Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Aust Endod J ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963183

RESUMO

This systematic review aimed to compare the histological response of inflamed pulpodentinal complex to the hydraulic calcium silicate cements in experimental animal models of pulpitis. Articles that evaluated the histological response of inflamed pulp to mineral trioxide aggregate (MTA) in comparison with other restorative materials were selected and analysed in detail. The risk of bias assessment was conducted using SYRCLE's RoB tool. The GRADEpro tool was used to determine the overall quality of evidence. Out of the 2947 retrieved articles from databases, five articles fulfilled the inclusion criteria. MTA induced significantly more hard tissue formation compared to calcium hydroxide. The use of pulp-capping material containing fluocinolone acetonide and ASP/PLGA-ASP/ACP/PLLA-PLGA composite membrane was comparable. This systematic review could not demonstrate enhanced efficiency of capping materials compared to MTA. Future well-conducted animal studies are warranted for demonstrating the hard tissue formation abilities of pulp-capping materials with convenient inflammatory conditions.

2.
Dent Mater ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876829

RESUMO

OBJECTIVES: Quality control testing of dental materials requires a standard to enable the generation of reproducible and comparable data. Currently there are no standards for testing materials used for vital pulp therapy. The aim of this study was to develop a new standard to evaluate solubility of pulp preservation materials. METHODS: The solubility of three materials used for vital pulp therapy: Biodentine, TheraCal and Activa was evaluated using two international standards for dental materials ISO 4049:2019 (S1) and ISO 6876:2012 (S2). For both standards, a modified methodology was evaluated. This included changing the volume of the solution used (S1M, S2M), using Dulbecco's modified eagle medium (DMEM) as an alternative to water (S1D, S2D) and periodic solution change for the ISO 4049 method (S1P, S1MP). Materials were characterised before and after completion of solubility test using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. RESULTS: The test materials exhibited different solubility values depending on the methodology used. Biodentine exhibited significantly lower solubility when lower volumes of solution were used when tested using both ISO methods (p ≤ 0.05). TheraCal and Activa showed negative solubility values after desiccation when tested using ISO 4049:2019. The Biodentine exhibited changes in its microstructure which was dependent on the method used to test solubility. CONCLUSIONS: The solubility values obtained were dependent on the method used. It is thus important to use methods that replicate the clinical environment for meaningful evaluations.

3.
BMC Oral Health ; 24(1): 732, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926776

RESUMO

OBJECTIVE: This study aimed to compare the remineralization effects of a calcium silicate-based cement (Biodentine) and of a glass ionomer cement (GIC: Fuji IX) on artificially demineralized dentin. METHODS: Four standard cavities were prepared in dentin discs prepared from 34 extracted sound human third molars. In each disc, one cavity was covered with an acid-resistant varnish before demineralization (Group 1). The specimens were soaked in a chemical demineralization solution for 96 h to induce artificial carious lesions. Thereafter, one cavity each was filled with Biodentine (Group 2) and GIC (Group 3), respectively, and one carious lesion was left unrestored as a negative control (Group 4). Next, specimens were immersed in simulated body fluid (SBF) for 21 days. After cross-sectioning the specimens, the Ca/P ratio was calculated in each specimen by using scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, data were analyzed using repeated-measures ANOVA with post-hoc Bonferroni correction. RESULTS: Both cement types induced dentin remineralization as compared to Group 4. The Ca/P ratio was significantly higher in Group 2 than in Group 3 (p < 0.05). CONCLUSION: The dentin lesion remineralization capability of Biodentine is higher than that of GIC, suggesting the usefulness of the former as a bioactive dentin replacement material. CLINICAL RELEVANCE: Biodentine has a higher remineralization ability than that of GIC for carious dentin, and its interfacial properties make it a promising bioactive dentin restorative material.


