression of silent information regulator 1 (SIRT1) and forkhead box transcription factor O3a (FOXO3a) in ApoE-/- atherosclerosis (AS) mice, so as to explore the potential mechanism of moxibustion in preventing and treating AS. METHODS: Ten C57BL/6J mice were fed a normal diet as the control group, and 30 ApoE-/- mice were fed a high-fat diet to establish the AS model, which were randomly divided into the model group, simvastatin group, and moxibustion group, with 10 mice in each group. From the first day of modeling, mice in the moxibustion group received mild moxibustion treatment at "Shenque"(CV8), "Yinlingquan"(SP9), bilateral "Neiguan"(PC6) and "Xuehai"(SP10) for 30 min per time;the mice in the simvastatin group were given simvastatin orally (2.5 mg·kg-1·d-1), with both treatments given once daily, 5 times a week, with a total intervention period of 12 weeks. The body weight and general condition of the mice were observed and recorded during the intervention period. After the intervention, the contents of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automated biochemistry analyzer. Hematoxylin eosin (HE) staining was used to observe the pathological morphology of the thoracic aorta. ELISA was used to measure the contents of serum oxidized low-density lipoprotein (ox-LDL) and superoxide dismutase (SOD) activity. Western blot and real-time fluorescent quantitative PCR analysis were used to detect the expression levels of SIRT1 and FOXO3a protein and mRNA in the thoracic aorta. RESULTS: Compared with the control group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of the model group mice were significantly increased(P<0.05, P<0.01), while the HDL-C contents, SOD activity, and the expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly decreased(P<0.05, P<0.01). HE staining showed thickening of the aortic intima, endothelial cell degeneration, swelling, and shedding. Compared with the model group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of mice in the simvastatin group and moxibustion group were significantly decreased(P<0.01), while the serum SOD activity, expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly increased(P<0.01). The HDL-C contents were significantly increased in the simvastatin group(P<0.05). The thoracic aortic structure was more intact in both groups, with a more regular lumen and orderly arrangement of the elastic membrane in the media, and a slight amount of endothelial cell degeneration and swelling in the intima. There was no significant difference in the evaluated indexes between the moxibustion group and the simvastatin group and the pathological changes in the thoracic aorta were similar between the two groups. CONCLUSIONS: Moxibustion can reduce the body weight of AS model mice, regulate lipid levels, repair vascular intima, and alleviate endothelial damage. Its mechanism of action may be related to the regulation of the SIRT1/FOXO3a signaling pathway to improve oxidative damage.


Assuntos
Apolipoproteínas E , Aterosclerose , Proteína Forkhead Box O3 , Moxibustão , Sirtuína 1 , Animais , Humanos , Masculino , Camundongos , Pontos de Acupuntura , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/terapia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo
2.
Placenta ; 150: 52-61, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593636

RESUMO

INTRODUCTION: Does an elevation in d-Galactose (D-Gal) levels within the body contribute to abnormal embryonic development and placental dysfunction during pregnancy? METHODS: Mouse embryos were cultivated to the blastocyst stage under varying concentrations of D-Gal. The blastocyst formation rate was measured, and the levels of reactive oxygen species (ROS), sirtuin 1 (SIRT1), and forkhead box O3a (FOXO3a) in blastocysts were assessed. Mice were intraperitoneally injected with either saline or D-Gal with or without SRT1720. On the 14th day of pregnancy, the fetal absorption rate and placental weight were recorded. Placental levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. The expression of senescence-related factors, such as senescence-associated ß-galactosidase (SA-ß-gal) in the placenta was examined, and the expression of placental SIRT1, FOXO3a and p21 was evaluated by immunohistochemistry and Western blotting. RESULTS: D-Gal adversely affects early embryonic development in vitro, resulting in a decreased blastocyst formation rate. Furthermore, D-Gal downregulates SIRT1 and FOXO3a while increasing ROS levels in blastocysts. Concurrently, D-Gal induces placental dysfunction, characterized by an elevated fetal absorption rate, reduced placental weight, diminished SOD activity, and increased MDA content. The senescence-related factor SA-ß-gal was detected in the placenta, along with altered expression of placental SIRT1, FOXO3a, and p21. The SIRT1 agonist SRT1720 mitigated this damage by increasing SIRT1 and FOXO3a expression. DISCUSSION: The inhibition of early embryonic development and placental dysfunction induced by D-Gal may be attributed to the dysregulation of SIRT1. Activating SIRT1 emerges as a potentially effective strategy for alleviating the adverse effects of D-Gal exposure.


Assuntos
Desenvolvimento Embrionário , Proteína Forkhead Box O3 , Galactose , Placenta , Espécies Reativas de Oxigênio , Sirtuína 1 , Animais , Proteína Forkhead Box O3/metabolismo , Feminino , Sirtuína 1/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Desenvolvimento Embrionário/efeitos dos fármacos , Placenta/metabolismo , Placenta/efeitos dos fármacos , Doenças Placentárias/metabolismo , Doenças Placentárias/induzido quimicamente
3.
J Pharm Anal ; 14(2): 157-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38464786

RESUMO

Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).

