Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Front Pharmacol ; 15: 1395167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962303

RESUMO

Backgrounds: Mature angiogenesis plays a critical role in improving cerebral ischemia-reperfusion injury (CIRI). Glycolysis serves as the primary energy source for brain microvascular endothelial cells (BMECs), whereas other vascular cells rely on aerobic respiration. Therefore, intercellular variations in energy metabolism could influence mature angiogenesis. Taohong Siwu Decoction (THSWD) has demonstrated efficacy in treating ischemic stroke (IS), yet its potential to promote mature angiogenesis through glycolysis activation remains unclear. Methods: In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/R) model in vivo and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. We assessed neuroprotective effects using neurobehavioral scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxylin-eosin (HE) staining, and Nissl staining in MCAO/R rats. Additionally, we evaluated mature angiogenesis and glycolysis levels through immunofluorescence, immunohistochemistry, and glycolysis assays. Finally, we investigated THSWD's mechanism in linking glycolysis to mature angiogenesis in OGD/R-induced BMECs. Results: In vivo experiments demonstrated that THSWD effectively mitigated cerebral damage and restored neurological function in MCAO/R rats. THSWD significantly enhanced CD31, Ang1, PDGFB, and PDGFR-ß expression levels, likely associated with improved glucose, pyruvate, and ATP levels, along with reduced lactate and lactate/pyruvate ratios. In vitro findings suggested that THSWD may boost the expression of mature angiogenesis factors (VEGFA, Ang1, and PDGFB) by activating glycolysis, increasing glucose uptake and augmenting lactate, pyruvate, and ATP content, thus accelerating mature angiogenesis. Conclusion: THSWD could alleviate CIRI by activating the glycolysis pathway to promote mature angiogenesis. Targeting the glycolysis-mediated mature angiogenesis alongside THSWD therapy holds promise for IS treatment.

2.
J Orthop Surg Res ; 19(1): 369, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902693

RESUMO

OBJECTIVE: Elderly patients with hip fractures are at a greater risk of developing postoperative delirium (POD), which significantly impacts their recovery and overall quality of life. Neuroinflammation is a pathogenic mechanism of POD. Taohong Siwu Decoction (THSWD), known for its ability to promote blood circulation and remove blood stasis, can effectively reduce inflammation in the nervous system. Therefore, the objective of this article is to provide a comprehensive summary of the clinical efficacy of THSWD in the prevention of POD. Additionally, it aims to investigate the underlying mechanism of THSWD in the prevention and treatment of POD using network pharmacology and molecular docking. METHODS: We conducted a retrospective analysis of patients with intertrochanteric fractures between January 2016 and October 2021. The patients were divided into two groups: the control and THSWD group. We performed a comparative analysis of hemoglobin (HB), albumin (ALB), C-reactive protein (CRP), blood urea nitrogen (BUN), and the blood urea nitrogen to creatinine ratio (BCR) on two different time points: the day before surgery (D0) and the third day after surgery (D3). Furthermore, we examined the incidence and duration of delirium, as well as the Harris Hip Score (HHS) at 3 months and 12 months post-surgery. Network pharmacology was employed to identify the primary targets and mechanisms of THSWD in the management of delirium. Molecular docking was employed to confirm the interaction between active ingredients and COX-2. Inflammatory cytokines, including cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor- (TNF-α), were measured using the enzyme-linked immunosorbent assay (ELISA). The cognitive status of the patients was assessed using the Mini-Mental State Examination (MMSE) scoring system. RESULTS: Regardless of whether it is in D0 or D3, THSWD treatment can increase HB levels while decreasing BCR. In D3, the THSWD group demonstrated a significant reduction in the expression of CRP and BUN when compared to the control group. However, there were no significant differences in ABL levels, surgery duration, and blood loss between the two groups. Additionally, THSWD treatment requires fewer blood transfusions and can reduce the incidence and duration of POD. The results of the logistic analysis suggest that both CRP levels and BCR independently contribute to the risk of POD. Network pharmacology analysis indicates that THSWD has the potential to prevent and treat POD possibly through inflammatory pathways such as IL-17 signaling pathways and NF-kappa B signaling pathways. Molecular docking validated the interaction between the active ingredient of THSWD and COX-2. Furthermore, THSWD treatment can reduce the levels of COX-2, IL-1ß, IL-6, TNF-α, BUN and CRP in the blood of patients with POD, increase HB levels, and enhance MMSE scores. The expression of COX-2 is positively associated with other inflammatory markers (IL-1ß, IL-6, TNF-α, and CRP), and inversely associated with MMSE. CONCLUSION: THSWD has been found to have a preventive and therapeutic effect on POD in intertrochanteric fracture patients possibly through inflammatory pathways. This effect may be attributed to its ability to increase hemoglobin levels and reduce the levels of certain detrimental factors, such as blood urea nitrogen and inflammatory factors.