Assuntos
Compostos de Cálcio , Dentina , Cimentos de Ionômeros de Vidro , Microscopia Eletrônica de Varredura , Silicatos , Remineralização Dentária , Compostos de Cálcio/uso terapêutico , Compostos de Cálcio/farmacologia , Cimentos de Ionômeros de Vidro/uso terapêutico , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Silicatos/uso terapêutico , Silicatos/farmacologia , Dentina/efeitos dos fármacos , Remineralização Dentária/métodos , Técnicas In Vitro , Espectrometria por Raios X , Cálcio , Teste de Materiais , Cárie Dentária , Fósforo
4.
Cureus ; 16(5): e60863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910673

RESUMO

BACKGROUND: Dental materials with dentine regenerative properties are preferred over conventional materials. Calcium silicate cements, such as Biodentine, are bioactive and offer excellent sealing ability, making them ideal for various dental treatments. OBJECTIVES: This study aimed to fabricate bioactive calcium silicates infused with titanium (Ti) and strontium (Sr) to optimize their neo-angiogenic, antimicrobial, and regenerative properties while maintaining mechanical stability. METHODOLOGY: Ti- and Sr-infused calcium silicate cements were synthesized, and their mineral phases were characterized using X-ray diffraction. Morphological and elemental analyses were performed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). Raman spectroscopy was used to confirm the formation of bioactive material. A hemocompatibility assessment was conducted to evaluate blood compatibility. RESULTS: The presence of Ca2, SiO4, and SrTiO3 mineral phases indicated the successful infusion of Ti and Sr into the calcium silicate cement. FESEM and EDS revealed interconnected small spheres and rods in the silicate network with the relevant elemental compositions. Raman spectra verified that Si-O-Si and Ti-O-Ti vibrations exist, validating the formation of a bioactive material. The hemocompatibility assessment demonstrated optimal blood compatibility. CONCLUSIONS: This study successfully fabricated an improved calcium silicate-based material with enhanced regenerative properties and excellent biocompatibility. This newly formed substrate holds promise for providing superior restorative solutions and aiding in conservative treatment modalities during dental procedures.

5.
J Pharm Bioallied Sci ; 16(Suppl 2): S1420-S1422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882760

RESUMO

Aim: To assess clinically and histologically the efficacy of TheraCal LC and Biodentine as Direct Pulp Capping agents. Materials and Method: Sixty caries-free maxillary first premolar teeth which were scheduled for orthodontic extraction were selected for the study and were divided equally into Group 1 (Theracal LC) and Group 2 (Biodentine). Thermal and electric pulp testing was performed on the teeth to assess pulp vitality followed by tooth preparation to expose pulp horns under local anesthesia. After achieving hemostasis, the direct pulp capping agent was placed and composite restoration was done. All the teeth were evaluated and compared in terms of clinical and histological findings after 6 weeks. The statistical analysis used was the Kruskal-Wallis test. Results: Teeth with Theracal LC showed no sensitivity to heat, cold, or percussion, whereas sensitivity to heat, cold, or percussion was noted with Biodentine. Histological evaluation revealed that TheraCal LC has higher efficiency in complete dentin bridge formation, had maximum dentin thickness, and showed minimal or no pulpal disorganization and pulpal inflammation as compared to Biodentine. Conclusion: TheraCal LC proves to be a promising future as a direct pulp capping agent.

6.
Materials (Basel) ; 17(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793372

RESUMO

In order to increase the utilization rate of stainless steel slag, reduce storage needs, and mitigate environmental impacts, this study replaces a portion of limestone with varying amounts of stainless steel slag in the calcination of Portland cement clinker. The study primarily examines the influence of stainless steel slag on the phase composition, microstructure, compressive strength, and free calcium oxide (ƒ-CaO) content of Portland cement clinker. The results show the following: (1) Using stainless steel slag to calcine Portland cement clinker can lower the calcination temperature, reducing industrial production costs and energy consumption. (2) With an increase in the amount of stainless steel slag, the dicalcium silicate (C2S) and tricalcium silicate (C3S) phases in Portland cement clinker initially increase and then decrease; the C3S crystals gradually transform into continuous hexagonal plate-shaped distributions, while the tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) crystal structures become denser. When the stainless steel slag content is 15%, the dicalcium silicate and tricalcium silicate phases are at their peak; the C3S crystals are continuously distributed with a relatively dense structure, and C3A and C4AF crystals melt and sinter together, becoming distributed around C3S. (3) As stainless steel slag content increases, the compressive strength of Portland cement clinker at 3 days, 7 days, and 28 days increases and then decreases, while ƒ-CaO content decreases and then increases. When the stainless steel slag content is 15%, the compressive strength at 28 days is at its highest, 64.4 MPa, with the lowest ƒ-CaO content, 0.78%. The test results provide a basis for the utilization of stainless steel slag in the calcination of Portland cement clinker.