4.
Epilepsy Res ; 201: 107338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447234

RESUMO

BACKGROUND: The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammatory pathway is implicated in the development of epilepsy and can be suppressed by the activation of the silent information regulator 1 (SIRT1). However, the expression and correlation of the NLRP3 pathway and SIRT1 in drug-resistant epilepsy (DRE) remain unknown. METHODS: This study evaluated the histopathology of the cerebral cortex from nine patients with DRE and eight patients with cavernous haemangioma undergoing surgical treatment. It analysed the expression of the NLRP3, interleukin-1ß (IL-1ß), caspase-1 and SIRT1 using immunohistochemistry. Additionally, the contents of NLRP3, caspase-1, IL-1ß and SIRT1 in the serum samples of the included study participants were determined using ELISA method. The correlation between the NLRP3 pathway and the SIRT1 was assessed using Spearman's correlation analysis. RESULTS: The expression of NLRP3, caspase-1 and IL-1ß in the cerebral cortex of patients with DRE was elevated, with the NLRP3 expression being negatively correlated with the SIRT1 expression. Furthermore, IL-1ß in serum was upregulated in patients with DRE. The correlation between the content of serum SIRT1 and NLRP3, caspase-1 and IL-1ß in patients with DRE was not significant. Notably, serum caspase-1 levels were obviously higher in patients with bilateral hippocampal sclerosis than in patients with unilateral hippocampal sclerosis. CONCLUSIONS: The current results indicate that the expression of the NLRP3/caspase-1/IL-1ß pathway is significantly upregulated in patients with DRE and that it is partially correlated with the SIRT1 expression. This study is important for understanding the pathophysiology of DRE and developing new treatment strategies for it.


Assuntos
Esclerose Hipocampal , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Domínio Pirina , Sirtuína 1/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
5.
J Matern Fetal Neonatal Med ; 37(1): 2311809, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38326276

RESUMO

BACKGROUND AND AIM: Globally, the prevalence of gestational diabetes mellitus (GDM) is rising each year, yet its pathophysiology is still unclear. To shed new light on the pathogenesis of gestational diabetes mellitus and perhaps uncover new therapeutic targets, this study looked at the expression levels and correlations of SIRT1, SREBP1, and pyroptosis factors like NLRP3, Caspase-1, IL-1, and IL-18 in patients with GDM. METHODS: This study involved a comparative analysis between two groups. The GDM group consisted of 50 GDM patients and the control group included 50 pregnant women with normal pregnancies. Detailed case data were collected for all participants. We utilized real-time quantitative PCR and Western Blot techniques to assess the expression levels of SIRT1 and SREBP1 in placental tissues from both groups. Additionally, we employed an enzyme-linked immunosorbent assay to measure the serum levels of SIRT1, SREBP1, and pyroptosis factors, namely NLRP3, Caspase-1, IL-1ß, and IL-18, in the patients of both groups. Subsequently, we analyzed the correlations between these factors and clinical. RESULTS: The results showed that there were significantly lower expression levels of SIRT1 in both GDM group placental tissue and serum compared to the control group (p < 0.01). In contrast, the expression of SREBP1 was significantly higher in the GDM group than in the control group (p < 0.05). Additionally, the serum levels of NLRP3, Caspase-1, IL-1ß, and IL-18 were significantly elevated in the GDM group compared to the control group (p < 0.01). The expression of SIRT1 exhibited negative correlations with the expression of FPG, OGTT-1h, FINS, HOMA-IR, SREBP1, IL-1ß, and IL-18. However, there was no significant correlation between SIRT1 expression and OGTT-2h, NLRP3, or Caspase-1. On the other hand, the expression of SREBP1 was positively correlated with the expression of IL-1ß, Caspase-1, and IL-18, but has no apparent correlation with NLRP3. CONCLUSIONS: Low SIRT1 levels and high SREBP1 levels in placental tissue and serum, coupled with elevated levels of pyroptosis factors NLRP3, Caspase-1, IL-1ß, and IL-18 in serum, may be linked to the development of gestational diabetes mellitus. Furthermore, these three factors appear to correlate with each other in the pathogenesis of GDM, offering potential directions for future research and therapeutic strategies.


