Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.147
Filtrar
1.
ACS Nano ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990194

RESUMO

Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.

2.
Sci Rep ; 14(1): 15644, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977732

RESUMO

Aluminum alloys have been widely studied because of their current engineering applications. Due to their high strength and lightweight, cracking can easily initiate on their surface, deteriorating their overall functional and structural properties and causing environmental attacks. The current study highlights the significant influence of incorporating 1 wt% silica nanostructure in aluminum-10 zinc alloys. The characteristics of the composites were examined using Vickers hardness, tensile, and electrochemical testing (OCP, Tafel, and EIS) at various artificial aging temperatures (423, 443, and 463 K). Silica nanorods may achieve ultrafine grains, increase hardness by up to 13.8%, increase σUTS values by up to 79% at 443 K, and improve corrosion rate by up to 89.4%, surpassing Al-10 Zn bulk metallics. We demonstrate that silica nanorods contribute to the creation of a superior nanocomposite that not only limits failure events under loading but also resists corrosion. Our findings suggest that silica nanocomposite can produce unique features for use in a variety of automotive, construction, and aerospace applications. This improvement can be attributed mainly to the large surface area of nano-silica particles, which alters the Al matrix. Microstructural, mechanical, and electrochemical studies revealed that the effects of structure refinement were dependent on nano-silica.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38980811

RESUMO

Conventionally obtained silicon quantum dots (Si QDs) generally suffer from the disadvantages of a cumbersome preparation process, large fluctuation in the quality of Si QDs, poor water solubility, and aggregation-caused quenching (ACQ) phenomenon. Here we report a facile one-pot strategy to synthesize a novel Si QDs-based fluorescent nanomaterial in which Si QDs are confined into dendritic mesoporous silica, named as SiQDs@DMSNs. The prepared SiQDs@DMSNs, with adjustable particle sizes ranging from 140 to 300 nm, emit blue fluorescence around 410 nm upon excitation by ultraviolet light at a wavelength of 300 nm. It is found that the addition of sodium salicylate (NaSAL) plays a crucial role in the in situ generation of Si QDs. The obtained SiQDs@DMSNs exhibit excellent fluorescence intensity, water solubility, and stability, facilitating easy surface modification, without being limited by the ACQ phenomenon. It is expected to be widely used in many fields such as biosensors, nanomedicines, in vivo imaging, fingerprint identification, and anticounterfeiting labels.

4.
Int J Pharm ; 661: 124420, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971512

RESUMO

Colorectal cancer represents a worldwide spread type of cancer and it is regarded as one of the leading death causes, along with lung, breast, and prostate cancers. Since conventional surgical resection and chemotherapy proved limited efficiency, the use of alternative drug delivery systems that ensure the controlled release of cytostatic agents possess immense potential for treatment. In this regard, the present study aimed to develop and evaluate the efficiency of a series of irinotecan-loaded magnetite-silica core-shell systems. The magnetite particles were obtained through a solvothermal treatment, while the silica shell was obtained through the Stöber method directly onto the surface of magnetite particles. Subsequently, the core-shell systems were physico-chemically and morpho-structurally evaluated trough X-ray diffraction (XRD) and (high-resolution) transmission electron microscopy ((HR-)TEM) equipped with a High Annular Angular Dark Field Detector (HAADF) for elemental mapping. After the irinotecan loading, the drug delivery systems were evaluated through Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), and UV-Vis spectrophotometry. Additionally, the Brunauer-Emmett-Teller (BET) method was employed for determining the surface area and pore volume of the systems. The biological functionality of the core-shells was investigated through the MTT assay performed on both normal and cancer cells. The results of the study confirmed the formation of highly crystalline magnetite particles comprising the core and mesoporous silica layers of sizes varying between 2 and 7 nm as the shell. Additionally, the drug loading and release was dependent on the type of the silica synthesis procedure, since the lack of hexadecyltrimethylammonium bromide (CTAB) resulted in higher drug loading but lower cumulative release. Moreover, the nanostructured systems demonstrated a targeted efficiency towards HT-29 colorectal adenocarcinoma cells, as in the case of normal L929 fibroblast cells, the cell viability was higher than for the pristine drug. In this manner, this study provides the means and procedures for developing drug delivery systems with applicability in the treatment of cancer.