7.
Cureus ; 16(3): e56508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646305

RESUMO

Background and objectives Direct pulp capping (dPC) is a therapeutic process that involves the application of a protective chemical to an exposed pulp with the intent to facilitate the restoration and preservation of its vitality and function. Despite numerous proposed solutions, researchers have yet to find a dependable, non-absorbable bioactive pulp capping substance that constantly activates cellular healing processes, consequently preserving pulpal vitality over an extended period of time. The objective of this study was to assess and contrast the efficacy of a novel tricalcium silicate cement and calcium hydroxide in preserving the long-term health of the dental pulp following dPC using clinical and radiographic observations. Materials and methods A total of 60 individuals with symptoms of reversible pulpitis associated with deep carious lesions were chosen for dPC in the study. Two groups comprising 30 patients each underwent dPC using the novel tricalcium silicate cement (experimental group) and calcium hydroxide (control group) out of the total number of patients. A thin protective covering of self-curing glass ionomer base was applied on top of the capping material. The dentist provided instant permanent restoration employing direct posterior composite resin. Follow-up examinations were conducted three, six, nine, and 12 months after the procedure, during which assessments were performed using clinical and radiographic parameters. Results The minimum age of the study group was 16, and its maximum age was 34 (22.35 ± 2.3 years). The control group consisted of 12 males and 18 females, while the Biodentine group consisted of 13 males and 17 females. The age and gender distribution were determined to have insignificant statistical differences across the groups. The pain score exhibited statistical significance at both the three-month and six-month follow-up visits (p < 0.05). The pain score at the 12-month follow-up was 0.38 ± 0.52 in the case group and 0.42 ± 0.61 in the control group (p = 0.79). The average Periapical Index (PAI) score for the Dycal and Biodentin groups after the 12-month follow-up was 1.38 ± 0.97 and 1 ± 0.3, respectively. This difference was found to be statistically significant (p = 0.044). In addition, there was a statistically significant difference in the PAI score at the three-month, six-month, and nine-month follow-ups (p < 0.01). During the entirety of the follow-up duration, one individual in the Biodentine group had tenderness upon percussion, a negative reaction for pulp vitality, pulpal changes, and a widening of the periodontal space. Statistically significant differences were observed in pulpal changes and tenderness on percussion during the nine-month and 12-month follow-up periods (p < 0.05). After 12 months, the rate of success in the group treated with Dycal was 91.3%, while the success percentage in the group treated with Biodentine was 98.55%. This difference in outcomes was determined to be statistically significant (λ2 = 5.46; p = 0.019). Conclusion The study findings indicate that Biodentine, a novel tricalcium silicate cement, outperforms calcium hydroxide in preserving pulp vitality over the long term following dPC. The Biodentine group attained an overall success rate of 98.55%, whereas the Dycal group had a success rate of 91.3% following 12 months of subsequent follow-up visits.

8.
Dent J (Basel) ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668012

RESUMO

OBJECTIVES: A tricalcium silicate-based cement, Biodentine™, has displayed antibiofilm activity when mixed with chitosan powder. This study aimed to assess the effect of chitosan incorporation on the physico-mechanical and biological properties of Biodentine™. METHODS: In this study, medium molecular weight chitosan powder was incorporated into Biodentine™ in varying proportions (2.5 wt%, 5 wt%, 10 wt%, and 20 wt%). The setting time was determined using a Vicat apparatus, solubility was assessed by calculating weight variation after water immersion, radiopacity was evaluated and expressed in millimeters of aluminum, the compressive strength was evaluated using an Instron testing machine, and the microhardness was measured with a Vickers microhardness tester. In addition, surface topography of specimens was analyzed using scanning electron microscopy, and the effect of chitosan on the viability of human embryonic kidney (HEK 293) cells was measured by a colorimetric MTT assay. RESULTS: Incorporation of 2.5 wt% and 5 wt% chitosan powder delivered an advantage by speeding up the setting time of Biodentine material. However, the incorporation of chitosan compromised all other material properties and the crystalline structure in a dose-dependent manner. The chitosan-modified material also showed significant decreases in the proliferation of the HEK 293 cells, signifying decreased biocompatibility. SIGNIFICANCE: Chitosan incorporation into calcium silicate materials adversely affects the physical and biological properties of the material. Despite the increased antimicrobial activity of the modified material, the diminution in these properties is likely to reduce its clinical value.