Assuntos
Delírio , Medicamentos de Ervas Chinesas , Fraturas do Quadril , Simulação de Acoplamento Molecular , Farmacologia em Rede , Complicações Pós-Operatórias , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Estudos Retrospectivos , Fraturas do Quadril/cirurgia , Masculino , Feminino , Idoso , Complicações Pós-Operatórias/prevenção & controle , Delírio/prevenção & controle , Delírio/etiologia , Idoso de 80 Anos ou mais
3.
J Ethnopharmacol ; 333: 118407, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824979

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY: This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS: A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS: In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION: In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.

4.
J Ethnopharmacol ; 332: 118366, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763371

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Siwu decoction (SWD) is widely used in gynecological diseases, such as peripheral menopause syndrome, premature ovarian failure, and menstrual disorder. However, the mechanism of SWD on postmenopausal osteoporosis (PMOP) remains unclear. AIM OF THE STUDY: To discover the phytoestrogenic osteoprotective effect of SWD on PMOP. MATERIALS AND METHODS: The potential mechanism of SWD on PMOP was filtered through network pharmacology research. The potential mechanism was verified in MC3T3-E1 cell lines in vitro. CCK8 assay was conducted to assess cell proliferation and the expressions of ER/PI3K/AKT pathway were analyzed using Western blot. Female F-344 rats were chosen to set up the PMOP model. The osteoprotective effect of SWD in vivo was evaluated using Hematoxylin-eosin staining, TRAP staining, Goldner staining and DXA. The potential mechanism was verified in vivo through Western blot and immunohistochemistry. RT-qPCR was conducted to unveil the expressions of osteogenesis genes. RESULTS: Network pharmacology research showed that ER/PI3K/AKT pathway may be the potential mechanism of SWD on PMOP. SWD promoted the proliferation of osteoblasts and regulated the protein expressions of ER/PI3K/AKT pathway in vitro. SWD improved the morphological structure, bone mineralization and bone mineral density of femurs and suppressed osteoclastogenesis in PMOP rat model via ER/PI3K/AKT pathway in vivo. In addition, SWD regulated the mRNA expressions of osteogenesis-related genes. CONCLUSIONS: SWD exerts a phytoestrogenic osteoprotective on PMOP by regulating ER/PI3K/AKT pathway, which marks it as a valuable medicine or supplement of PMOP.


Assuntos
Proliferação de Células , Medicamentos de Ervas Chinesas , Osteoporose Pós-Menopausa , Fitoestrógenos , Proteínas Proto-Oncogênicas c-akt , Receptores de Estrogênio , Transdução de Sinais , Animais , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/prevenção & controle , Camundongos , Transdução de Sinais/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Osteogênese/efeitos dos fármacos , Linhagem Celular , Humanos , Densidade Óssea/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Farmacologia em Rede
5.
J Ethnopharmacol ; 332: 118372, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38777084

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Neovessels represent a crucial therapeutic target and strategy for repairing ischemic tissue. Taohong Siwu Decoction (THSWD) exhibits potential in promoting angiogenesis to address ischemic stroke (IS). However, its impact on neovessel structure and function, alongside the underlying molecular mechanisms, remains elusive. AIM OF THE STUDY: Our aim is to investigate the protective effects of THSWD on neovessel structure and function, as well as the associated molecular mechanisms, utilizing an integrative pharmacological approach. MATERIALS AND METHODS: We initially employed behavioral tests, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Haematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), Laser Doppler flowmetry (LDF), Evans blue staining, and immunofluorescence to evaluate the protective effects of THSWD on neovascular structure and function in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. Subsequently, we utilized network pharmacology, metabolomics, and experimental validation to elucidate the underlying molecular mechanisms of THSWD in enhancing neovascular structure and function. RESULT: In addition to significantly reducing neurological deficits and cerebral infarct volume, THSWD mitigated pathological damage, blood-brain barrier (BBB) leakage, and cerebral blood flow disruption. Moreover, it preserved neovascular structure and stimulated angiogenesis. THSWD demonstrated potential in ameliorating cerebral microvascular metabolic disturbances including lipoic acid metabolism, fructose and mannose metabolism, purine metabolism, and ether lipid metabolism. Consequently, it exhibited multifaceted therapeutic effects, encompassing anti-inflammatory, antioxidant, energy metabolism modulation, and antiplatelet aggregation properties. CONCLUSION: THSWD exhibited protective effects on cerebral vascular structure and function and facilitated angiogenesis by rectifying cerebral microvascular metabolic disturbances in MCAO/R rats. Furthermore, integrated pharmacology offers a promising approach for studying the intricate traditional Chinese medicine (TCM) system in IS treatment.


