Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Environ Sci Pollut Res Int ; 31(9): 13141-13154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240981

RESUMO

Copper (Cu) toxicity is a pressing concern for several soils, especially in organic viticulture. The objective of this work was to assess Cu toxicity on the non-target organism Eisenia fetida, employing both traditional and novel tools for early identification of Cu-induced damages. In addition to traditional tests like avoidance and reproductive toxicity experiments, other tests such as the single cell gel electrophoresis (SCGE) and gut microbiome analysis were evaluated to identify early and more sensitive pollution biomarkers. Four sub-lethal Cu concentrations were studied, and the results showed strong dose-dependent responses by the earthworm avoidance test and the exceeding of habitat threshold limit at the higher Cu doses. An inverse proportionality was observed between reproductive output and soil Cu concentration. Bioaccumulation was not detected in earthworms; soil concentrations of potentially bioavailable Cu were not affected by E. fetida presence or by time. On the contrary, the SCGE test revealed dose-dependent genotoxicity for the 'tail length' parameter already at the second day of Cu exposition. Gut microbiome analysis a modulation of microbial composition, with the most aboundant families being Pectobateriaceae, Comamonadaceae and Microscillaceae. Bacillaceae increased over time and showed adaptability to copper up to 165 mg/kg, while at the highest dose even the sensitive Acetobacteriaceae family was affected. The research provided new insights into the ecotoxicity of Cu sub-lethal doses highlighting both alterations at earthworms' cellular level and changes in their gut microbiota.


Assuntos
Oligoquetos , Poluentes do Solo , Humanos , Animais , Cobre/toxicidade , Cobre/análise , Solo , Oligoquetos/fisiologia , Fazendas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Mutagenicidade
2.
Sci Total Environ ; 904: 166556, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633389

RESUMO

Hydroxyapatite (HAP) occurs naturally in sedimentary and metamorphic rocks and constitutes the hard structures in many organisms. Since synthetic nano-sized HAP (HAP-NPs) are used in orthopedic applications and for heavy metal remediation in aquatic and terrestrial media, both environment and humans are exposed to them. Due to the concerns about their potential hazards, the genotoxic effects that round/rod forms of HAP-NPs were investigated in Drosophila using the wing-spot and the comet assays. Furthermore, caspase activities were evaluated to examine the activation of cell death pathways. As a novelty, the expression of 36 genes involved in DNA repair was investigated, as a tool to indirectly determine DNA damage induction. Obtained sizes were 35-60 nm (roundHAP-NPs) and 45-90 nm (rodHAP-NPs) with a low Zeta-potential (-1.65 and 0.37 mV, respectively). Genotoxicity was detected in the wing-spot (round form), and in the comet assay (round and rod-like HA-NPs). In addition, increased expression of Caspases 3/7, 8, and 9 activities were observed. For both HAP forms, increased changes in the expression were observed for mismatch repair genes, while decreased expression was observed for genes involved in ATM, ATR, and cell cycle pathways. The observed changes in the repair pathways would reinforce the view that HAP-NPs have genotoxic potential, although more markedly in the round form. Thus, the environmental presence of engineered nanoparticles, including HAPs, raises concerns about potential effects on human health. It is essential that the effects of their use are carefully assessed and monitored to ensure safety and to mitigate any potential adverse effects.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Humanos , Drosophila , Drosophila melanogaster , Durapatita/toxicidade , Dano ao DNA , Ensaio Cometa , Nanopartículas/toxicidade , Nanopartículas/química , Nanopartículas Metálicas/toxicidade
3.
Anticancer Agents Med Chem ; 23(17): 1910-1915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493167

