Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.179
Filtrar
1.
Pak J Med Sci ; 40(6): 1168-1173, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952512

RESUMO

Objectives: To determine the antimicrobial activity of silver nano-particles(AgNPs) with tetracycline and ampicillin against multi-drug resistance (MDR) and extensively-drug resistance (XDR) Salmonella typhi. Methods: Cross sectional non-probability purposive study was conducted from September, 2021 to May, 2022 at Microbiology department PNS Shifa, Hospital Karachi. Blood cultures of patients suspicious of typhoid fever were collected and incubated in automated Bact/Alert system. Positive cultures were identified on blood and MacConkey and processed by API-10S, confirmed by serotyping (O9 antisera) (SSI Diagnostica's Salmonella). Antibiotic resistance was done by Kirby-Bauer disk diffusion (Sigma and Rich). MDR and XDR isolates were preserved in Brain Heart Infusion in a volume of 2ml in screw capped bottles at -70°C. Antimicrobial powders (ampicillin and tetracycline (Alfa Aesar) weighed by an electrical weighing balance (OHAUS) to take 1mg of antimicrobial drug. Absorbance spectra of serial concentrations of antibiotics (UV-Vis spectrophotometer (Mole-Qule-) AgNPs (10nm) (nanocomposix) + Antibiotic in (1:1 volume ratio). Conjugation of silver nanoparticles with tetracycline and ampicillin was done by FTIR (thermos scientificThermos ScientificNicolet 50). Results: Out of 77 isolates, 54 were resistant to ceftriaxone (XDR) and 23 sensitive to ceftriaxone (MDR). All isolates were susceptible to azithromycin and meropenem. Comparison of zone of inhibitions of ampicillin and Amp-AgNPsas and tetracycline with Tet-AgNPs was done. Minimal inhibitory concentration was also done to determine antimicrobial activity. Conclusion: Significant synergistic inhibitory effects against Salmonella Typhi isolates were obtained by combination of tetracycline with silver nano-particles even at low concentration.

2.
Bull Exp Biol Med ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955855

RESUMO

Substances of silver nanoparticles dialyzed through a 13 kDa membrane, synthesized in a medium of humic ligands modified with hydroquinone and 2-hydroxynaphthoquinone from PowHumus brown coal, specifically enhance the M2 properties of peritoneal macrophages due to inhibition of NO synthase and significant activation of arginase, thus enhancing anti-inflammatory properties of cells. In small, but effective concentrations, they do not have cytotoxic properties and do not contain pyrogenic impurities. The studied humates are able to influence the mechanisms of immune response formation and are an effective means for correcting inflammation and regeneration.

3.
Chemosphere ; : 142748, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960050

RESUMO

In this report, we have developed highly water soluble and stable silver nanoparticles (Ag NPs) utilizing N-Cholyl Mercapto Histidine (NCMH) as a reducing and stabilizing agent with near the primary critical micellar concentration (CMC) under ambient sunlight irradiation. Moreover, The NCMH was firstly synthesized by demonstrating the reaction between cholic acid and 2- Mercapto Histidine through a simple acid amine coupling approach. The primary and secondary CMC of NCMH surfactant was measured by pyrene (1× 10-6 M) as a fluorescent probe, and values were found to be 3.2 and 13.1 mM respectively. The synthesised Ag NPs showed at neutral pH and highly stable for more than one year without any noticeable aggregation. The TEM analysis displays the synthesized Ag NPs having a spherical shape and average size of 9.6 ± 0.5 nm. The synthesis of stabilized Ag NPs was used for ultra-sensitive and selective detection of Hg2+ ions in aqueous medium were monitored by Uv-visible spectrometer and naked eyes with a lowest limit of detection (LOD) 7 nM. The photo-catalytic degradation of methyl orange (MO) by utilizing Ag NPs as nano-catalyst exhibits a potential degradation within a study period of 180 min. Concluding that, facile and cost effective green synthesis of NCMH capped Ag NPs possess excellent reducing ability towards the selective detection of Hg2+ ions along with photo-catalytic degradation of MO dye. These true findings detached an innovative pathway of Ag NPs towards the reactivity against the catalytic activity of dye degradation and selective sensing of Hg2+ ions. Thus it paves the way for extensive range of novel potential applications of Ag NPs in various environment friendly approaches of sensitive and analytical protocol in the future.