Assuntos
Diabetes Gestacional , Feminino , Humanos , Gravidez , Caspases , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placenta/metabolismo , Piroptose , Sirtuína 1 , Esteróis
6.
Mol Pain ; 20: 17448069241232349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288478

RESUMO

Background. Neuro-inflammatory response promotes the initiation and sustenance of lumbar disc herniation (LDH). Protectin D1 (PD1), as a new type of specialized pro-resolving mediator (SPM), can improve the prognosis of various inflammatory diseases. Recent studies have shown that over representation of calcitonin gene-related peptides (CGRP) may activate nociceptive signaling following nerve injury. Silent information regulator 1 (SIRT1) is ubiquitously expressed in the dorsal horn of the spinal cord and plays a role in the pathogenesis of LDH. In this study, we investigated the analgesic effects of PD1 and elucidated the impact of neurogenic inflammation in the pathogenesis of neuropathic pain induced by non-compressive lumbar disc herniation (NCLDH) in a rat model. Methods. NCLDH models were established by applying protruding autologous nucleus pulposus to the L5 Dorsal root ganglion (DRG). PD1, SIRT1 antagonist or agonist, CGRP or antagonist were administered as daily intrathecal injections for three consecutive days postoperatively. Behavioral tests were conducted to assess mechanical and thermal hyperalgesia. The ipsilateral lumbar (L4-6) segment of the spinal dorsal horn was isolated for further analysis. Alterations in the release of SIRT1 and CGRP were explored using western blot and immunofluorescence. Results. Application of protruded nucleus (NP) materials to the DRG induced mechanical and thermal allodynia symptoms, and deregulated the expression of pro-inflammatory and anti-inflammatory cytokines in rats. Intrathecal delivery of PD1 significantly reversed the NCLDH-induced imbalance in neuro-inflammatory response and alleviated the symptoms of mechanical and thermal hyperalgesia. In addition, NP application to the DGRs resulted the spinal upregulation of CGRP and SIRT1 expression, which was almost restored by intrathecal injection of PD1 in a dose-dependent manner. SIRT1 antagonist or agonist and CGRP or antagonist treatment further confirmed the result. Conclusion. Our findings indicate PD1 has a potent analgesic effect, and can modulate neuro-inflammation by regulating SIRT1-mediated CGRP signaling in NCLDH.


Assuntos
Ácidos Docosa-Hexaenoicos , Deslocamento do Disco Intervertebral , Ratos , Animais , Deslocamento do Disco Intervertebral/tratamento farmacológico , Deslocamento do Disco Intervertebral/complicações , Hiperalgesia/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Calcitonina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Analgésicos/farmacologia , Gânglios Espinais/metabolismo , Modelos Animais de Doenças
7.
Exp Neurol ; 373: 114658, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141805

RESUMO

BACKGROUND: Silent information regulator 1 (SIRT1) plays a beneficial role in cerebral ischemic injury. Previous reports have demonstrated that transcutaneous electrical acupoint stimulation (TEAS) exerts a beneficial effect on ischemic stroke; however, whether SIRT1 participates in the underlying mechanism for the neuroprotective effects of TEAS against ischemic brain damage has not been confirmed. METHODS: The rat models of middle cerebral artery occlusion/reperfusion (MCAO/R) were utilized in the current experiment. After MCAO/R surgery, rats in TEAS, EC and EX group received TEAS intervention with or without the injection of EX527, the SIRT1 inhibitor. Neurological deficit scores, infarct volume, hematoxylin eosin (HE) staining and apoptotic cell number were measured. The results of RNA sequencing were analyzed to determine the differential expression changes of genes among sham, MCAO and TEAS groups, in order to investigate the possible pathological processes involved in cerebral ischemia and explore the protective mechanisms of TEAS. Moreover, oxidative stress markers including MDA, SOD, GSH and GSH-Px were measured with assay kits. The levels of the proinflammatory cytokines, such as IL-6, IL-1ß and TNF-α, were detected by ELISA assay, and Iba-1 (the microglia marker protein) positive cells was measured by immunofluorescence (IF). Western blot and IF were utilized to examine the levels of key molecules in SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways. RESULTS: TEAS significantly decreased brain infarcted size and apoptotic neuronal number, and alleviated neurological deficit scores and morphological injury by activating SIRT1. The results of RNA-seq and bioinformatic analysis revealed that oxidative stress and inflammation were the key pathological mechanisms, and TEAS alleviated oxidative injury and inflammatory reactions following ischemic stroke. Then, further investigation indicated that TEAS notably attenuated neuronal apoptosis, neuroinflammation and oxidative stress damage in the hippocampus of rats with MCAO/R surgery. Moreover, TEAS intervention in the MCAO/R model significantly elevated the expressions of SIRT1, FOXO3a, CAT, BRCC3, NLRP3 in the hippocampus. Furthermore, EX527, as the inhibitor of SIRT1, obviously abolished the anti-oxidative stress and anti-neuroinflammatory roles of TEAS, as well as reversed the TEAS-mediated elevation of SIRT1, FOXO3a, CAT and reduction of BRCC3 and NLRP3 mediated by following MCAO/R surgery. CONCLUSIONS: In summary, these findings clearly suggested that TEAS attenuated brain damage by suppressing apoptosis, oxidative stress and neuroinflammation through modulating SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways following ischemic stroke, which can be a promising treatment for stroke patients.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Pontos de Acupuntura , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/patologia , Inflamação/terapia , Inflamação/patologia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Reperfusão , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Sirtuína 1/metabolismo
8.
Mol Med Rep ; 29(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131196