RESUMO

The proper course and reproducibility of diagnostic techniques depend on narrowly defined reaction conditions, including the reaction pH. Nevertheless, numerous assays are affected by an inaccurately defined reaction pH. Buffers are sometimes suggested for use outside their useful pH ranges, which complicates the reproducibility of results because the buffering capacity is insufficient to retain the disclosed pH. Here, we focus on the comet assay lysis buffer. Comet assay is broadly used for quantifying DNA breaks in eukaryotic cells. The most widespread comet assay protocols employ lysis of the cells before electrophoresis in a buffer containing Triton X-100, a high concentration of NaCl, sodium sarcosinate, EDTA, and Tris, with some modifications. However, nearly all researchers report that they use Tris buffer at pH 10, and some report the pH of the Tris additive alone. Alternatively, others report the pH of the final lysis buffer. However, the lysis solution used in the comet assay is buffered at a pH outside the useful range of Tris. Tris-based buffers have a useful pH range of 7.0 - 9.0. The buffer composed of 10 mM Tris has pKa 8.10 at 25°C and 8.69 at 4°C. The cell lysis conditions used in nearly all modifications of comet assay protocols remain imprecise and uncritically employed. Despite the pH of the lysis buffer likely has negligible effect on the detection of DNA breaks, precise lysis conditions are highly important for the use of comet assay in the detection of base modifications, which are often unstable and sensitive to pH.


Assuntos
Dano ao DNA , DNA , Humanos , Ensaio Cometa/métodos , Reprodutibilidade dos Testes , Concentração de Íons de Hidrogênio
4.
Insects ; 14(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233079

RESUMO

Thymol is a natural essential oil derived from the plant Thymus vulgaris L. It is known to be beneficial for human and animal health and has been used in beekeeping practice against Varroa mite for years. In this study, the genotoxic and antigenotoxic potential of thymol were evaluated on the honey bee (Apis mellifera L.) continuous cell line AmE-711 for the first time. Using the Comet assay, three increasing concentrations (10, 100, and 1000 µg/mL) of thymol were tested. Negative control (non-treated cells) and positive control (cells treated with 100 µM H2O2) were also included. The absence of thymol cytotoxicity was confirmed with the Trypan blue exclusion test. Thymol in the concentration of 10 µg/mL did not increase DNA damage in AmE-711 honey bee cells, while 100 and 1000 µg/mL concentrations showed genotoxic effects. For testing the antigenotoxic effect, all concentrations of thymol were mixed and incubated with H2O2. The antigenotoxic effect against was absent at all concentrations (10, 100, 1000 µg/mL) tested. Moreover, thymol enhanced the H2O2-induced DNA migration in the Comet assay. The obtained results indicate genotoxic effects of thymol on cultured honey bee cells suggesting its careful application in beekeeping practice to avoid possible negative effects on honey bees.

5.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108351

RESUMO

A comet assay is a trusted and widely used method for assessing DNA damage in individual eukaryotic cells. However, it is time-consuming and requires extensive monitoring and sample manipulation by the user. This limits the throughput of the assay, increases the risk of errors, and contributes to intra- and inter-laboratory variability. Here, we describe the development of a device which automates high throughput sample processing for a comet assay. This device is based upon our patented, high throughput, vertical comet assay electrophoresis tank, and incorporates our novel, patented combination of assay fluidics, temperature control, and a sliding electrophoresis tank to facilitate sample loading and removal. Additionally, we demonstrated that the automated device performs at least as well as our "manual" high throughput system, but with all the advantages of a fully "walkaway" device, such as a decreased need for human involvement and a decreased assay run time. Our automated device represents a valuable, high throughput approach for reliably assessing DNA damage with the minimal operator involvement, particularly if combined with the automated analysis of comets.


Assuntos
Dano ao DNA , Células Eucarióticas , Humanos , Ensaio Cometa/métodos
6.
Methods Mol Biol ; 2562: 183-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36272076

RESUMO

The purpose of this chapter is to evaluate DNA damage during axolotl tail regeneration using an alkaline comet assay. Our method details the isolation of cells from regenerating and non-regenerating tissues and the isolation of peripheral blood for single-cell gel electrophoresis. Also, we detail each of the steps for the development of the comet assay technique which includes mounting the isolated cells on an agarose matrix, alkaline electrophoresis, and DNA damage detection.