4.
Sci Rep ; 14(1): 15544, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969695

RESUMO

Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Prata , Humanos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Moringa oleifera/química , Proteínas Recombinantes/farmacologia , Folhas de Planta/química , Sobrevivência Celular/efeitos dos fármacos , Endotoxinas , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo
5.
Antonie Van Leeuwenhoek ; 117(1): 95, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967683

RESUMO

The decline of new antibiotics and the emergence of multidrug resistance in pathogens necessitates a revisit of strategies used for lead compound discovery. This study proposes to induce the production of bioactive compounds with sub-lethal concentrations of silver nanoparticles (Ag-NPs). A total of Forty-two Actinobacteria isolates from four Saudi soil samples were grown with and without sub-lethal concentration of Ag-NPs (50 µg ml-1). The spent broth grown with Ag-NPs, or without Ag-NPs were screened for antimicrobial activity against four bacteria. Interestingly, out of 42 strains, broths of three strains grown with sub-lethal concentration of Ag-NPs exhibit antimicrobial activity against Staphylococcus aureus and Micrococcus luteus. Among these, two strains S4-4 and S4-21 identified as Streptomyces labedae and Streptomyces tirandamycinicus based on 16S rRNA gene sequence were selected for detailed study. The change in the secondary metabolites profile in the presence of Ag-NPs was evaluated using GC-MS and LC-MS analyses. Butanol extracts of spent broth grown with Ag-NPs exhibit strong antimicrobial activity against M. luteus and S. aureus. While the extracts of the controls with the same concentration of Ag-NPs do not show any activity. GC-analysis revealed a clear change in the secondary metabolite profile when grown with Ag-NPs. Similarly, the LC-MS patterns also differ significantly. Results of this study, strongly suggest that sub-lethal concentrations of Ag-NPs influence the production of secondary metabolites by Streptomyces. Besides, LC-MS results identified possible secondary metabolites, associated with oxidative stress and antimicrobial activities. This strategy can be used to possibly induce cryptic biosynthetic gene clusters for the discovery of new lead compounds.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S , Prata , Staphylococcus aureus , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , RNA Ribossômico 16S/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Microbiologia do Solo , Metabolismo Secundário , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimento , Descoberta de Drogas
6.
Plant Physiol Biochem ; 214: 108882, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38972244

RESUMO

Silver (Ag) is a non-essential heavy metal with substantial environmental toxicity but an excellent promotor for plant organogenesis. It is used as an elicitor for secondary metabolite production and for in planta synthesis of metal nanoparticles (MNPs). In the present study, the Ag accumulation and reduction capability of in vitro shoots of Withania somnifera and the toxicity and elicitation effect of Ag on in vitro shoots were explored. In vitro shoot cultures of W. somnifera were treated with different concentrations of silver nitrate for a specific treatment period. Growth index, withaferin A, elemental and electron microscopy analyses were done on silver-treated in vitro shoots of W. somnifera. 1 mM silver nitrate treatment for 12 days period was found to give increased growth index (1.425 ± 0.05c) and withaferin A (2.568 ± 0.08e mg g-1) content. The concentration of bioaccumulated Ag in 1 mM silver nitrate treated in vitro shoot was found to be 50.8 ppm. The presence of nano-Ag was also found in the leaves of 1 mM silver nitrate-treated in vitro shoots. In summary, this is the first report portraying the bioaccumulation and in planta reduction capability of the in vitro shoot system of W. somnifera, which makes it a potential medicinal plant of commercial value for silver contaminated soils.

7.
Environ Res ; : 119526, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972341

RESUMO

Rainwater Harvesting (RWH) is increasingly recognized as a vital sustainable practice in urban environments, aimed at enhancing water conservation and reducing energy consumption. This study introduces an innovative integration of nano-composite materials as Silver Nanoparticles (AgNPs) into RWH systems to elevate water treatment efficiency and assess the resulting environmental and energy-saving benefits. Utilizing a regression analysis approach with Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), this study will reach the study objective. In this study, the inputs are building attributes, environmental parameters, sociodemographic factors, and the algorithms SVM and KNN. At the same time, the outputs are predicted energy consumption, visual comfort outcomes, ROC-AUC values, and Kappa Indices. The integration of AgNPs into RWH systems demonstrated substantial environmental and operational benefits, achieving a 57% reduction in microbial content and 20% reductions in both chemical usage and energy consumption. These improvements highlight the potential of AgNPs to enhance water safety and reduce the environmental impact of traditional water treatments, making them a viable alternative for sustainable water management. Additionally, the use of a hybrid SVM-KNN model effectively predicted building energy usage and visual comfort, with high accuracy and precision, underscoring its utility in optimizing urban building environments for sustainability and comfort.