Assuntos
Medicamentos de Ervas Chinesas , Infarto da Artéria Cerebral Média , AVC Isquêmico , Ratos Sprague-Dawley , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , AVC Isquêmico/tratamento farmacológico , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Indutores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Farmacologia em Rede , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Angiogênese
6.
Front Med (Lausanne) ; 11: 1343179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751973

RESUMO

Background: As one of the most common gynecological disorders, PD significantly impacts the quality of life for women. TSD, a well-known traditional Chinese medical prescription, has gained popularity for its use in treating gynecological cold coagulation and blood stasis syndromes such as PD. However, the lack of comprehensive data hinders our understanding of its molecular mechanism. Purpose: The objective of the present study is to investigate the therapeutic effects of TSD on PD and elucidate its plausible mechanism. Methods: HPLC was employed to confirm the presence of the principal metabolites of TSD. The rat model of PD was induced by OT exposure following IWM and EB pretreatment, and subsequently treated with TSD via gastric gavage. The effects and potential mechanisms of TSD on PD rats were explored, encompassing general behavior, morphological alterations in the uterus and ovaries, biochemical indicators in the uterus and serum, and levels of proteins related to the PI3K/AKT signaling pathway. Results: Gallic acid, hydroxysafflower yellow A, albiflorin, paeoniflorin, and ferulic acid were determined to be the primary active metabolites of TSD. The pharmacological studies yielded results indicating the successful establishment of the PD model in rats. Additionally, TSD demonstrated its ability to protect PD rats by ameliorating general behavior, mitigating pathological damage to uterine and ovarian tissues, and modulating the expression levels of correlated factors (PGE2, PGF2α, Ca2+, TXB2, IL-6, TNF-α, NO, and COX-2) as well as p-PI3K/PI3K and p-AKT/AKT proteins. Conclusion: TSD exhibited protective effects against PD in rats through its interaction with multiple targets including P13K/AKT signaling pathway, indicating that TSD holds therapeutic potential for PD treatment and providing evidence supporting the rational utilization of TSD.

7.
Heliyon ; 10(4): e26700, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434034

RESUMO

Objective: This study aimed to study whether modified Taohong Siwu decoction (MTHSWD) combined with human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs) transplantation can promote cardiac function in myocardial infarction (MI) nude mouse model and explore its possible mechanism. Methods: The MI mouse model was established by the ligation of left anterior descending coronary artery. After 4 weeks of gavage of MTHSWD combined with iPS-CMs transplantation, the changes in heart function of mice were examined by echocardiography. The histological changes were observed by Masson's trichrome staining. The survival and differentiation of transplanted cells were detected by double immunofluorescence staining of human nuclear antigen (HNA) and cardiac troponin T (cTnT). The number of c-kit-positive cells in the infarct area were evaluated by immunofluorescent staining. The levels of stromal cell-derived factor 1 (SDF-1), stem cell factor (SCF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor in infarcted myocardium tissues were detected by ELISA. Results: MTHSWD combined with iPS-CMs transplantation can improve the heart function of MI mice, reduce the infarct size and collagen deposition in infarct area. By immunofluorescence double-label detection of HNA and cTnT, it was found that MTHSWD combined with iPS-CMs transplantation can improve the survival and maturation of iPS-CMs. In addition, MTHSWD combined with iPS-CMs transplantation can activate more endogenous c-kit positive cardiac mesenchymal cells, and significantly increase the content of SDF-1, SCF and VEGF in myocardial tissues. Conclusions: The combination of MTHSWD with iPS-CMs transplantation promoted cardiac function of nude mice with MI by improving the survival and maturation of iPS-CMs in the infarct area, activating the endogenous c-kit positive cardiac mesenchymal cells, and increasing paracrine.