RESUMO

The quality of oocytes in patients with polycystic ovary syndrome (PCOS) decreases, which is closely related to the function of oocytes' mitochondria. If mitochondrial dysfunction is involved in PCOS, it is likely to affect the function of cumulus cells. However, the mechanism of mitochondrial dysfunction remains unclear. In the present study, granulosa cells were collected from women attending the Hebei Reproductive Health Hospital and were divided into the normal ovarian reserve group (CON group) and the PCOS group. The mitochondrial ultrastructure was observed by transmission electron microscope, and the mitochondrial function was determined by detecting the ATP content, reactive oxygen species levels, the number of mitochondria and the mitochondrial membrane potential. Additionally, western blotting was used to compare the expression levels of mitochondrial kinetic protein, the related channel protein, between the two groups. In the present study, it was found that patients with PCOS had abnormal granulosa cell morphology, increased mitochondrial abnormalities, decreased mitochondrial function and disturbed mitochondrial dynamics. In addition, the silent information regulator 1/phosphorylated­AMP­activated protein kinase/peroxisome proliferator­activated receptor­Î³ coactivator 1α pathway expression was decreased, and it was hypothesized that the decreased mitochondrial mass in the PCOS group was associated with it.


Assuntos
Doenças Mitocondriais , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Células da Granulosa/metabolismo , Oócitos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo
9.
Zhen Ci Yan Jiu ; 48(11): 1125-1133, 2023 Nov 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37984910

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) in obese rats with insulin resistance (IR) through regulating intestinal silent information regulator 1 (SIRT1)/Toll-like receptor 4 (TLR4) signaling pathway, so as to explore the underlying mechanism of EA in improving obesity-induced IR. METHODS: A total of 40 Wistar rats were randomly divided into 4 groups, i.e. normal group, model group, EA group and EA combined with inhibitor group, with 10 rats in each group. The obesity-induced IR model was induced by feeding high-fat diet for 8 weeks. EA (2 Hz, 1mA) was applied at "Zhongwan"(CV12), "Guanyuan"(CV4), "Zusanli"(ST36) and "Fenglong" (ST40) for 10 min, 3 times a week for 8 weeks in both EA and EA combined with inhibitor groups. Sirtinol, an inhibitor of SIRT1 was injected into the tail vein (1 mg/kg), 3 times a week for 8 weeks in EA combined with inhibitor group. The body weight, glucose infusion rate (GIR) of rats in each group were recorded. The contents of serum C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and lipopolysaccharide (LPS) were detected by ELISA. Mucosal morphological changes in the small intestine was observed by HE staining and was graded using Chiu's score. The protein relative expression levels of SIRT1 and TLR4 and the co-labeling of SIRT1 with TLR4 in the small intestine was detected by Western blot and double immunofluorescence staining, separately. RESULTS: Compared with the normal group, the body weight, serum contents of CRP, TNF-α, IL-6, LPS, Chiu's score, TLR4 protein relative expression level and percentage of TLR4 positive expression area were increased (P<0.01, P<0.05), while the GIR, SIRT1 protein expression, percentage of SIRT1 positive expression area and SIRT1/TLR4 were decreased (P<0.01) in the model group. The pathological injury of small intestine mucosa was severe, accompanied with inflammatory cell infiltration in the model group. Following interventions, the body weight, serum contents of CRP, TNF-α and LPS, Chiu's score, TLR4 protein relative expression level and percentage of TLR4 positive expression area were decreased(P<0.01, P<0.05), and the GIR was increased (P<0.01), the pathological injury and inflammatory cell infiltration of small intestine mucosa were reduced in both EA and EA combined with inhibitor groups in contrast to the model group. Compared with the model group, the serum IL-6 content was significantly decreased (P<0.01), and the SIRT1 protein relative expression level and percentage of positive expression area, SIRT1/TLR4 were increased (P<0.01, P<0.05) in the EA group. Compared with the EA group, EA combined with inhibitor group showed the body weight, serum CRP, IL-6, LPS, Chiu's score, TLR4 protein relative expression level and TLR4 positive expression area were increased (P<0.01, P<0.05), and the GIR level , SIRT1 relative expression level, SIRT1/TLR4 ratio were decreased (P<0.05, P<0.01). CONCLUSIONS: EA can reduce the body weight and ameliorate peripheral insulin sensitivity in IR obese rats, which may be related with its function in regulating intestinal SIRT1/TLR4 signaling pathway to reduce inflammatory response.