5.
Sci Total Environ ; : 174591, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981539

RESUMO

Sediment cores are commonly used for reconstructing historical events by determining the biogenic elements in sediment vertical profiles. The vertical flux of biogenic silica (BSi) can be enhanced by bivalve mollusks through biodeposition and can be subsequently recorded in the sediment core. However, whether BSi in sediment core can indicate the interactions between aquaculture farms and the ecosystem is unclear. In this study, sediment cores were collected from a typical off-bottom oyster farm in Sanggou Bay, China. Based on 210Pb chronology analysis of the sediment vertical profile, BSi content was determined to reflect the BSi burial flux during the farming history. The BSi biodeposition fluxes were estimated based on the biodeposition model, to identify the correspondence among BSi burial flux, BSi biodeposition flux, and annual oyster production during the historical development of the farm. The results show that the BSi density in the sediment increased obviously after 1980 when intensive oyster farming began, and reduced after 2000 when farming began to decline. Moreover, BSi burial flux had a corresponding relationship with oyster production and the simulated biodeposition rate, except for 1997-2001 when oyster production peaked. Our finding supported that the variation of BSi from biodeposition can be preserved and then recorded in the sediment, suggesting that BSi could be considered as an indicator to reconstruct the historical development of the oyster farm.

6.
ACS Nano ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973716

RESUMO

The interaction of liquid water with hydrophobic surfaces is ubiquitous in life and technology. Yet, the molecular structure of interfacial liquid water on these surfaces is not known. By using a 3D atomic force microscope, we characterize with angstrom resolution the structure of interfacial liquid water on hydrophobic and hydrophilic silica surfaces. The combination of 3D AFM images and molecular dynamics simulations reveals that next to a hydrophobic silica surface, there is a 1.2 nm region characterized by a very low density of water. In contrast, the 3D AFM images obtained of a hydrophilic silica surface reveal the presence of hydration layers next to the surface. The gap observed on hydrophobic silica surfaces is filled with two-to-three layers of straight-chain alkanes. We developed a 2D Ising model that explains the formation of a continuous hydrocarbon layer on hydrophobic silica surfaces.

7.
World J Clin Oncol ; 15(6): 667-673, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946830

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.

8.
Int J Nanomedicine ; 19: 6337-6358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946884

RESUMO

Background: It is well-established that osteoclast activity is significantly influenced by fluctuations in intracellular pH. Consequently, a pH-sensitive gated nano-drug delivery system represents a promising therapeutic approach to mitigate osteoclast overactivity. Our prior research indicated that naringin, a natural flavonoid, effectively mitigates osteoclast activity. However, naringin showed low oral availability and short half-life, which hinders its clinical application. We developed a drug delivery system wherein chitosan, as gatekeepers, coats mesoporous silica nanoparticles loaded with naringin (CS@MSNs-Naringin). However, the inhibitory effects of CS@MSNs-Naringin on osteoclasts and the underlying mechanisms remain unclear, warranting further research. Methods: First, we synthesized CS@MSNs-Naringin and conducted a comprehensive characterization. We also measured drug release rates in a pH gradient solution and verified its biosafety. Subsequently, we investigated the impact of CS@MSNs-Naringin on osteoclasts induced by bone marrow-derived macrophages, focusing on differentiation and bone resorption activity while exploring potential mechanisms. Finally, we established a rat model of bilateral critical-sized calvarial bone defects, in which CS@MSNs-Naringin was dispersed in GelMA hydrogel to achieve in situ drug delivery. We observed the ability of CS@MSNs-Naringin to promote bone regeneration and inhibit osteoclast activity in vivo. Results: CS@MSNs-Naringin exhibited high uniformity and dispersity, low cytotoxicity (concentration≤120 µg/mL), and significant pH sensitivity. In vitro, compared to Naringin and MSNs-Naringin, CS@MSNs-Naringin more effectively inhibited the formation and bone resorption activity of osteoclasts. This effect was accompanied by decreased phosphorylation of key factors in the NF-κB and MAPK signaling pathways, increased apoptosis levels, and a subsequent reduction in the production of osteoclast-specific genes and proteins. In vivo, CS@MSNs-Naringin outperformed Naringin and MSNs-Naringin, promoting new bone formation while inhibiting osteoclast activity to a greater extent. Conclusion: Our research suggested that CS@MSNs-Naringin exhibited the strikingly ability to anti-osteoclasts in vitro and in vivo, moreover promoted bone regeneration in the calvarial bone defect.