8.
Integr Cancer Ther ; 23: 15347354241236205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462929

RESUMO

BACKGROUND: Siwu Decoction (SWD) is a well-known classical TCM formula that has been shown to be effective as a basis for preventing and reducing liver metastases (LM). However, the active ingredients and potential molecular mechanisms remain unclear. OBJECTIVE: This study aimed to systematically analyze the active ingredients and potential molecular mechanisms of SWD on LM and validate mechanisms involved. MATERIALS AND METHODS: The active ingredients in SWD were extracted by UHPLC-MS/MS in a latest study. Protox II was retrieved to obtain toxicological parameters to detect safety. Swiss Target Prediction database was exploited to harvest SWD targets. Five databases, Gene Cards, DisGeNET, Drugbank, OMIM, and TTD, were employed to filter pathogenic targets of LM. STRING database was utilized to construct the protein-protein interaction network for therapeutic targets, followed by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. GEPIA database and the Human Protein Atlas were taken to observe the expression of core genes and proteins. ImmuCellAI algorithm was applied to analyze the immune microenvironment and survival relevant to core genes. Molecular docking was performed to verify the affinity of SWD effective ingredients to core targets. In vivo experiments were carried out to validate the anti-LM efficacy of SWD and verify the pivotal mechanisms of action. RESULTS: Eighteen main bioactive phytochemicals identified were all non-hepatotoxic. PPI network acquired 118 therapeutic targets, of which VEGFA, CASP3, STAT3, etc. were identified as core targets. KEGG analysis revealed that HIF-1 pathway and others were critical. After tandem targets and pathways, HIF-1/VEGF was regarded as the greatest potential pathway. VEGFA and HIF-1 were expressed differently in various stages of cancer and normal tissues. There was a negative regulation of immunoreactive cells by VEGFA, which was influential for prognosis. Molecular docking confirmed the tight binding to VEGFA. This study revealed the exact effect of SWD against LM, and identified significant inhibition the expression of HIF-1α, VEGF, and CD31 in the liver microenvironment. CONCLUSION: This study clarified the active ingredients of SWD, the therapeutic targets of LM and potential molecular mechanisms. SWD may protect against LM through suppressing HIF-1/VEGF pathway.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular , Neoplasias Hepáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Microambiente Tumoral
9.
J Tradit Chin Med ; 44(1): 103-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213245

RESUMO

OBJECTIVE: To investigate the effect of Taohong Siwu decoction (, TSD) on atherosclerosis in rats as well as investigate the underlying mechanism based on molecular docking. METHODS: Sixty healthy male Sprague-Dawley rats were randomly divided into 6 groups with 10 rats in each group: control group, model group, atorvastatin group (AT, 2.0 mg/kg), and TSD groups (20, 10, 5 g/kg) after 7 d of acclimation. The model of atherosclerosis was successfully established except the control group by high fat diet (HFD) and vitamin D2. Biochemical analyzers were used to detect the levels of triglyceride (TG), total cholestero (TC), low density lipoprotein-cholesterol (LDL-C) and high density lipid-cholesterol (HDL-C) in blood lipid. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were determined by enzyme-linked immunosorbent assay. Sudan IV staining and Hematoxylin and eosin staining (HE staining) were performed to observe the pathological changes in aortic tissue. Molecular docking technology was used to predict the best matching between the main components of TSD and the target proteins. The expression of target proteins was further detected by quantitative real time polymerase chain reaction (qRT-PCR) and Western blot analysis. RESULTS: The results showed that TSD restricted atherosclerosis development and decreased the inflammatory cytokines in plasma. Molecular docking results predicted that the main components of TSD showed a strong binding ability with toll-like receptor (TLR4), myeloid differentiation primary response protein 88 (MyD88), and nuclear factor kappa-B (NF-κB). The results of qRT-PCR and Western blot analysis showed that the mRNA and protein expressions of TLR4, MyD88 and NF-κB p65 in the aorta were reduced in atorvastatin group and TSD group. CONCLUSIONS: TSD can ameliorate atherosclerosis in rats, and the underlying mechanism is supposed be related to the suppression of inflammatory response by regulating TLR4/MyD88/NF-κB signal pathway.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Ratos Sprague-Dawley , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Atorvastatina/uso terapêutico , Simulação de Acoplamento Molecular , Transdução de Sinais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Fator de Necrose Tumoral alfa/metabolismo , Lipídeos , Colesterol
10.
J Ethnopharmacol ; 321: 117515, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042386