9.
J Clin Med ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673432

RESUMO

(1) Background: External cervical resorption causes dental hard tissue destruction that may reduce the fracture resistance of affected teeth. By using a compressive strength test, this study aimed to evaluate the fracture resistance of teeth with simulated external cervical resorption cavities that have different three-dimensional classifications. (2) Methods: In total, 170 teeth with simulated external cervical resorptions were divided into 16 experimental groups (n = 10) and 1 control group (n = 10) based on the three-dimensional classification: 1Ap, 1Bp, 1Cp, 1Dp, 2Ap, 2Bp, 2Cp, 2Dp, 3Ap, 3Bp, 3Cp, 3Dp, 4Ap, 4Bp, 4Cp, 4Dp and a control group. Defects were restored with mineral trioxide aggregate. The fracture resistances of the samples were statistically analyzed using two-way repeated ANOVA and the Bonferroni correction for multiple comparisons at a significance level of p < 0.05. (3) Results: The lowest resistance to fracture was observed in samples with vertical height level "4" and circumferential spread of "D" (p < 0.001). In the groups with circumferential spreads "B", "C" and "D", there were significant differences between the samples with vertical height levels "1", "2", "3" and "4" regarding fracture resistance (p < 0.001). (4) Conclusions: The circumferential spread and vertical height of the external cervical resorption influenced the fracture resistance of the affected teeth.

10.
Dent Mater J ; 43(2): 276-285, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447980

RESUMO

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.


Assuntos
Dimetil Sulfóxido , Osteogênese , Teste de Materiais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Cálcio , Cimento de Silicato/química , Cimentos Dentários/farmacologia , Cimentos Dentários/química
11.
Materials (Basel) ; 17(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255473

RESUMO

An important part of regenerative endodontic procedures involving immature permanent teeth is the regeneration of the pulp-dentin complex with continuous root development. Hydraulic calcium silicate cements (HCSCs) are introduced for the pulpal treatment of immature permanent teeth. The stem-cell-derived secretome recently has been applied for the treatment of various damaged tissues. Here, we evaluated the biocompatibility and osteogenic differentiation of HCSCs combined with secretome on human dental pulp stem cells. In the Cell Counting Kit-8 test and wound healing assays, significantly higher cell viability was observed with secretome application. In alkaline phosphatase analysis, the activity was significantly higher with secretome application in all groups, except for RetroMTA on day 2 and Endocem MTA Premixed on day 4. In an Alizarin Red S staining analysis, all groups with secretome application had significantly higher staining values. Quantitative real-time polymerase chain reaction results showed that the day 7 expression of OSX significantly increased with secretome application in all groups. SMAD1 and DSPP expression also increased significantly with secretome addition in all groups except for Biodentine. In conclusion, HCSCs showed favorable biocompatibility and osteogenic ability and are predicted to demonstrate greater synergy with the addition of secretome during regenerative endodontic procedures involving immature permanent teeth.

12.
Materials (Basel) ; 17(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255515

RESUMO

Calcium silicate-based cement is a promising material for filling root canals. However, it has several drawbacks to its clinical application, including difficult operation and low curing strength. In this study, we successfully prepared an ultrafine tricalcium silicate powder and investigated the effects of this ultrafine powder on the performance of the premixed tricalcium silicate cement, including the curing process, setting time, hydration products, microstructure, injectivity, fluidity, and compressive strength. The results demonstrate that the addition of ultrafine tricalcium silicate powder alters the hydration product content and product morphology of the premixed cement. By increasing the content of the ultrafine powder, the injectable property of the cement can be increased to more than 95%, the fluidity can be increased from 18 mm to 35 mm, and the curing time can be shortened from 13 h to 11 h. Notably, the addition of the ultrafine powder greatly enhances the compressive strength of the hardened cement, which increases from 20.6 MPa to 51.0 MPa. These results indicate that altering the particle size distribution of the powder is an effective method for enhancing the physicochemical and mechanical properties of tricalcium silicate cement as a root canal filling material.