Assuntos
Regeneração Óssea , Flavanonas , Nanopartículas , Osteoclastos , Dióxido de Silício , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/farmacocinética , Flavanonas/administração & dosagem , Animais , Osteoclastos/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Ratos , Camundongos , Ratos Sprague-Dawley , Quitosana/química , Masculino , Liberação Controlada de Fármacos , Porosidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Sistemas de Liberação de Medicamentos/métodos , Diferenciação Celular/efeitos dos fármacos
9.
Cell Rep Phys Sci ; 5(6): 102021, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947181

RESUMO

In colloids, the shape influences the function. In silica, straight nanorods have already been synthesized from water-in-oil emulsions. By contrast, curly silica nanofibers have been less reported because the underlying growth mechanism remains unexplored, hindering further morphology control for applications. Herein, we describe the synthetic protocol for silica nanofibers with a tunable curliness based on the control of the water-in-oil emulsion droplets. Systematically decreasing the droplet size and increasing their contact angle, the Brownian motion of the droplets intensifies during the silica growth, thus increasing the random curliness of the nanofibers. This finding is supported by simplistic theoretical arguments and experimentally verified by varying the temperature to finely tune the curliness. Assembling these nanofibers toward porous disordered films enhances multiple scattering in the visible range, resulting in increased whiteness in contrast to films constructed by spherical and rod-like building units, which can be useful for, e.g., coatings and pigments.

10.
Small ; : e2401772, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967183

RESUMO

Flexibility of nanomaterials is challenging but worthy to tune for biomedical applications. Biocompatible silica nanomaterials are under extensive exploration but are rarely observed to exhibit flexibility despite the polymeric nature. Herein, a facile one-step route is reported to ultrathin flexible silica nanosheets (NSs), whose low thickness and high diameter-to-thickness ratio enables folding. Thickness and diameter can be readily tuned to enable controlled flexibility. Mechanism study reveals that beyond the commonly used surfactant, the "uncommon" one bearing two hydrophobic tails play a guiding role in producing sheeted/layered/shelled structures, while addition of ethanol appropriately relieved the strong interfacial tension of the assembled surfactants, which will otherwise produce large curled sheeted structures. With these ultrathin NSs, it is further shown that the cellular preference for particle shape and rigidity is highly dependent on surface chemistry of nanoparticles: under high particle-cell affinity, NSs, and especially the flexible ones will be preferred by mammalian cells for internalization or attachment, while this preference is basically invalid when the affinity is low. Therefore, properties of the ultrathin silica NSs can be effectively expanded and empowered by surface chemistry to realize improved bio-sensing or drug delivery.