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Taohong Siwu decoction (TSD) is a classic traditional Chinese medicine (TCM) prescription used to promote the blood circulation and alleviate blood stasis. TSD consists of Paeonia lactiflora Pall., Conioselinum anthriscoides (H. Boissieu) Pimenov & Kljuykov, Rehmannia glutinosa (Gaertn.) DC., Prunus persica (L.) Batsch, Angelica sinensis (Oliv.) Diels, and Carthamus creticus L. in the ratio of 3:2:4:3:3:2. Studies on the effects of TSD on myocardial ischemia-reperfusion injury (MIRI) from the perspective of autophagy and pyroptosis have not been reported. AIM OF THE STUDY: Investigate the effect of TSD on MIRI and explore the underlying mechanisms. MATERIALS AND METHODS: We searched the main components and corresponding potential targets of TSD on The Pharmacology of Traditional Chinese Medicine Systems database for target prediction. We identified targets for MIRI on Online Mendelian Inheritance in Man and GeneCards databases. The intersection of the compound target and disease target was obtained and a protein-protein interaction network constructed. We undertook enrichment analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The results of network pharmacology were verified by in vivo experiments in mice. RESULTS: In mice, TSD significantly reduced the volume of the myocardial infarct, significantly reduced serum levels of cardiac troponin-nI (CTnI), creatine kinase-myocardial band (CK-MB), malonaldehyde (MDA), interleukin (IL)-6, increased the activity of superoxide dismutase (SOD) and IL-10 level, reduced the level of pyroptosis in myocardial tissue, increased the number of autophagosomes, and significantly reduced the fluorescence intensity of apoptosis-associated speck-like protein (ASC), Nod-like receptor protein 3 (NLRP3), and caspase-1. TSD administration increased the protein expression of microtubule-associated protein light chain 3 (LC3), but reduced the protein expression of p62, NLRP3, ASC, caspase-1, cleaved caspase-1, pro-caspase-1, gasdermin D (GSDMD), GSDMD-N-terminal, IL-18, and IL-1ß. Administration of 3-Methyladenin could reverse the effect of TSD in inhibiting inflammation and the release of proinflammatory factors. CONCLUSION: TSD treatment alleviated MIRI by promoting autophagy to suppress activation of the NLRP3 inflammasome and reducing the release of proinflammatory factors.


Assuntos
Traumatismo por Reperfusão Miocárdica , Humanos , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Inflamassomos/metabolismo , Autofagia , Interleucina-6 , Caspases
11.
J Ethnopharmacol ; 319(Pt 3): 117303, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37827297

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Siwu decoction (SWD) is a common traditional formula for nourishing blood, and its derived formulas are also widely used in traditional Chinese medicine (TCM) clinic. However, the protective effects of SWD and its derived formulas on blood deficiency and blood stasis caused by rushing to the plateau are rarely reported, and the underlying mechanism has not been fully elucidated. AIM OF THE STUDY: This study explores the pharmacological effects and mechanisms of modified siwu decoction (MSWD) adding Persicae Semans (Prunus persica (L.) Batsch) and Carthami Flos (Carthamus tinctorius L.) against hypobaric hypoxia (HH). The acute toxicity of MSWD was also evaluated to further validate the potential of MSWD as a therapeutic candidate for HH. MATERIALS AND METHODS: Hypoxic models of C57BL/6 J and KM male mice were used to evaluate the pharmacological effect of MSWD. 2 µL serum sample of C57BL/6 J mice was digested into peptide mixtures and analyzed with DIA mode on an Orbitrap Fusion Lumos mass spectrometer after LC separation. The peptide and protein identifications were limited to a 1% FDR. Screening of differential expressed proteins, correlation analysis, hierarchical clustering analysis, principal components analysis and Mfuzz analysis were all performed by R packages. The protein-protein interaction network was analyzed using the STRING website and constructed with Cytoscape software. RESULTS: MSWD showed a protective effect against acute hypoxia exposure through increasing the number of red blood cells and improving hemodynamics indexes in mice. Meanwhile, the biochemical results showed that MSWD could reduce the inflammation and oxidative stress, reduce the content of organ injury biomarkers and significantly improve the high-intensity exercise ability of mice. Subsequently, serum DIA proteomic results revealed significant changes in proteomic characteristics after MSWD intervention. Specifically, proteins related to oxidative stress and ubiquitin-proteasome system, such as Sod1, Gstp1, Vcp and Usp14, were down-regulated after MSWD intervention, suggesting that the protective effect of MSWD involved the reduction of oxidative stress and energy expenditure. MSWD also intervened in energy metabolism and lipid metabolism processes by altering the expression levels of Eno1, Sphk1 and Apoa1 to ameliorate hypoxia-induced disorders. At the same time, MSWD acute toxicity test showed no obvious toxicity. CONCLUSIONS: MSWD has a good protective effect against HH by ameliorating hypoxia-induced disorders of energy and lipid metabolism, supporting MSWD as a safe drug candidate for the prevention and treatment of acute hypoxia fatigue.