13.
J Endod ; 50(2): 229-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007091

RESUMO

AIM: The objective of this study was to assess the color stability induced by Theracal PT, Biodentine, and ProRoot MTA in teeth subjected to full pulpotomy, over a span of 6 months. MATERIALS AND METHODS: The study employed a total of 48 freshly extracted intact human third molar teeth. Samples were randomly assigned into four groups (n = 12). All teeth, with the exception of the control group, underwent endodontic access. All materials were mixed in accordance with the manufacturer's guidelines and applied at a thickness of 3 mm at the orifice level before they set. The study groups were negative control (was not prepared), positive control (ProRootMTA), Biodentine, and Theracal PT. Glass ionomer and composite resin material was applied to the cavities. The color measurements were performed using the VITA Easy Shade spectrophotometer. All measurements were repeated 3 times in the determined area on the middle buccal surface of the tooth at baseline that (T0); after access preparation and material placement and setting) and then subsequently at 7 (T1), 30 (T2), 90 (T3), and T4 (180) days later. Data were statistically analyzed by using Kruskal-Wallis H at a confidence level of 95% (P < .05). RESULTS: Compared with the negative control group, Biodentine and Theracal PT showed color stability (ΔE ≤ 3.7). The teeth treated with MTA showed clinically observable discoloration (ΔE ≥ 3.7) at T0, T1, T2, T3, and T4 intervals. At all-time intervals, the MTA group induced more discoloration than Biodentine and Theracal PT (P < .05). CONCLUSIONS: Theracal PT and Biodentine caused least discoloration compared to PMTA even 6 months after its application in teeth undergoing pulpotomy, thereby offering clinicians a reliable alternative for use in the esthetic zone.


Assuntos
Óxidos , Pulpotomia , Materiais Restauradores do Canal Radicular , Humanos , Óxidos/uso terapêutico , Compostos de Cálcio/uso terapêutico , Silicatos/uso terapêutico , Dente Serotino , Compostos de Alumínio/uso terapêutico , Combinação de Medicamentos
14.
Cureus ; 15(11): e48243, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38054157

RESUMO

INTRODUCTION: Calcium silicate-based types of cement have gained recognition in various dental applications due to their exceptional sealing capabilities, bioactivity, and minimal adaptability. However, these materials have certain shortcomings that can lead to mechanical failures and premature degradation. The inclusion of metal ions into their structure is expected to promote their biological activity. This article focuses on the preparation and characterization of calcium silicate cement to enhance its fundamental material properties, by introducing zinc and silver while retaining its biomaterial characteristics. AIM: This study aims to evaluate the biomedical potential of zinc and silver-impregnated bioactive calcium silicate cement. MATERIALS AND METHODS: The calcium silicate powder was synthesized via the sol-gel method. Tetraethyl orthosilicate, calcium nitrate, silver nitrate, and zinc nitrate were sequentially added to create the bioactive calcium silicate material. The synthesized particles underwent physicochemical characterization using techniques such as scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and biological characterization through in vitro hemocompatibility assays. RESULTS: The study's results revealed the presence of multiple crystalline phases (Ag6Si2O7, Zn2SiO4, CaCO3) as indicated by X-ray diffraction. Raman spectra displayed vibrations associated with Si-O-Si and Zn-O bonding in the zinc and silver-infused bioactive calcium silicate. Scanning electron microscopy confirmed a mixture of spherical and sheet-like morphologies, while energy dispersive spectra confirmed the presence of elements Ca, Si, Zn, Ag, O, and C. In vitro hemocompatibility testing affirmed the material's biocompatible nature. CONCLUSION: In conclusion, the zinc and silver-infused calcium silicate cement was successfully synthesized through an in-house procedure and demonstrated biocompatibility. The inclusion of zinc and silver, known for their osteogenic and antimicrobial properties, is anticipated to enhance the cement's biological properties and broaden its utility in dentistry. Further in vitro and in vivo investigations are imperative to validate its clinical applications and elucidate the molecular mechanisms underlying its efficacy.