Assuntos
Ambystoma mexicanum , Dano ao DNA , Animais , Ensaio Cometa/métodos , Ambystoma mexicanum/genética , Sefarose , Eletroforese
7.
Aging Cell ; 21(9): e13698, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35996812

RESUMO

It is known that chondrocytes from joints with osteoarthritis (OA) exhibit high levels of DNA damage, but the degree to which chondrocytes accumulate DNA damage during "normal aging" has not been established. The goal of this study was to quantify the DNA damage present in chondrocytes obtained from cadaveric donors of a wide age range, and to compare the extent of this damage to OA chondrocytes. The alkaline comet assay was used to measure the DNA damage in normal cartilage from the ankle (talus) and the knee (femur) of cadaveric donors, as well as in OA chondrocytes obtained at the time of total knee replacement. Chondrocytes from younger donors (<45 years) had less DNA damage than older donors (>70 years) as assessed by the percentage of DNA in the comet "tail". In donors between 50 and 60 years old, there was increased DNA damage in chondrocytes from OA cartilage as compared to cadaveric. Talar chondrocytes from 23 donors between the ages of 34 and 78 revealed a linear increase in DNA damage with age (R2  = 0.865, p < 0.0001). A "two-tailed" comet assay was used to demonstrate that most of the accumulated damage is in the form of strand breaks as opposed to alkali-labile base damage. Chondrocytes from young donors required 10 Gy irradiation to recapitulate the DNA damage present in chondrocytes from older donors. Given the potential for DNA damage to contribute to chondrocyte dysfunction and senescence, this study supports the investigation of mechanisms by which hypo-replicative cell types accumulate high levels of damage.


Assuntos
Cartilagem Articular , Osteoartrite , Adulto , Idoso , Envelhecimento/genética , Cadáver , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Ensaio Cometa , Dano ao DNA/genética , Humanos , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/metabolismo
8.
BMC Plant Biol ; 22(1): 40, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045819

RESUMO

BACKGROUND: Most plants encounter water stress at one or more different stages of their life cycle. The maintenance of genetic stability is the integral component of desiccation tolerance that defines the storage ability and long-term survival of seeds. Embryonic axes of desiccation-sensitive recalcitrant seeds of Acer pseudoplatnus L. were used to investigate the genotoxic effect of desiccation. Alkaline single-cell gel electrophoresis (comet assay) methodology was optimized and used to provide unique insights into the onset and repair of DNA strand breaks and 8-oxo-7,8-dihydroguanine (8-oxoG) formation during progressive steps of desiccation and rehydration. RESULTS: The loss of DNA integrity and impairment of damage repair were significant predictors of the viability of embryonic axes. In contrast to the comet assay, automated electrophoresis failed to detect changes in DNA integrity resulting from desiccation. Notably, no significant correlation was observed between hydroxyl radical (Ù OH) production and 8-oxoG formation, although the former is regarded to play a major role in guanine oxidation. CONCLUSIONS: The high-throughput comet assay represents a sensitive tool for monitoring discrete changes in DNA integrity and assessing the viability status in plant germplasm processed for long-term storage.


Assuntos
Acer/genética , Ensaio Cometa/métodos , Reparo do DNA , Estresse Oxidativo , Sementes/genética , Acer/química , Acer/crescimento & desenvolvimento , Soluções Tampão , Fragmentação do DNA , DNA-Formamidopirimidina Glicosilase/metabolismo , Dessecação , Guanosina/análogos & derivados , Guanosina/genética , Guanosina/metabolismo , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
9.
Fa Yi Xue Za Zhi ; 38(6): 747-753, 2022 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36914391

RESUMO

In criminal investigations, postmortem interval (PMI) is important information to be inferred in homicide investigations, as well as the focus and the difficulty in forensic pathology research. Because the DNA content in different tissues is relatively constant and shows changes regularly with the extension of PMI, it has become a research hotspot of PMI estimation. This paper reviews the recent progress of PMI estimation technologies including DNA-based single cell gel electrophoresis, image analysis, flow cytometry, real-time fluorescence quantitative PCR and high-throughput sequencing, hoping to provide references for forensic medicine practice and scientific research.