Assuntos
Eletroacupuntura , Resistência à Insulina , Ratos , Animais , Ratos Wistar , Resistência à Insulina/genética , Sirtuína 1/genética , Lipopolissacarídeos , Receptor 4 Toll-Like/genética , Interleucina-6 , Fator de Necrose Tumoral alfa/genética , Obesidade/genética , Obesidade/terapia , Transdução de Sinais
10.
Artigo em Inglês | MEDLINE | ID: mdl-37861027

RESUMO

Rheumatoid arthritis (RA) is characterized by synovial edema, inflammation, bone and cartilage loss, and joint degradation. Patients experience swelling, stiffness, pain, limited joint movement, and decreased mobility as the condition worsens. RA treatment regimens often come with various side effects, including an increased risk of developing cancer and organ failure, potentially leading to mortality. However, researchers have proposed mechanistic hy-potheses to explain the underlying causes of synovitis and joint damage in RA patients. This review article focuses on the role of synoviocytes and synoviocytes resembling fibroblasts in the RA synovium. Additionally, it explores the involvement of epigenetic regulatory systems, such as microRNA pathways, silent information regulator 1 (SIRT1), Peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and protein phosphatase 1A (PPM1A)/high mobility group box 1 (HMGB1) regulators. These mechanisms are believed to modulate the function of receptors, cytokines, and growth factors associated with RA. The review article includes data from preclinical and clinical trials that provide insights into potential treatment options for RA.

11.
Virol J ; 20(1): 210, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697309

RESUMO

BACKGROUND: Rotavirus (RV) is the main cause of serious diarrhea in infants and young children worldwide. Numerous studies have demonstrated that RV use host cell mechanisms to motivate their own stabilization and multiplication by degrading, enhancing, or hijacking microRNAs (miRNAs). Therefore, exploring the molecular mechanisms by which miRNAs motivate or restrain RV replication by controlling different biological processes, including autophagy, will help to better understand the pathogenesis of RV development. This study mainly explored the effect of miR-194-3p on autophagy after RV infection and its underlying mechanism of the regulation of RV replication. METHODS: Caco-2 cells were infected with RV and used to measure the expression levels of miR-194-3p and silent information regulator 1 (SIRT1). After transfection with plasmids and RV infection, viral structural proteins, RV titer, cell viability, and autophagy-linked proteins were tested. The degree of acetylation of p53 was further investigated. A RV-infected neonatal mouse model was constructed in vivo and was evaluated for diarrhea symptoms and lipid droplet formation. RESULTS: The results showed that miR-194-3p was reduced but SIRT1 was elevated after RV infection. Elevation of miR-194-3p or repression of SIRT1 inhibited RV replication through the regulation of autophagy. The overexpression of SIRT1 reversed the effects of miR-194-3p on RV replication. The upregulation of miR-194-3p or the downregulation of SIRT1 repressed RV replication in vivo. MiR-194-3p targeted SIRT1 to decrease p53 acetylation. CONCLUSION: These results were used to determine the mechanism of miR-194-3p in RV replication, and identified a novel therapeutic small RNA molecule that can be used against RV.


Assuntos
MicroRNAs , Infecções por Rotavirus , Sirtuína 1 , Animais , Humanos , Camundongos , Autofagia/genética , Células CACO-2 , Diarreia/genética , MicroRNAs/genética , Rotavirus , Infecções por Rotavirus/genética , Sirtuína 1/genética , Proteína Supressora de Tumor p53 , Replicação Viral
12.
World J Diabetes ; 14(9): 1330-1333, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37771330

RESUMO

Diabetes and associated complications represent major global public health issues which are associated with impaired quality of life and premature death. Although some diabetic complications have decreased in the developed world, the majority are still prevalent, with an increasing trend in the developing world. Currently used therapies are mainly 'glucocentric', focusing on the optimization of glycemic control to prevent, delay or manage diabetes-associated complications- other common comorbidities, such as dyslipidemia and hypertension are often underestimated. Although a number of novel therapeutic approaches have been reported recently, some of them have not received comparable attention in relation to either further studies or potential clinical implementation. This editorial briefly discusses some recent therapeutic approaches to the prevention and management of diabetes and its associated complications, as well as potential directions for future research and development in this area.