15.
Dent Mater J ; 42(6): 868-877, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37914229

RESUMO

This study compared the histologic response of a pulp capping material Matreva MTA modified with different concentrations of aloe vera (AV) solutions to Biodentine cement. Ninety dogs' teeth were included and categorized according to the capping material into five groups (18 teeth each); Group I (Biodentine), group II (Matreva MTA), group III (Matreva MTA 10% AV), group IV (Matreva MTA 20% AV) and group V (Matreva MTA 30% AV). The histopathological findings were recorded at 2, 4, and 8 weeks. Matreva MTA and Biodentine groups showed the highest inflammatory cell count compared to the AV-modified Matreva MTA groups at 2- and 4-week intervals (p>0.05). Moreover, the AV-modified Matreva MTA and Biodentine groups showed higher dentin bridge thickness compared to unmodified Matreva MTA at different follow-up periods (p<0.05). AV can significantly enhance the in vivo bioactivity of Matreva MTA, inducing mild inflammation and good dentine bridge formation comparable to Biodentine.


Assuntos
Aloe , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Animais , Cães , Capeamento da Polpa Dentária , Cimento de Silicato , Óxidos/farmacologia , Compostos de Cálcio/farmacologia , Silicatos/farmacologia , Cimentos Dentários , Cimentos de Ionômeros de Vidro , Combinação de Medicamentos , Compostos de Alumínio/farmacologia , Agentes de Capeamento da Polpa Dentária e Pulpectomia/farmacologia
16.
Materials (Basel) ; 16(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005037

RESUMO

Human survival is threatened by the rapid climate change due to global warming caused by the increase in CO2 emissions since the Second Industrial Revolution. This study developed a secondary cement product production technology by replacing cement, a conventional binder, with calcium silicate cement (CSC), i.e., CO2 reactive hardening cement, to reduce CO2 emissions and utilize CO2 from the cement industry, which emits CO2 in large quantities. Results showed that the carbonation depth, compressive strength increase rate, and CO2 sequestration rate increased as the CSC content increased, suggesting that CSC can be applied as a secondary cement product.

17.
Materials (Basel) ; 16(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895650

RESUMO

The magnesium silicate hydrate system (MgO-SiO2-H2O) possesses issues such as susceptibility to cracking, brittleness, and poor volumetric stability, which hinder its development and practical use in engineering applications. This study aimed to enhance the properties of the MgO-SiO2-H2O system by incorporating glass fiber as a reinforcing material. The mechanical properties, shrinkage properties, and properties during accelerated aging were tested at different content levels of glass fiber. Additionally, the reaction mechanism and microscopic morphology were characterized using microscopic testing methods. The results revealed that the addition of glass fiber improved the mechanical properties of the MgO-SiO2-H2O system; meanwhile, with an increase in fiber content, the mechanical properties showed an initial increase followed by a decreasing trend. With a glass fiber content of 0.6%, the system exhibited a flexural strength of 7.9 MPa at 28 d, a compressive strength of 42.5 MPa at 28 d, and a 27.2% increase in splitting tensile strength compared to the control group. At a fiber content of 0.9%, the flexural toughness steadily increased, reaching a maximum value of 2.238 N·m, which is 5.41 times greater than that of the control group. Moreover, the incorporation of glass fiber effectively inhibited the shrinkage of the MgO-SiO2-H2O system. Accelerated aging experiments confirmed that the glass fiber in the MgO-SiO2-H2O system did not undergo significant deterioration or corrosion, thereby maintaining long-term stability. These findings have important theoretical and practical significance for the application and development of the MgO-SiO2-H2O system.