Assuntos
DNA , Mudanças Depois da Morte , Humanos , Autopsia/métodos , DNA/genética , Medicina Legal , Patologia Legal
10.
Journal of Forensic Medicine ; (6): 747-753, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-984167

RESUMO

In criminal investigations, postmortem interval (PMI) is important information to be inferred in homicide investigations, as well as the focus and the difficulty in forensic pathology research. Because the DNA content in different tissues is relatively constant and shows changes regularly with the extension of PMI, it has become a research hotspot of PMI estimation. This paper reviews the recent progress of PMI estimation technologies including DNA-based single cell gel electrophoresis, image analysis, flow cytometry, real-time fluorescence quantitative PCR and high-throughput sequencing, hoping to provide references for forensic medicine practice and scientific research.


Assuntos
Humanos , Mudanças Depois da Morte , Autopsia/métodos , DNA/genética , Medicina Legal , Patologia Legal
11.
Comput Toxicol ; 20: 100190, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34820591

RESUMO

(Quantitative) structure-activity relationship ([Q]SAR) methodologies are widely applied to predict the (eco)toxicological effects of chemicals, and their use is envisaged in different regulatory frameworks for filling data gaps of untested substances. However, their application to the risk assessment of nanomaterials is still limited, also due to the scarcity of large and curated experimental datasets. Despite a great amount of nanosafety data having been produced over the last decade in international collaborative initiatives, their interpretation, integration and reuse has been hampered by several obstacles, such as poorly described (meta)data, non-standard terminology, lack of harmonized reporting formats and criteria. Recently, the FAIR (Findable, Accessible, Interoperable, and Reusable) principles have been established to guide the scientific community in good data management and stewardship. The EU H2020 Gov4Nano project, together with other international projects and initiatives, is addressing the challenge of improving nanosafety data FAIRness, for maximizing their availability, understanding, exchange and ultimately their reuse. These efforts are largely supported by the creation of a common Nanosafety Data Interface, which connects a row of project-specific databases applying the eNanoMapper data model. A wide variety of experimental data relating to characterization and effects of nanomaterials are stored in the database; however, the methods, protocols and parameters driving their generation are not fully mature. This article reports the progress of an ongoing case study in the Gov4nano project on the reuse of in vitro Comet genotoxicity data, focusing on the issues and challenges encountered in their FAIRification through the eNanoMapper data model. The case study is part of an iterative process in which the FAIRification of data supports the understanding of the phenomena underlying their generation and, ultimately, improves their reusability.

12.
Reprod Biol Endocrinol ; 19(1): 97, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183027

RESUMO

Recent years have seen a rising incidence of male infertility, mostly caused by the decline of sperm quality. The ratio of infertile males to infertile females has escalated from 3:7 in 2013 to current 5:5, which turns male infertility into the research focus of reproductive medicine. This study aimed to clarify the effect of reproductive tract infection by ureaplasma urealyticum (UU) and chlamydia trachomatis (CT) on the DNA integrity and routine semen parameters of infertile males. A retrospective study was performed. A total of 259 infertile males who were treated at the Andrological Laboratory Examination and Reproductive Medicine Center in our hospital were analyzed. qRT-PCR was used to examine the infection status of CT and UU. According to the eligibility criteria, we evaluated the semen parameters and biochemical data of 253 men. Based on the results of PCR, the subjects were divided into four groups: Group I (CT positive, 63 cases), Group II (UU positive, 60 cases), Group III (CT positive and UU positive, 62 cases), and Group IV (no infection, 68 cases). DNA fragmentation index (DFI), sperm count, vitality and morphology, elastase level, seminal plasma malondialdehyde (MDA), and total antioxidant capacity (TAC) were assessed. Compared to Group IV, three groups (Group I, Group II and Group III) showed difference in semen volume, proportion of sperm with normal morphology, sperm motility, progressive motility, and vitality (P < 0.05). Compared to Group IV, Group II and Group III showed difference in DFI (P < 0.05). Compared to Group IV, Group II and Group III showed difference in elastase level (P < 0.05). VCL, VSL, VAP, WOB, ROS, TM, HDS showed differences between groups of abnormal/normal WBC (*P < 0.01).UU infection significantly increased the level of seminal leukocytes only in Group II, but not in the other three groups, indicating that UU is a factor to increase the level of seminal leukocytes. Compared with the normal leukocyte group, there were significant differences in total motility, forward motility and normal sperm ratio between the two groups. The proportion of sperm with abnormal morphology (mostly in the head) showed obvious difference between groups of high and normal seminal leukocytic levels. At the same time, in this study, SCGE and SCD verified that leukocytes could damage sperm DNA by increasing ROS, which ultimately affects male fertility.