13.
Zhen Ci Yan Jiu ; 48(6): 571-7, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37385788

RESUMO

OBJECTIVE: To observe the effect of moxibustion at "Zusanli"(ST36) on the silent information regulator 1 (SIRT1) /p53 signaling pathway in subacute aging model rats, so as to reveal its mechanisms in delaying aortic aging. METHODS: Male SD rats were divided into blank group, model group, prevention group and treatment group, with 20 rats in each group. Subacute aging model was established by intraperitoneal injection of D-galactose(500 mg·kg-1·d-1). In the morning, rats in the prevention group received moxibustion at ST36 with 3 moxa cones after modeling operation, once every day for 42 d. From the day after the 42-day modeling, rats in the treatment group received the same moxibustion treatment as the prevent group for 28 d. Rats in the blank and model group were fixed in the similar way as the other two groups, for 5 min. Contents of serum SIRT1, p53, endothelial nitric oxide synthase(eNOS) and vascular endothelial growth factor(VEGF) were detected by ELISA. Histopathological changes of aortic tissue were observed after HE staining. Expressions of SIRT1 and p53 mRNAs and proteins in aortic tissue were detected by qPCR and Western blot. RESULTS: Compared with the blank group, the model group showed aging symptoms, the prevention group was similar to the blank group, and the treatment group was slightly better than the model group. Compared with the blank group, content of serum p53, expressions of p53 mRNA and protein in aortic tissues were significantly increased (P<0.05, P<0.01), while contents of serum SIRT1, VEGF, eNOS, and expressions of SIRT1 mRNA and protein in aortic tissues were significantly decreased (P<0.05, P<0.01) in the model group. Compared with the model group, content of serum p53, and expression of p53 mRNA and protein in aortic tissues were significantly decreased (P<0.05, P<0.01) in the prevention and treatment groups, while the contents of serum SIRT1, VEGF, eNOS, and the expressions of SIRT1 mRNA and protein in aortic tissues were significantly increased (P<0.05, P<0.01). Compared with the treatment group, rats in the prevention group displayed significant improvement of the above indexes (P<0.05). Compared with the blank group, the endothelial cells were disordered, the vessel wall was significantly thickened, and the senescent cells were increased in the model group; the blood vessel walls were thinner to varying degrees, and the senescent cells were reduced and unevenly distributed in the prevention and treatment groups. The histopathological lesion was improved more obviously in the prevention group than the treatment group. CONCLUSION: Moxibustion at ST36 can alleviate vascular endothelial injury and oxidative stress in subacute aging rats, which may be related to its effect in regulating the SIRT1/p53 signaling pathway.


Assuntos
Moxibustão , Sirtuína 1 , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Proteína Supressora de Tumor p53/genética , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais , Envelhecimento/genética , RNA Mensageiro , Transdução de Sinais
14.
Ecotoxicol Environ Saf ; 256: 114872, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37027942

RESUMO

Manganese (Mn), as one of the environmental risk factors for Parkinson's disease (PD), has been widely studied. Though autophagy dysfunction and neuroinflammation mainly are responsible for the causative issue of Mn neurotoxicity, the molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that overexposure to Mn caused neuroinflammation impairment and autophagy dysfunction, accompanied by the increase of IL-1ß, IL-6, and TNF-α mRNA expression, and nerve cell apoptosis, microglia cell activation, NF-κB activation, poor neurobehavior performance. This is due to Mn-induced the downregulation of SIRT1. Upregulation of SIRT1 in vivo and in vitro could alleviate Mn-induced autophagy dysfunction and neuroinflammation, yet these beneficial effects were abolished following 3-MA administration. Furthermore, we found that Mn interfered with the acetylation of FOXO3 by SIRT1 in BV2 cells, leading to a decrease in the nuclear translocation of FOXO3, and its binding of LC3B promoter and transcription activity. This could be antagonized by the upregulation of SIRT1. Finally, it is proved that SIRT1/FOXO3-LC3B autophagy signaling involves in Mn-induced neuroinflammation impairment.


Assuntos
Manganês , Doenças Neuroinflamatórias , Autofagia , Proteína Forkhead Box O3/metabolismo , Manganês/metabolismo , Microglia , Sirtuína 1/metabolismo , Animais , Camundongos
15.
Brain Sci ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36979272

RESUMO

This study aimed to investigate the impact of caloric restriction (CR) on cognitive function in aged C57BL/6 mice after surgery, as well as the underlying mechanisms. Forty 14-month-old male C57BL/6 mice were randomly assigned to the ad libitum (AL, n = 20) group and the CR (n = 20) group. After feeding for 12 weeks, they were subdivided into four groups: AL control (ALC, n = 10), AL with surgery (ALS, n = 10), CR control (CRC, n = 10), and CR with surgery (CRS, n = 10). The Morris Water Maze (MWM) test was used to assess learning and memory capacity. By using western blot and immunofluorescence, the expression of Sirt1, MeCP2, and BDNF in the hippocampus and hippocampal CA1 region was quantified. According to the behavioral test, the CRC and CRS groups had significantly better learning and memory abilities than the ALC and ALS groups, respectively. Sirt1, MeCP2, and BDNF expression in the hippocampus and CA1 region in the hippocampus of the ALC and CRC groups of mice were correlated with cognitive improvement. In conclusion, CR could enhance the postoperative cognitive function in aged mice, most likely by increasing the expression of Sirt1, MeCP2, and BDNF in the CA1 region of the hippocampus.