11.
Adv Sci (Weinh) ; : e2405320, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995232

RESUMO

The growing importance of submicrometer-structured surfaces across a variety of different fields has driven progress in light manipulation, color diversity, water-repellency, and functional enhancements. To enable mass production, processes like hot-embossing (HE), roll-to-roll replication (R2R), and injection molding (IM) are essential due to their precision and material flexibility. However, these processes are tool-based manufacturing (TBM) techniques requiring metal molds, which are time-consuming and expensive to manufacture, as they mostly rely on galvanoforming using templates made via precision microlithography or two-photon-polymerization (2PP). In this work, a novel approach is demonstrated to replicate amorphous metals from fused silica glass, derived from additive manufacturing and structured using hot embossing and casting, enabling the fabrication of metal insets with features in the range of 300 nm and a surface roughness of below 10 nm. By partially crystallizing the amorphous metal, during the replication process, the insets gain a high hardness of up to 800 HV. The metal molds are successfully used in polymer injection molding using different polymers including polystyrene (PS) and polyethylene (PE) as well as glass nanocomposites. This work is of significant importance to the field as it provides a production method for the increasing demand for sub-micron-structured tooling in the area of polymer replication while substantially reducing their cost of production.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38988046

RESUMO

Conditions affecting the brain are the second leading cause of death globally. One of the main challenges for drugs targeting brain diseases is passing the blood-brain barrier (BBB). Here, the effectiveness of mesoporous silica nanostars (MSiNSs) with two different spike lengths to cross an in vitro BBB multicellular model was evaluated and compared to spherical nanoparticles (MSiNP). A modified sol-gel single-micelle epitaxial growth was used to produce MSiNS, which showed no cytotoxicity or immunogenicity at concentrations of up to 1 µg mL-1 in peripheral blood mononuclear and neuronal cells. The nanostar MSiNS effectively penetrated the BBB model after 24 h, and MSiNS-1 with a shorter spike length (9 ± 2 nm) crossed the in vitro BBB model more rapidly than the MSiNS-2 with longer spikes (18 ± 4 nm) or spherical MSiNP at 96 h, which accumulated in the apical and basolateral sides, respectively. Molecular dynamic simulations illustrated an increase in configurational flexibility of the lipid bilayer during contact with the MSiNS, resulting in wrapping, whereas the MSiNP suppressed membrane fluctuations. This work advances an effective brain drug delivery system based on virus-like shaped MSiNS for the treatment of different brain diseases and a mechanism for their interaction with lipid bilayers.

13.
Heliyon ; 10(12): e32953, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988531

RESUMO

If absolutely nothing is taken to reduce carbon dioxide (CO2) emissions, atmospheric concentrations of carbon dioxide will rise to 550 parts per million by 2050, which will have disastrous effects on the world's climate and food production. An apparatus has been designed and setup to convert CO2 into a useful and vital product which was silica. The effect of different experimental factors on the compositions by weight percent of SiO2 and Na2CO3 were studied including the CO2 gas flow rate (1.037, 1.648 and 2.26 L/min), initial concentration of sodium silicate (Na2SiO3) solution (5, 7.5 and 10 %wt) and the packing size (15.95, 20.175, and 24.4 mm). An optimization process was performed using the Design Expert software program to achieve the optimum experimental conditions at which the maximum weight percent of SiO2 (main product), the minimum weight percent of (Na2CO3) (side product) and the minimum reaction time were determined. From the optimization process, the maximum weight percent of SiO2 (25.63 %), the minimum weight percent of (Na2CO3) (9.62 %) and the minimum reaction time (7.59 min) were achieved at the following optimum experimental conditions of CO2 gas flow rate = 1.648 L/min, packing size = 24.4 mm and initial concentration of sodium silicate solution = 10 %wt.

14.
J Photochem Photobiol B ; 258: 112977, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38991294

RESUMO

To solve the problems existing in the clinical application of hypericin (Hyp) and tirapazamine (TPZ), a nano-drug delivery system with synergistic anti-tumor functions was constructed using mesoporous silica nanoparticles (MSN) and sodium alginate (SA). The system exhibited excellent stability, physiological compatibility and targeted drug release performance in tumor tissues. In the in vitro and in vivo experiments, Hyp released from MSN killed tumor cells through photodynamic therapy (PDT). The degree of hypoxia in the tumor tissue site was exacerbated, enabling TPZ to fully exert its anti-tumor activity. Our studies suggested that the synergistic effects between the components of the nano-drug delivery system significantly improve the anti-tumor properties of Hyp and TPZ.