8.
Heliyon ; 10(11): e32333, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947433

RESUMO

In recent decades, biosynthesis of metal and (or) metal oxide nanoparticles using microbes is accepted as one of the most sustainable, cost-effective, robust, and green processes as it does not encompass the usage of largely hazardous chemicals. Accordingly, numerous simple, inexpensive, and environmentally friendly approaches for the biosynthesis of silver nanoparticles (AgNPs) were reported using microbes avoiding conventional (chemical) methods. This comprehensive review detailed an advance made in recent years in the microbes-mediated biosynthesis of AgNPs and evaluation of their antimicrobial activities covering the literature from 2015-till date. It also aimed at elaborating the possible effect of the different phytochemicals, their concentrations, extraction temperature, extraction solvent, pH, reaction time, reaction temperature, and concentration of precursor on the shape, size, and stability of the synthesized AgNPs. In addition, while trying to understand the antimicrobial activities against targeted pathogenic microbes the probable mechanism of the interaction of produced AgNPs with the cell wall of targeted microbes that led to the cell's reputed and death have also been detailed. Lastly, this review detailed the shape and size-dependent antimicrobial activities of the microbes-mediated AgNPs and their enhanced antimicrobial activities by synergetic interaction with known commercially available antibiotic drugs.

9.
Food Chem Toxicol ; : 114841, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944145

RESUMO

Nanosilver (AgNPs) is popular nanomaterials used in food industry that makes gastrointestinal tract an essential route of its uptake. The aim of the presented study was to assess the effects of intragastric exposure to AgNPs on redox balance and steroid receptors in the testes of adult Fisher 344 rats. The animals were exposed to 20 nm AgNPs (30 mg/kg bw/day, by gavage) for 7 and 28 days compared to saline (control groups). It was demonstrated that 7-day AgNPs administration resulted in increased level of total antioxidant status (TAS), glutathione reductase (GR) activity, lower superoxide dismutase activity (SOD), decreased glutathione (GSH) level and GSH/GSSG ratio, as well as higher estrogen receptor (ESR2) and aromatase (Aro) protein expression in Leydig cells compared to the 28-day AgNPs esposure. The longer-time effects of AgNPs exposition were associated with increased lipid hydroperoxidation (LOOHs) and decreased SOD activity and androgen receptor protein level. In conclusion, the present study demonstrated the adverse gastrointestinally-mediated AgNPs effects in male gonads. In particular, the short-term AgNPs exposure impaired antioxidant defence with concurrent effects on the stimulation of estrogen signaling, while the sub-chronic AgNPs exposition revealed the increased testicle oxidative stress that attenuated androgens signaling.

10.
Biomedicines ; 12(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927546

RESUMO

Three berberine-containing plant extracts were investigated for their pharmacological properties. The stems and leaves of Berberis vulgaris, Mahonia aquifolium, and Phellodendron amurense were characterized through scanning electron microscopy. The plant extracts obtained from fresh stem barks were further analyzed through high-performance liquid chromatography, revealing berberine concentrations, among berbamine and palmatine. The plant extracts were further tested for their anticancer potential against 2D and 3D human skin melanoma (A375) and lung adenocarcinoma (A549) cell lines. The concentrations at which 50% of the cells are affected was determined by the viability assay and it was shown that B. vulgaris, the plant extract with the highest berberine concentration, is the most efficient inhibitor (0.4% extract concentration for the 2D model and 3.8% for the 3D model). The membrane integrity and nitrate/nitrite concentration assays were consistent with the viability results and showed effective anticancer potential. For further investigations, the B. vulgaris extract was used to obtain silver nanoparticles, which were characterized through transmission electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The formed nanoparticles have a uniform size distribution and are suited for future investigations in the field of biomedical applications, together with the B. vulgaris plant extract.