Assuntos
Eritrócitos , Proteômica , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Peptídeos
12.
Clinics (Sao Paulo) ; 78: 100295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37907033

RESUMO

OBJECTIVE: The aim of this study was to study the curative effect and the relative mechanism of modified photodynamic therapy combined with Taohong Siwu Decoction in the treatment of hyperplastic scar after severe burn, in order to provide a stable, safe and satisfactory scheme for scar repair. METHODS: Forty cases with hyperplastic scars after severe burns admitted to the plastic surgery department from May 2021 to May 2022 were divided into a control group and an observation group by means of the random number table method. The control group was treated with ordinary laser therapy combined with Taohong Siwu Decoction, while the observation group was treated with modified photodynamic therapy combined with Taohong Siwu Decoction. The Vancouver Scar Scale (VSS) was assessed in both groups, and the clinical effectiveness of both groups was compared. HE-staining was performed on the scar tissue of the same patient before and after treatment to observe the changes in the arrangement of fibroblasts. The Vascular Endothelial Growth Factor (VEGF), ß-Transforming Growth Factor (TGF-ß), and Platelet-Derived Growth Factor (PDGF) in the tissue samples of both groups were detected by quantitative real-time PCR. The patients were followed up for 6 months, and their satisfaction, side effects, and scar recurrence were observed. RESULTS: Compared with the control group, the VSS score in the observation group was lower (p < 0.05). The therapeutic effect of the observation group was superior to the control group after 3 months (p < 0.05). After 3-months of therapy, the arrangement of fibroblasts in the scar became looser in two groups, and the observation group was more looser. The VEGF, TGF-ß and PDGF levels in tissue samples of the observation group were lower than those in the control group after 3 months of treatment (p < 0.05). The satisfaction of the observation group was higher than that of the control group (p < 0.05). The adverse reactions between the two groups showed no difference (p > 0.05), while the recurrence rate was lower in the observation group (p < 0.05). CONCLUSION: Modified photodynamic therapy combined with Taohong Siwu Decoction shows remarkable efficacy in patients with hyperplastic scars after severe burns. It can improve the color, thickness, vascular distribution, and softness of the scar, and reduce the level of cytokines related to tissue repair. At the same time, it can improve patients' satisfaction with the aesthetic appearance and reduce the recurrence rate, providing a new comprehensive therapy that is safer and more effective, simple and quick, and easy to promote in the clinic.


Assuntos
Queimaduras , Cicatriz Hipertrófica , Fotoquimioterapia , Humanos , Cicatriz Hipertrófica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Fator de Crescimento Transformador beta , Queimaduras/complicações
13.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4761-4773, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802815

RESUMO

The potential anti-stroke active components in Taohong Siwu Decoction(THSWD) were identified by target cell trapping coupled with ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of active components in THSWD in the treatment of ischemic stroke(IS) was explored by network pharmacology, molecular docking, and experimental validation. The UPLC-Q-TOF-MS technology combined with the UNIFI data analysis platform was used to analyze the composition of the cellular fragmentation fluid after co-incubation of THSWD with target cells. The targets of potential active components and IS were collected by network pharmacology, and the common targets underwent protein-protein interaction(PPI), Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analyses. The target cell trapping component-core target-signaling pathway network was constructed, and the active components were molecularly docked to the top targets in the PPI network, followed by pharmacodynamic validation in vitro. Fifteen active components were identified in the target cellular fragmentation fluid, including bicyclic monoterpenes, cyanoglycosides, flavonols, quinoid chalcones, phenylpropanoids, and tannins. As revealed by the analysis of network pharmacology, THSWD presumably regulated PI3K-AKT, FoxO, MAPK, Jak-STAT, VEGF, HIF-1, and other signaling pathways to affect inflammatory cascade reaction, angiogenesis, oxidative stress, pyroptosis, apoptosis, and other pathological processes via paeoniflorin, butylphthalide, dehydrated safflower yellow B, 3,4-dicaffeoylquinic acid, amygdalin, paeoniflorin, and ligusticolactone. Molecular docking and in vitro pharmacodynamic validation revealed that the target cell trapping active components could promote neovascularization in rat brain microvascular endothelial cells(rBMECs) in the oxygen-glucose deprivation/reoxygenation(OGD/R) model. The application of target cell trapping coupled with UPLC-Q-TOF-MS technology can rapidly screen out the potential active components in THSWD. The active components of THSWD can be predicted to intervene in the pathogenesis of IS through network pharmacology, and molecular docking combined with experimental validation can further clarify the efficacy, thus providing a theoretical basis for research ideas on the pharmacodynamic substance basis of traditional Chinese medicine compounds.