15.
Pharm Res ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992234

RESUMO

OBJECTIVE: Zinc Oxide nanoparticles (ZnO NPs) are used widely in nowadays personal care products, especially sunscreens, as a protector against UV irradiation. Yet, they have some reports of potential toxicity. Silica is widely used to cage ZnO NPs to reduce their potential toxicity. Vitamin C derivative, Magnesium Ascorpyl Phosphate (MAP), is a potent antioxidant that can efficiently protect human skin from harmful impacts of UV irradiation and oxidative stress. The combination of silica coated ZnO NPs and MAP nanovesicles could have potential synergistic protective effect against skin photodamage. METHODS: Silica coated ZnO NPs and MAP nanovesicles (ethosomes and niosomes) were synthesized, formulated, and evaluated as topical gels. These gel formulations were evaluated in mice for their photoprotective effect against UV irradiation through histopathology and immuno-histochemistry study. Split-face clinical study was conducted to compare the effect of application of silica coated ZnO NPs either alone or combined with MAP nanovesicles. Their photoprotective action was evaluated, using Antera 3D® camera, for melanin level, roughness index and wrinkles depth. RESULTS: Silica coated ZnO NPs when combined with MAP nanovesicles protected mice skin from UV irradiation and decreased the expression of the proinflammatory cytokines, NF-κB. Clinically, silica coated ZnO NPs, alone or combined with MAP nanovesicles, could have significant effect to decrease melanin level, roughness index and wrinkles depth with higher effect for the combination. CONCLUSION: A composite of silica coated ZnO NPs and MAP nanovesicles could be a promising cosmetic formulation for skin protection against photodamage signs such as hyperpigmentation, roughness, and wrinkles.

16.
J Occup Environ Hyg ; : 1-12, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958555

RESUMO

Direct-on-Filter (DoF) analysis of respirable crystalline silica (RCS) by Fourier Transform Infrared (FTIR) spectroscopy is a useful tool for assessing exposure risks. With the RCS exposure limits becoming lower, it is important to characterize and reduce measurement uncertainties. This study systematically evaluated two filter types (i.e., polyvinyl chloride [PVC] and polytetrafluoroethylene [PTFE]) for RCS measurements by DoF FTIR spectroscopy, including the filter-to-filter and day-to-day variability of blank filter FTIR reference spectra, particle deposition patterns, filtration efficiencies, and pressure drops. For PVC filters sampled at a flow rate of 2.5 L/min for 8 h, the RCS limit of detection (LOD) was 7.4 µg/m3 when a designated laboratory reference filter was used to correct the absorption by the filter media. When the spectrum of the pre-sample filter (blank filter before dust sampling) was used for correction, the LOD could be up to 5.9 µg/m3. The PVC absorption increased linearly with reference filter mass, providing a means to correct the absorption differences between the pre-sample and reference filters. For PTFE, the LODs were 12 and 1.2 µg/m3 when a designated laboratory blank or the pre-sample filter spectrum was used for blank correction, respectively, indicating that using the pre-sample blank spectrum will reduce RCS quantification uncertainty. Both filter types exhibited a consistent radially symmetric deposition pattern when particles were collected using 3-piece cassettes, indicating that RCS can be quantified from a single measurement at the filter center. The most penetrating aerodynamic diameters were around 0.1 µm with filtration efficiencies ≥ 98.8% across the measured particle size range with low-pressure drops (0.2-0.3 kPa) at a flow rate of 2.5 L/min. This study concludes that either the PVC or the PTFE filters are suitable for RCS analysis by DoF FTIR, but proper methods are needed to account for the variability of blank absorption among different filters.