16.
Biomed Pharmacother ; 161: 114515, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913894

RESUMO

Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Sirtuína 1/metabolismo
17.
Int Immunopharmacol ; 115: 109621, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574744

RESUMO

Ulcerative colitis (UC) is a global inflammatory bowel disease. This study aimed to assess the effects of icosapent ethyl on acetic acid-induced colitis in rats as well as the underlying mechanisms involved. 36 male Wister rats were equally divided into six groups: control, UC, mesalamine 100 mg/kg, icosapent 150mg/kg, icosapent 300 mg/kg, and EX527-icosapent 300 mg/kg groups. Except for control group, UC was induced by acetic acid instillation into colon. Drugs were administered once daily for one week then under thiopental anaesthesia, colons were excised. Colitis macroscopic and microscopic scores were assessed. A part of colon was homogenized for detection of malondialdehyde (MDA), inerleukin1 (IL-1ß), tumor necrosis factor (TNF-α), superoxide dismutase (SOD), phosphorylated Akt (pAkt) and caspase 3 levels. Silent information regulator 1 (SIRT1), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2 (Nrf2) mRNA expressions were detected. Mallory-stained colonic sections were examined for collagen fibres detection. Immunohistochemistry of NF-κB and p53 expressionsin colonic sections were assessed. Acetic acid induced colitis with increments in MDA, IL-1ß, TNF-α, and caspase 3 levels while decreased SOD, pAkt, SIRT1, HO-1, and Nrf2 with increased collagen fibres as well as NF-κB and p53. Icosapent decreased macro& microscopic colitis scores, MDA, IL-1ß, TNF-α, and caspase 3 levels while increased SOD, pAkt, SIRT1, HO-1, and Nrf2 with decreased collagen fibres as well as NF-κB and p53. The effects of icosapent 300 mg/kg were similar to mesalamine. Icosapent effects were antagonized by EX527. Icosapent alleviated acetic acid-induced colitis via its anti-inflammatory, antioxidant, and anti-apoptotic effects mediated in part by SIRT1 pathway activation.


Assuntos
Colite Ulcerativa , Colite , Ratos , Masculino , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Ácido Eicosapentaenoico/efeitos adversos , Ácido Eicosapentaenoico/metabolismo , Sirtuína 1/metabolismo , Caspase 3/metabolismo , NF-kappa B/metabolismo , Mesalamina/efeitos adversos , Mesalamina/metabolismo , Ácido Acético/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ratos Wistar , Colite/induzido quimicamente , Transdução de Sinais , Colo/patologia , Superóxido Dismutase/metabolismo , Colágeno/metabolismo
18.
Chin J Integr Med ; 29(9): 809-817, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36044116

RESUMO

OBJECTIVE: To explore the possible effects and mechanism of Zhizhu Decoction (ZZD) on the pathophysiology of slow transit constipation (STC). METHODS: A total of 54 C57BL/6 mice was randomly divided into the following 6 groups by a random number table, including control, STC model (model), positive control, and low-, medium- and high-doses ZZD treatment groups (5, 10, 20 g/kg, namely L, M-, and H-ZZD, respectively), 9 mice in each group. Following 2-week treatment, intestinal transport rate (ITR) and fecal water content were determined, and blood and colon tissue samples were collected. Hematoxylin-eosin and periodic acid-Schiff staining were performed to evaluate the morphology of colon tissues and calculate the number of goblet cells. To determine intestinal permeability, serum levels of lipopolysaccharide (LPS), low-density lipoprotein (LDL) and mannose were measured using enzyme-linked immunosorbent assay (ELISA). Western blot analysis was carried out to detect the expression levels of intestinal tight junction proteins zona-occludens-1 (ZO-1), claudin-1, occludin and recombinant mucin 2 (MUC2). The mRNA expression levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-4, IL-10 and IL-22 were determined using reverse transcription-quantitative reverse transcription reaction. Colon indexes of oxidative stress were measured by ELISA, and protein expression levels of colon silent information regulator 1/forkhead box O transcription factor 1 (SIRT1/FoxO1) antioxidant signaling pathway were detected by Western blot. RESULTS: Compared with the model group, ITR and fecal moisture were significantly enhanced in STC mice in the M-ZZD and H-ZZD groups (P<0.01). Additionally, ZZD treatment notably increased the thickness of mucosal and muscular tissue, elevated the number of goblet cells in the colon of STC mice, reduced the secretion levels of LPS, LDL and mannose, and upregulated ZO-1, claudin-1, occludin and MUC2 expressions in the colon in a dose-dependent manner, compared with the model group (P<0.05 or P<0.01). In addition, ZZD significantly attenuated intestinal inflammation and oxidative stress and activated the SIRT1/FoxO1 signaling pathway (P<0.05 or P<0.01). CONCLUSION: ZZD exhibited beneficial effects on the intestinal system of STC mice and alleviated intestinal inflammation and oxidative stress via activating SIRT1/FoxO1 antioxidant signaling pathway in the colon.