Assuntos
Medicamentos de Ervas Chinesas , AVC Isquêmico , Animais , Ratos , AVC Isquêmico/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Células Endoteliais , Fosfatidilinositol 3-Quinases , Medicamentos de Ervas Chinesas/farmacologia
14.
Chin Med ; 18(1): 95, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533095

RESUMO

BACKGROUND: Taohong Siwu Decoction (THSWD) is a widely prescribed Traditional Chinese Medicine (TCM) for treating gynecological diseases. It is used to treat uterine fibroids (UF) in China, while its potential therapeutic effects and mechanism are unknown. METHODS: The present study used network pharmacology to identify PI3K/AKT as one of the main THSWD signaling pathways that can be targeted to treat UF. The potential binding sites of miR-21-5p to PTEN were predicted using online databases. We were able to establish a UF rat model successfully. We selected the 15% THSWD serum after preparing THSWD drug-containing serum to culture tumor tissue-derived cells. These studies enabled us to assess the role of THSWD in UF improvement. RESULTS: In vivo, we observed that low, medium, and high doses of THSWD improved histological changes in UF rats by increasing the expression levels of PTEN and miR-21-5p in their uterus while decreasing the expression levels of p-PI3K, p-AKT, and miR-21-5p. Treatment with THSWD medicated serum (15%) effectively inhibited the proliferation of cells derived from human UF and promoted apoptosis in vitro. PI3K phosphorylation, Akt phosphorylation, and miR-21-5p expression were decreased, while PTEN and cleaved caspase-3 were increased. These findings were reversed by administering 740 Y-P (a PI3K/Akt pathway agonist) and a miR-21-5p mimic. In addition, the double luciferase reporter gene assay confirmed the targeted binding relationship between miR-21-5p and PTEN. CONCLUSIONS: THSWD inhibited the expression and activation of the PI3K/AKT and miR-21-5p/PTEN pathways, resulting in anti-UF activity in leiomyoma cell models. Our findings suggest that THSWD could be used to treat UF.

15.
In Vitro Cell Dev Biol Anim ; 59(5): 346-355, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37294373

RESUMO

We found that modified Taohong Siwu decoction (MTHSWD) had cardioprotective effects after myocardial ischemia-reperfusion injury. This study was to screen the effective components of MTHSWD that have protective effects on H9c2 cell injury through H2O2 injury model. Fifty-three active components were screened by CCK8 assay to detect cell viability. The anti-oxidative stress ability was evaluated by detecting the levels of total superoxide dismutase (SOD) and malondialdehyde (MDA) in cells. The anti-apoptotic effect was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL). Finally, the phosphorylation levels of ERK, AKT, and P38MAPK were detected by WB (Western blot) to study the protective mechanism of effective monomers against H9c2 cell injury. Among the 53 active ingredients of MTHSWD, ginsenoside Rb3, levistilide A, ursolic acid, tanshinone I, danshensu, dihydrotanshinone I, and astragaloside I could significantly increase the viability of H9c2 cells. The results of SOD and MDA showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA could significantly reduce the content of lipid peroxide in cells. TUNEL results showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA reduced apoptosis to varying degrees. The tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, and tanshinone I reduced the phosphorylation levels of P38MAPK and ERK in H9c2 cells induced by H2O2, and the phosphorylation level of ERK was also significantly reduced by danshensu. At the same time, tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, tanshinone I, and danshensu significantly increased AKT phosphorylation level in H9c2 cells. In conclusion, the effective ingredients in MTHSWD provide basic basis and experimental reference for the prevention and treatment of cardiovascular diseases.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peróxido de Hidrogênio/toxicidade , Apoptose , Superóxido Dismutase
16.
Front Cell Infect Microbiol ; 13: 1192589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342242

RESUMO

Introduction: To establish a new model for exploring the mechanism of the gut microbiome and drug metabolism, we explored whether Taohong Siwu Decoction acts after metabolism by intestinal flora under the premise of clarifying the interaction between intestinal flora and drug metabolism. Methods: Taohong Siwu Decoction (TSD) was fed to germ-free mice and conventional mice, respectively. The serum from both groups of mice was removed and co-cultured with glioma cells in vitro. The co-cultured glioma cells were compared separately for changes at the RNA level using RNA-seq technology. The genes of interest in the comparison results were selected for validation. Results: The differences in the phenotypic alterations of glioma cells between serum from TSD-fed germ-free mice and normal mice were statistically significant. In vitro experiments showed that Taohong Siwu Decoction-fed normal mouse serum-stimulated glioma cells, which inhibited proliferation and increased autophagy. RNA-seq analysis showed that TSD-fed normal mouse serum could regulate CDC6 pathway activity in glioma cells. The therapeutic effect of TSD is significantly influenced by intestinal flora. Conclusion: The treatment of tumors by TSD may be modulated by intestinal flora. We established a new method to quantify the relationship between intestinal flora and the regulation of TSD efficacy through this study.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Glioma , Camundongos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Fenótipo
17.
J Ethnopharmacol ; 314: 116580, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142144