17.
Heliyon ; 10(11): e32275, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947450

RESUMO

A combination of benzoyl peroxide (BPO) and tretinoin is recommended for treating acne; however, concurrent administration can be irritating, and coformulation is prevented by BPO-mediated oxidation of tretinoin. In rosacea, benzoyl peroxide has been shown to be efficacious; however, its use has been limited by poor tolerability. To overcome these limitations, the active ingredients can be encapsulated within silica microcapsules. The US Food and Drug Administration has approved 2 products using this technology, a combination of encapsulated benzoyl peroxide and encapsulated tretinoin product for acne vulgaris and encapsulated benzoyl peroxide to treat inflammatory lesions in rosacea. The active ingredients are released through small channels in the silica shell, gradually releasing the active ingredients to the skin. This study describes the stability and release profiles of encapsulated tretinoin and encapsulated benzoyl peroxide from the silica shell in physiologically relevant conditions and provides differentiation from traditional formulations.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38954488

RESUMO

In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3ß inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.

19.
Talanta ; 278: 126481, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38968655

RESUMO

Quantitative microRNA (miRNA) detection is crucial for early breast cancer diagnosis and prognosis. However, quick and stable fluorescence sensing for miRNA identification is still challenging. This work developed a novel label-free detection method based on AuNPs etching for quantitatively detecting miRNA-155. A layer of AuNPs was grown on the surface of mesoporous silica nanoparticles (MSN) loaded with Rhodamine 6G (R6G) using seed-mediated growth, followed by probe attachment. In the presence of miRNA-155, the MSN@R6G@AuNP surface loses the protection of the attached probe, rendering AuNPs susceptible to etching by hydrochloric acid. This results in a significant fluorescent signal being released in the free space. The encapsulation with AuNPs effectively reduces signal leakage, while the rapid etching process shortens detection time. This strategy enables sensitive and fast detection with a detection range of 100 fM to 100 nM, a detection limit of 2.18 fM, and a detection time of 30 min. The recovery rate in normal human serum ranges from 99.02 % to 106.34 %. This work presents a simple biosensing strategy with significant potential for application in tumor diagnosis.

20.
Sci Total Environ ; : 174488, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969121

RESUMO

Coastal regions are sectors where human activities impact the marine ecosystem, and if necessary control measures are not taken, they can generate negative consequences for health and ecosystem services. Within the framework of the Pampa Azul initiative and under the One Health paradigm, the interconnection between the terrestrial and marine environments of the San Jorge Gulf and the adjacent north coast has been studied. In November, 2022, a campaign was carried out aboard the R/V "Mar Argentino" at thirty-four stations near the coast. There, for the first time, simultaneously with in-situ measurements of physical variables, macronutrients (NO3-, PO4-3, Si(OH)4 and NH4+), particulate silica (BSi and LSi), trace metals in the particulate material (Cd, Cu, Cr, Fe and Pb) and the phytoplankton community were analyzed. The results showed a high nutrient dynamic, with a significant influence of natural stratification and anthropogenic condition due to the discharge of effluents off the cities of Comodoro Rivadavia and Caleta Olivia. Under natural conditions, NO3- and Si(OH)4 limited the surface primary production by 47 % and 41 %, respectively. Additionally, due to the anthropogenic contribution, NH4+ concentration reached 3 µM, increasing the proliferation of nanophytoplankton, among other consequences. As a result of nutrient dynamics, the uptake of Si(OH)4, the growth rate of diatoms and their production of BSi were decoupled. Furthermore, a significant correlation between LSi and Fe in particulate matter was evidenced, opening new lines of research that relate dust storms to primary productivity in this marine environment. The measured concentrations of trace metals do not appear to be a biological risk; however, contamination by Cd (37.6 µg g- 1 d.w.) and Cu (214.97 µg g- 1 d.w.) off Camarones poses a significant concern that must be addressed in the immediate future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...