11.
Int J Biol Macromol ; 274(Pt 1): 133211, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909738

RESUMO

Considering the severity of global environmental issues, biomass-derived products have received significant attention as alternatives to foster sustainability and eco-friendliness. The use of metal nanoparticle catalysts for dye decomposition is emerging as a promising approach for environmentally friendly dye removal. In this study, an aminosilane-modified lignin (AML)/silver nanoparticle (AgNP) composite was fabricated and used as a hydrogenation catalyst. The AgNPs were well dispersed on the AML surface and formed strong bonds within the AML/AgNP complex. AML also served as an effective reducing and capping agent for Ag(I) ions. The AML/AgNPs were found to be an efficient catalyst with excellent dye degradation ability and easy reusability. Biomass-derived lignin can be used as a reducing and capping agent for metals and this complex can be used as a high-value bio-catalyst for wastewater remediation.

12.
Gels ; 10(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920931

RESUMO

A combination of Poloxamer 407 (P407) and hydroxypropyl methylcellulose (HPMC) hydrosols is proposed as an in situ thermo-gelling vehicle for the nasal drug delivery of chlorhexidine-silver nanoparticles conjugates (SN-CX). Optimization of the formulation was carried out by applying varying ratios of P407 and HPMC in the presence and absence of SN-CX so that gelation would occur in the temperature range of the nasal cavity (30-34 °C). Mechanisms for the observed gelation phenomena were suggested based on viscosimetry, texture analysis, and dynamic light scattering. Tests were carried out for sprayability, washout time, in vitro drug release, ex vivo permeation, and antimicrobial activity. When applied separately, HPMC was found to lower the P407 gelation temperature (Tg), whereas SN-CX increased it. However, in the presence of HPMC, SN-CX interfered with the P407 micellar organization in a principally contrasting way while leading to an even further decrease in Tg. SN-CX-loaded nasal formulations composed of P407 16% and HPMC 0.1% demonstrated a desired gelation at 31.9 °C, good sprayability (52.95% coverage of the anterior nasal cavity), mucoadhesion for 70 min under simulated nasal clearance, expedient release and permeation, and preserved anti-infective activity against seasonal Influenza virus and beta-coronavirus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and other pathogens. Our findings suggest that the current development could be considered a potential formulation of a protective nasal spray against respiratory infections.

13.
Gels ; 10(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920954

RESUMO

Wound healing involves a sophisticated biological process that relies on ideal conditions to advance through various stages of repair. Modern wound dressings are designed to imitate the natural surroundings around cells and offer properties such as moisture regulation, strength, and antimicrobial defense to boost healing. A recent research project unveiled a new type of gelatin (Gel)/dextran (Dex) hydrogels, linked through Diels-Alder (D-A) reactions, loaded with silver nanoparticles (Ag-NPs) for cutting-edge wound treatment. Gel and Dex were chemically modified to form the hydrogels via the D-A reaction. The hydrogels were enriched with Ag-NPs at varying levels. Thorough analyses of the hydrogels using methods like NMR, FT-IR, and SEM were carried out to assess their structure and nanoparticle integration. Rheological tests displayed that the hydrogels had favorable mechanical attributes, particularly when Ag-NPs were included. The hydrogels demonstrated controlled swelling, responsiveness to pH changes, and were non-toxic. Testing against E. coli showcased the strong antibacterial activity of the nanocomposite hydrogels in a concentration-dependent manner. This investigation showcased the promise of these bioactive nanocomposite hydrogels in promoting speedy wound healing by maintaining a moist environment, offering an antimicrobial shield, and ensuring mechanical support at the wound site.

14.
J Funct Biomater ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38921516

RESUMO

Yeasts resistant to antifungals have become an increasing risk to human health. One of the best antimicrobial properties is reported to be present in silver nanoparticles (AgNPs); however, little is known about the antimicrobial potential of AgNPs produced using thermophilic bacteria. How AgNPs cause cell death is different depending on the type of the cell, and the mode of death induced is cell-type specific. Apoptosis, one of the types of regulated cell death, can be extremely useful in the fight against infection because surrounding cells that have phagocytic activity can efficiently absorb the apoptotic bodies formed during apoptosis. In the course of this work, for the first time, comprehensive antifungal studies of AgNPs were performed using thermophilic Geobacillus spp. bacteria against Candida guilliermondii, also with the addition of the model yeast Saccharomyces cerevisiae. The determined minimal inhibitory concentrations (MICs) were 10 µg/mL against C. guilliermondii and 50 µg/mL against S. cerevisiae for Geobacillus sp. strain 25 AgNPs, and for Geobacillus sp. 612 the MICs were 5 µg/mL and 25 µg/mL, respectively. It was shown for the first time that the exposure of the yeast cells leads to caspase activation in both S. cerevisiae and C. guilliermondii after exposure to Geobacillus spp. AgNPs. Also, a statistically significant change in the number of cells with permeable membranes was detected. Moreover, it was shown that the antimicrobial effect of the AgNPs is related to ROS generation and lipid peroxidation in C. guilliermondii yeast.