Assuntos
Fragmentação do DNA , Infertilidade Masculina/metabolismo , Estresse Oxidativo/fisiologia , Infecções do Sistema Genital/metabolismo , Análise do Sêmen/métodos , Sêmen/metabolismo , Adolescente , Adulto , Humanos , Infertilidade Masculina/genética , Masculino , Infecções do Sistema Genital/genética , Motilidade dos Espermatozoides/fisiologia , Adulto Jovem
13.
Environ Sci Pollut Res Int ; 28(23): 29188-29199, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33550522

RESUMO

The aim of this study was to evaluate the genotoxic and cytotoxic effects of amitraz (AMZ) on the primary culture of bovine cumulus cells (CC) and oocyte nuclear maturation. Cytotoxicity was evaluated by assessing mitochondrial activity with the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Genotoxicity was estimated using the alkaline single cell gel electrophoresis (SCGE) assay. Apoptosis was detected with the Annexin V-affinity assay. The in vitro maturation test was performed in bovine oocytes. To understand AMZ action, glutathione content, superoxide dismutase enzyme activity, and lipid peroxidation were evaluated in CC. Results showed that AMZ lethal concentration (LC 5024h) for bovine CC was 32.55 µg/mL (MTT assay). A 25 µg/mL induced late apoptosis and necrotic cells (p < 0.05); however, DNA damage was decreased at the same concentration (SCGE assay; p < 0.05). A decrease in metaphase II was observed at 25 µg/mL, and degenerate oocytes were observed at 15 and 25 µg/mL (p < 0.05). None of the oxidative stress parameters evaluated showed significant differences. This study contributes to a better understanding of AMZ in this model, suggesting its potential cytotoxicity and impact on bovine reproduction.


Assuntos
Células do Cúmulo , Toluidinas , Animais , Bovinos , Dano ao DNA , Feminino , Oócitos , Toluidinas/toxicidade
14.
Methods Mol Biol ; 2240: 1-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423222

RESUMO

The single-cell gel electrophoresis-based genotoxin sensitivity assay (GSA) is an ex vivo approach which enables to study the impact of a variety of dietary factors, occupational exposures, and diseases on the sensitivity of humans towards genotoxic chemicals which cause adverse health effects such as cancer, accelerated aging, and infertility.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Ensaio Cometa/métodos , Mutagênicos/toxicidade , Análise de Célula Única/métodos , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Humanos , Linfócitos/efeitos dos fármacos
15.
Ecotoxicol Environ Saf ; 208: 111655, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396169