18.
Materials (Basel) ; 16(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37763402

RESUMO

Several calcium silicate cement (CSC) types with improved handling properties have been developed lately for root-end filling applications. While sealing ability is important, a high biocompatibility and antimicrobial effects are critical. This study aimed to conduct a comparative evaluation of the antimicrobial efficacy and sustained antibacterial effectiveness against Enterococcus faecalis (E. faecalis) of commercially available CSCs mixed with distilled water (DW) and chlorhexidine (CHX). Various products, viz., ProRoot mixed with DW (PRW) or with CHX (PRC), Endocem mixed with DW (EW) or with CHX (EC), and Endocem premixed (EP) syringe type, were used. While antibacterial activity against E. faecalis was evaluated using a direct contact method, the specimens were stored in a shaking incubator for 30 d for antibacterial sustainability. The cytotoxicity was evaluated using a cell counting kit-8 assay in human periodontal ligament stem cells. The antibacterial activities of EP, EW, and EC were greater than those of PRC and PRW (p < 0.05). The antibacterial sustainability of EP was the highest without cytotoxicity for up to 30 days (p < 0.05). In conclusion, the pre-mixed injectable type EP was most effective in terms of antibacterial activity and sustained antibacterial effectiveness without cytotoxicity.

19.
J Dent Sci ; 18(3): 1189-1198, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404639

RESUMO

Background/purpose: As calcium silicate cements (CSCs) have been successfully used in various types of vital pulp therapy, many new CSC products have been developed. The aim of this study was to evaluate the biocompatibilities and mineralization potential of new CSC. The experimental materials were NeoMTA Plus and EndoSequence Root Repair Material-Fast Set Putty (ERRM-FS) which were compared to ProRoot MTA. Materials and methods: In vitro, the effects of the new CSC on stem cells were evaluated. Each CSC was prepared for cell viability testing, alkaline phosphatase (ALP) assay, and calcium ion release assay. In vivo, the exposed pulp model was used for the partial pulpotomy procedure. Thirty-six teeth were treated with three materials: ProRoot MTA, NeoMTA Plus, or ERRM-FS. After four weeks, the teeth were extracted and processed for histologic analysis. Dentin bridge formation, pulp inflammation, and odontoblastic cell layer were evaluated and the area of newly formed calcific barrier of each group was measured. Results: Three CSCs demonstrated similar cell viability on stem cells and the levels of ALP and calcium release were not significantly different between tested materials. ProRoot MTA and ERRM-FS showed better tissue healing process than NeoMTA Plus after partial pulpotomy, in terms of quality of calcific barrier and pulp inflammation. The outcomes from measuring newly formed calcific area demonstrated no significant differences between the materials. Conclusion: NeoMTA Plus and ERRM-FS displayed similar biocompatibilities and mineralization potential compared to ProRoot MTA. Therefore, these new CSCs can be used as desirable alternatives to ProRoot MTA.

20.
Restor Dent Endod ; 48(2): e21, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37284344

RESUMO

Objectives: This study evaluated the effects of Biodentine (BD), Bio-C Repair (BCR), and mineral trioxide aggregate (MTA) plug on the fracture resistance of simulated immature teeth with replacement root resorption (RRR) and in vitro-induced osteoclastogenesis. Materials and Methods: Sixty bovine incisors simulating immature teeth and RRR were divided into 5 groups: BD and BCR groups, with samples completely filled with the respective materials; MTA group, which utilized a 3-mm apical MTA plug; RRR group, which received no root canal filling; and normal periodontal ligament (PL) group, which had no RRR and no root canal filling. All the teeth underwent cycling loading, and compression strength testing was performed using a universal testing machine. RAW 264.7 macrophages were treated with 1:16 extracts of BD, BCR, and MTA containing receptor activator of nuclear factor-kappa B ligand (RANKL) for 5 days. RANKL-induced osteoclast differentiation was assessed by staining with tartrate-resistant acid phosphatase. The fracture load and osteoclast number were analyzed using 1-way ANOVA and Tukey's test (α = 0.05). Results: No significant difference in fracture resistance was observed among the groups (p > 0.05). All materials similarly inhibited osteoclastogenesis (p > 0.05), except for BCR, which led to a lower percentage of osteoclasts than did MTA (p < 0.0001). Conclusions: The treatment options for non-vital immature teeth with RRR did not strengthen the teeth and promoted a similar resistance to fractures in all cases. BD, MTA, and BCR showed inhibitory effects on osteoclast differentiation, with BCR yielding improved results compared to the other materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...