15.
BMC Plant Biol ; 24(1): 597, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914943

RESUMO

Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Prata/farmacologia , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Clavibacter , Moringa oleifera/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde , Folhas de Planta/microbiologia
16.
Nanotechnology ; 35(38)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38906121

RESUMO

In the present study, pyroligneous acid, also known as wood vinegar, has been employed as reducing and stabilizing agent in the synthesis of silver nanoparticles (AgNPs) anchored on nanocellulose (NC). The idea is to confer the latter bactericidal properties for its typical uses such as in cosmetics and food-packing. It has been demonstrated that AgNPs can be directly produced onto NC in one-pot fashion while dramatically enhancing the kinetics of AgNPs synthesis (2 h for reaction completion) in comparison to the NC-less counterpart (10 days for reaction completion). Furthermore, NC allowed for a narrower size distribution of AgNPs. NC-supported and non-supported AgNPs had sizes of 5.1 ± 1.6 nm and 16.7 ± 4.62 nm, respectively. Immortalized human keratinocytes (HaCat) cells were then employed as model to evaluate the cytotoxicity of the AgNPs-NC compound. The latter was found not to impact cell proliferation at any formulation, while decreasing the viability by only 6.8% after 72 h. This study contributes to the development of more environmentally benign routes to produce nanomaterials and to the understanding of their impact on cells.


Assuntos
Sobrevivência Celular , Celulose , Células HaCaT , Nanopartículas Metálicas , Prata , Humanos , Prata/química , Nanopartículas Metálicas/química , Celulose/química , Celulose/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/citologia , Tamanho da Partícula , Proliferação de Células/efeitos dos fármacos , Ácido Acético/química , Ácido Acético/farmacologia
17.
Int J Biol Macromol ; 275(Pt 1): 133128, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876237

RESUMO

This study aimed to develop an eco-friendly active biogenic nanocomposite film through the complexation of silver nanoparticles (AgNPs), berry wax (BYW), and chitosan (CT) for maintiaing rabbit functional meat freshness. AgNPs were synthesized using Chinese medicinal paeoniaceae petal extract, and they were loaded at various concentrations (0.5 %, 0.75 %, 1.0 %, 1.25 %, and 1.5 % based on CT w/w) into the CT/BYW complex. The AgNPs exhibited an average size of 55 nm and a zeta potential of -26.3 mV with a spherical shape. The particle size and zeta potential of the film dispersions were 370.5-529.5 nm and 40.17-49.345 mV, respectively. FTIR, SEM, and XRD results showed compatibility among AgNPs and CT/BYW structure. The film water vapor permeability and light transparency decreased from 6.5 to 3.5 and 10 to 0.78 %, respectively, while opacity increased from 1.76 to 9.96 % with increasing concentrations of AgNPs. Among them, the film composite CT/BYW/AgNPs1.5% had better antioxidant and antibacterial properties, which was then applied for rabbit meat preservation at 4 °C for 16 days of storage. CT/BYW/AgNPs1.25%-packed sample had lower values of TVB-N, TBARS, TVC, and pH with greater retention of color properties compared to the control sample, which describes its ability to maintain meat freshness.