Assuntos
Antioxidantes , Sirtuína 1 , Camundongos , Animais , Sirtuína 1/genética , Ocludina , Lipopolissacarídeos , Claudina-1 , Manose , Camundongos Endogâmicos C57BL , Constipação Intestinal/tratamento farmacológico , Inflamação , Transdução de Sinais
19.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1010273

RESUMO

OBJECTIVE@#To explore the possible effects and mechanism of Zhizhu Decoction (ZZD) on the pathophysiology of slow transit constipation (STC).@*METHODS@#A total of 54 C57BL/6 mice was randomly divided into the following 6 groups by a random number table, including control, STC model (model), positive control, and low-, medium- and high-doses ZZD treatment groups (5, 10, 20 g/kg, namely L, M-, and H-ZZD, respectively), 9 mice in each group. Following 2-week treatment, intestinal transport rate (ITR) and fecal water content were determined, and blood and colon tissue samples were collected. Hematoxylin-eosin and periodic acid-Schiff staining were performed to evaluate the morphology of colon tissues and calculate the number of goblet cells. To determine intestinal permeability, serum levels of lipopolysaccharide (LPS), low-density lipoprotein (LDL) and mannose were measured using enzyme-linked immunosorbent assay (ELISA). Western blot analysis was carried out to detect the expression levels of intestinal tight junction proteins zona-occludens-1 (ZO-1), claudin-1, occludin and recombinant mucin 2 (MUC2). The mRNA expression levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4, IL-10 and IL-22 were determined using reverse transcription-quantitative reverse transcription reaction. Colon indexes of oxidative stress were measured by ELISA, and protein expression levels of colon silent information regulator 1/forkhead box O transcription factor 1 (SIRT1/FoxO1) antioxidant signaling pathway were detected by Western blot.@*RESULTS@#Compared with the model group, ITR and fecal moisture were significantly enhanced in STC mice in the M-ZZD and H-ZZD groups (P<0.01). Additionally, ZZD treatment notably increased the thickness of mucosal and muscular tissue, elevated the number of goblet cells in the colon of STC mice, reduced the secretion levels of LPS, LDL and mannose, and upregulated ZO-1, claudin-1, occludin and MUC2 expressions in the colon in a dose-dependent manner, compared with the model group (P<0.05 or P<0.01). In addition, ZZD significantly attenuated intestinal inflammation and oxidative stress and activated the SIRT1/FoxO1 signaling pathway (P<0.05 or P<0.01).@*CONCLUSION@#ZZD exhibited beneficial effects on the intestinal system of STC mice and alleviated intestinal inflammation and oxidative stress via activating SIRT1/FoxO1 antioxidant signaling pathway in the colon.


Assuntos
Camundongos , Animais , Sirtuína 1/genética , Antioxidantes , Ocludina , Lipopolissacarídeos , Claudina-1 , Manose , Camundongos Endogâmicos C57BL , Constipação Intestinal/tratamento farmacológico , Inflamação , Transdução de Sinais
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-993214

RESUMO

Objective:To evaluate the effect of resveratrol on radiation-induced myocardial injury in mice.Methods:A total of 80 C57BL/6 mice were randomly divided into the control group, resveratrol (Res) group, radiation (RT) group and radiation+resveratrol (RT+Res) group. In the RT group, mice were given with heart radiation and mice in the Res group were given with resveratrol by gavage for 3 months. Cardiac ultrasound was used to evaluate cardiac function at 3 months after cardiac radiation. The hearts of mice were collected for HE staining, immunofluorescence, TUNEL staining, Masson staining and Western blot to evaluate the expression of silent information regulator 1 (SIRT1), the level of oxidative stress, inflammatory response, apoptosis and the degree of fibrosis in myocardial tissues. Experimental data were expressed as Mean ± SD. Continous data were statistically analyzed by t-test. Results:After 3 months of irradiation, compared with the control group, the ejection fraction (EF) and fractional shortening (FS) of cardiac function were decreased, and myocardial degeneration and disorder, reactive oxygen species (ROS) and inflammatory levels (interleukin-1β, interleukin-6, tumor necrosis factor-α), myocardial apoptosis (TUNEL positive cell rate) and fibrosis were increased in the RT group. In the RT+Res group, the cardiac function was improved, the expression of SIRT1 was increased, and the levels of oxidative stress, inflammation, myocardial apoptosis and fibrosis were decreased.Conclusions:Resveratrol can reduce oxidative stress, inflammatory infiltration, apoptosis and fibrosis of myocardium in mice with radiation-induced myocardial injury, thereby improving cardiac structural abnormalities and cardiac dysfunction. This protective effect can be mediated by upregulation of SIRT1 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...