RESUMO

An enormous amount of oil-containing drill cuttings have been produced by the marine oil and gas industry. The environmental impacts of discharged drilling waste have been extensively studied. However, there is still an urgent need to develop alternative methods to identify the genotoxicity of untreated and treated drill waste in a timely manner before it is discharged. In this study, we developed a relatively rapid, sensitive, and accurate genotoxicity-detection method using Comet assay and the marine benthic goby Mugilogobius chulae. This goby is sensitive to a standard toxicant mitomycin C (MMC). The optimal exposure period for genotoxicity detection using M. chulae was determined. Three genotoxic indices (tail length (TL), tail DNA content (TD), and tail moment (TM)) were used to assess the effectiveness of high-temperature treatment of oil-contaminated waste. Untreated oil-containing drill cuttings exhibited the highest genotoxicity to goby cells. Genotoxicity was dramatically reduced after thermal treatment of drill cuttings at 350 °C and 500 °C. TD and TM exhibited significant correlation with the concentration of total petroleum hydrocarbons (TPHs)/total polycyclic aromatic hydrocarbons (PAHs) according to Pearson and Mantel correlation analyses (P values were <0.05). Using redundancy analysis (RDA) and variation partition analysis (VPA), the genotoxic effects of the drill cuttings were ascribed to total alkanes and specific groups of PAHs. In conclusion, this newly established biological model has the potential to be widely used to detect the genetic damage of untreated or treated oil-containing drill cuttings discharged into the marine environment.


Assuntos
Dano ao DNA , Monitoramento Ambiental/métodos , Peixes/genética , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ensaio Cometa , Peixes/fisiologia , Temperatura Alta , Hidrocarbonetos/análise , Hidrocarbonetos/toxicidade , Campos de Petróleo e Gás/química , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Eliminação de Resíduos , Poluentes Químicos da Água/análise
16.
J Clin Med ; 9(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238572

RESUMO

Psychosocial stress increases cardiovascular risk, which coincides with enhanced oxidative DNA damage. Increased sympathetic tone-related catecholamine release causes oxidative stress, which contributes to catecholamine-related cardiotoxicity. Therefore, we tested the hypothesis whether acute psychosocial stress induces oxidative DNA damage, its degree being related to the cardiovascular risk profile and depending on the sympathetic stress response. After assessment of the prospective cardiovascular Münster score (PROCAM) to determine the risk of acute myocardial infarction, 83 male and 12 female healthy volunteers underwent the Trier social stress test for groups (TSST-G). Heart rate variability was quantified by measuring the standard deviation (SDNN) and root mean square of successive differences (RMSSD) between normal-to-normal inter-beat intervals. Salivary α-amylase (sAA) activity was assessed as a surrogate for noradrenaline plasma concentrations. Oxidative DNA damage was determined using whole-blood single-cell gel electrophoresis ("tail moment" in the "comet assay"). A total of 33 subjects presented with a prospective risk of myocardial infarction (risk+) vs. 59 subjects without risk (risk-). The TSST-G stress significantly increased blood pressure, heart rate, and sAA in both groups, while oxidative DNA damage was only increased in the risk+ group. Immediately after the TSST-G, the "tail moment" showed significant inverse linear relations with both SDNN and RMSSD. Acute psychosocial stress may cause oxidative DNA damage, the degree of which is directly related to the individual cardiovascular risk profile and depends on the stress-induced increase in the sympathetic tone.

17.
Front Genet ; 11: 530915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101372

RESUMO

Candida species are important pathogens of humans and the fourth most commonly isolated pathogen from nosocomial blood stream infections. Although Candida albicans is the principle causative agent of invasive candidosis, the incidence of Candida glabrata infections has rapidly grown. The reason for this increase is not fully understood, but it is clear that the species has a higher innate tolerance to commonly administered azole antifungals, in addition to being highly tolerant to stresses especially oxidative stress. Taking the approach that using the model organism, Saccharomyces cerevisiae, with its intrinsic sensitivity to oxidative stress, we hypothesized that by expressing mediators of stress resistance from C. glabrata in S. cerevisiae, it would result in induced resistance. To test this we transformed, en-masse, the C. glabrata ORFeome library into S. cerevisiae. This resulted in 1,500 stress resistant colonies and the recovered plasmids of 118 ORFs. Sequencing of these plasmids revealed a total of 16 different C. glabrata ORFs. The recovery of genes encoding known stress protectant proteins such as GPD1, GPD2 and TRX3 was predicted and validated the integrity of the screen. Through this screen we identified a C. glabrata unique ORF that confers oxidative stress resistance. We set to characterise this gene herein, examining expression in oxidative stress sensitive strains, comet assays to measure DNA damage and synthetic genetic array analysis to identify genetic interaction maps in the presence and absence of oxidative stress.