18.
Int J Biol Macromol ; 275(Pt 1): 133248, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908632

RESUMO

In this work, bacterial cellulose (BC) derived from Nata de Coco is a polysaccharide material, and it is further processed into bacterial cellulose nanocrystal (BCNC) via acid hydrolysis. Then BCNC is doped with transition metals to enhance its amine/hydrogen sulfide response. Therefore, the aim of this study is to investigate the use of transition metals as indicators to detect amine and hydrogen sulfide gas for efficiently monitoring food spoilage. BCNCs were treated with various concentrations of silver nitrate (AgNO3) and copper sulfate pentahydrate (CuSO4·5H2O). Then the dropwise addition of ascorbic acid was applied to reduce Ag+ and Cu2+ to Ag0 (silver nanoparticle) and Cu0 (copper nanoparticle), which refer to red brown and red wine colors, respectively. The results indicated that BCNC/Ag nanoparticles were spherical, while BCNC/Cu nanoparticles exhibited a rod-like structure. XRD results also presented the incorporation of Ag and Cu nanoparticles, as confirmed by both crystallography structures. Furthermore, UV-Vis spectra showed the adsorption bands at 422-430 nm and 626-629 nm, belonging to Ag and Cu nanoparticles. After H2S and ammonia gas exposure, BH/Ag and BH/Cu films turned black from brown and red. In conclusion, transition metal-doped BCNCs exhibit potential for innovative food spoilage gas sensors.

19.
Int J Biol Macromol ; 273(Pt 2): 132899, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844275

RESUMO

Despite the widespread utilization of nano silver composites in the domain of catalytic hydrogenation of aromatic pollutants in wastewater, certain challenges persist, including the excessive consumption of chemical reagents during the preparation process and the difficulty in recycling. In this study, silver ions were reduced in-situ by taking advantage of the adsorptive and reducing capacities of hydroxyls and amino groups on lignin porous microspheres (LPMs) under mild ultrasonic conditions, and lignin porous microspheres loaded with silver nanoparticles (Ag@LPMs) were conveniently prepared. Ag@LPMs had excellent catalytic and cycling performances for p-nitrophenol (4-NP), methylene blue (MB) and methyl orange (MO). The 4-NP could be completely reduced to 4-AP within 155 s under the catalysis of Ag@LPMs, with a pseudo-first-order kinetic constant of 1.28 min-1. Furthermore, Ag@LPMs could still complete the catalytic reduction of 4-NP within 10 min after five cycles. Ag@LPMs with the particle size ranging from 100 to 200 µm conferred ease of recycling, and the porous structure effectively resolved the issue of sluggish mass transfer encountered during the catalytic process. At the same time, the binding force of nano silver and LPMs obtained by ultrasonic was stronger than that of heating, so the materials prepared by ultrasonic had better cycling performance. Silver ions concentration and pH value in the preparation process affected the catalytic performance of Ag@LPMs, 50 mmol/L Ag+ and pH value of 7 turned out to be the optimization conditions.


Assuntos
Lignina , Nanopartículas Metálicas , Microesferas , Prata , Lignina/química , Prata/química , Catálise , Porosidade , Nanopartículas Metálicas/química , Nitrofenóis/química , Oxirredução , Cinética
20.
Int J Biol Macromol ; 273(Pt 2): 133078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942667

RESUMO

This study presents an innovative and environmentally friendly method to produce fibrous cellulose beads by mechanically stirring natural fibers in an aqueous medium. Date palm fibers are transformed into uniform beads with a diameter of 1.5 to 2 mm through chemical treatment and mechanical agitation. These beads are then decorated with silver nanoparticles (Ag0 NPs) in a one-step synthesis, giving them catalytic capabilities for the reduction of 4-nitrophenol (4-NP) and antibacterial activities. Characterization techniques such as FTIR, XRD, SEM, EDX, and TGA confirmed the successful synthesis and deposition of Ag0 NPs on the cellulose beads. Tests showed complete conversion of 4-NP to 4-AP in just 7 min, with pseudo-first-order kinetics and a Kapp of 0.590 min-1. Additionally, Ag0@CB demonstrated exceptional recyclability and stability over five cycles, with minimal silver release. The beads also showed strong antibacterial activity against Escherichia coli and Staphylococcus aureus, effectively eradicating bacterial colonies in 30 min. In summary, Ag0@CB exhibits multifunctional capabilities for degrading organic pollutants and biomedical applications, offering promising potential for large-scale production and practical use in water treatment and antibacterial coatings.


Assuntos
Antibacterianos , Celulose , Escherichia coli , Nanopartículas Metálicas , Nitrofenóis , Prata , Staphylococcus aureus , Prata/química , Prata/farmacologia , Nitrofenóis/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Celulose/química , Catálise , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Oxirredução , Testes de Sensibilidade Microbiana , Química Verde , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...