18.
Zebrafish ; 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32240067

RESUMO

The Single-Cell Gel Electrophoresis, simply known as the Comet assay, is a sensitive and quick technique used to quantitate DNA damage, widely used to assess the effects of genotoxicants and mutagens in animal cells. Still, performing the assay on peripheral or cultured cells is far more expeditious and cost effective than solid tissue, especially from small biological model like the zebrafish embryo. The current work describes and validates a highly cost-effective protocol of the updated Comet assay designed for zebrafish embryos. Compared with the few previous applications of the Comet assay on this biological model, the present method successfully simplifies the process of cell harvesting and resuspending, producing a much higher yield of viable nucleoids with reduced basal DNA damage, even from a small number of embryos, and compatible with scoring with safe fluorescent dyes. Additionally, the protocol can be just as easily performed on freshly harvested cells of cells frozen in dimethyl sulfoxide (DMSO)-containing physiological buffer, without a significant increase of DNA damage, which is another highly relevant update, especially for researchers handling high numbers of samples.

19.
Artigo em Inglês | MEDLINE | ID: mdl-31947621

RESUMO

BACKGROUND: Antineoplastic drugs (ANDs) are a broad group of chemicals showing, at the same time, carcinogenic effects. The potential, albeit true, risk of side effects cannot be accepted, especially if resulting from occupational exposure. The aim of this study was to evaluate the association between occupational exposure to ANDs and the extent of primary DNA damage in health professionals. METHODS: A systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed/Medline, Web of Science, and Scopus were used to perform the literature search. The databases were examined in July 2019. Sub-group, moderator, and cumulative analyses were conducted. The trim and fill method was used in the case of potential publication bias. RESULTS: Twenty studies were included in the qualitative analysis, and 19 in quantitative evaluation. The pooled effect size was 1.27 [(95% confidence interval (CI) = 0.66-1.88), p = 0.000] based on 1569 subjects. The moderator analysis by duration of exposure showed a positive association between duration of exposure and primary DNA damage. CONCLUSIONS: This systematic review clearly shows a significant association between occupational exposure to ANDs and the extent of primary DNA damage in health professionals. Considering these results, health professionals should be warned against this potential occupational risk.


Assuntos
Antineoplásicos/efeitos adversos , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Pessoal de Saúde , Exposição Ocupacional/efeitos adversos , Humanos
20.
ALTEX ; 1(37): 95-109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31473765

RESUMO

The routine use of single cell gel electrophoresis assay in medical diagnostics and biomonitoring is prevented by its high variability. Several factors have been identified and can be grouped into four main categories: 1) the biological sample, 2) the assay protocol, 3) the physical parameters during electrophoresis and 4) the analysis. Even though the scientific knowledge on assay variability is available, not much has been done so far to tackle the issues from the technological side. Therefore, this study addresses the question in how far the precise and accurate control over the physical parameters of electrophoresis is able to reduce variability of single cell gel electrophoresis assay results. All four above mentioned categories make up the overall assay variability. To resolve the contribution from a single category, the remaining three have to be kept as constant as possible. To achieve this we generated a set of x-ray treated control cells, worked according to a well-defined standard operating procedure and one single operator performed the analysis. Thereby variability resulting from the electrophoresis tank could be elucidated. We compared assay performance in two such tank systems: a newly developed electrophoresis tank that accurately controls voltage, temperature during the electrophoretic run and the homogeneity of the electric field, and a widely used commercially available standard platform tank. In summary, our results demonstrate that, irrespective of the cellular sample and its intrinsic biological variability, accurate control over physical parameters considerably increases repeatability, reproducibility and precision of single cell gel electrophoresis.


Assuntos
Ensaio Cometa/normas , Células A549 , Dano ao DNA , Citometria de Fluxo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...