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A growing number of people suffer from Alzheimer's disease (AD), but there is currently no effective treatment yet. Taohong Siwu Decoction (TSD) has been proved to take strong neuropharmacological activity on dementia, but the effect and mechanism of TSD against AD are still elusive. AIM OF STUDY: To investigate whether TSD could be effective in ameliorating cognitive deficits through SIRT6/ER stress pathway. MATERIALS AND METHODS: Herein, the APP/PS1 mice, an AD model, and HT-22 cell lines were utilized. Different dosages of TSD (4.25, 8.50 and 17.00 g/kg/d) were administered to the mice for 10 weeks by gavage. Following the behavioral tests, oxidative stress levels were measured using malondialdehyde (MDA) and superoxide dismutase (SOD) kits. Nissl staining and Western blot analyses were used to detect the neuronal function. Then, immunofluorescence and Western blot analysis were applied to evaluate silent information regulator 6 (SIRT6) and ER Stress related protein levels in APP/PS1 mice and HT-22 cells. RESULTS: Behavioral tests revealed that APP/PS1 mice administered with TSD orally took more time in the target quadrant, crossed more times in the target quadrant, had a higher recognition coefficient, and spent more time in the central region. In addition, TSD could ameliorate oxidative stress and inhibit neuronal apoptosis in APP/PS1 mice. Furthermore, TSD could up-regulate the SIRT6 protein expression and inhibit ER sensing proteins expressions, such as p-PERK and ATF6, in APP/PS1 mice and Aß1-42-treated HT22 cells. CONCLUSION: According to the abovementioned findings, TSD could alleviate cognitive dysfunction in AD by modulating the SIRT6/ER stress pathway.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Sirtuínas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Camundongos Transgênicos , Modelos Animais de Doenças
18.
Chin Med ; 18(1): 44, 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088809

RESUMO

BACKGROUND: Taohong Siwu Decoction (THSWD) is a prescription which included in the "List of Ancient Classic Prescriptions (First Batch)" issued by the National Administration of Traditional Chinese Medicine (TCM) and the National Medical Products Administration of the People's Republic of China. THSWD is effective and widely applied clinically for many diseases caused by blood deficiency and stasis syndrome in TCM, such as primary dysmenorrhea, menopausal syndrome, coronary heart disease, angina pectoris, and diabetes. METHODS: The TCM model of blood deficiency and blood stasis syndrome was prepared by ice water bath combined with cyclophosphamide, and the rats were randomly divided into control group, blood deficiency, and blood stasis model group, positive group, and THSWD treatment group. Pharmacodynamics measured the blood routine, blood coagulation, and other related indexes in rats. UHPLC-MS technology was used to analyze the changes in the fingerprints of metabolites in the plasma of rats with blood deficiency and blood stasis syndrome, and combined with mass spectrometry information and public database retrieval, to find potential biomarkers for screening metabolites. At the same time, 16S rDNA sequencing technology was used to identify intestinal flora, and statistical analysis was used to find differences in strain diversity between groups. RESULTS: THSWD administration can significantly improve the physical signs, blood routine, and hematopoietic factors caused by the blood deficiency and blood stasis syndrome model, and improve the symptoms of blood deficiency. The results of the general pharmacological studies showed THSWD groups improved changes in blood plasma viscosity and coagulation-related factors caused by modeling, and improved coagulation function significantly. The metabolomic analysis found that compared to the model group, THSWD exerted better effects on ß-alanine, taurine, L-tyrosine, L-arginine, Eugenol, sodium deoxycholate, and deethylatrazine. Twenty-three potential differential metabolites showed intervention effects, mainly involved in eight metabolic pathways, including amino acid metabolism, taurine and hypotaurine metabolism, vitamin metabolism, and nucleotide metabolism. Gut microbiota data showed that, compared to the control group, the relative abundance and value of Firmicutes and Bacteroidota of the blood deficiency and blood stasis model group was significantly reduced, while the relative abundance of Actinobacteria, Spirochaetota, Proteobacteria, Campilobacterota, and other pathogenic bacteria was significantly increased. Following THSWD intervention, the abundance of beneficial bacteria increased, and the abundance of pathogenic bacteria decreased. Correlation analysis between the gut microbiota and differential metabolites showed that the two are closely related. THSWD affected the host blood system through mutual adjustment of these two factors, and improved blood deficiency and blood stasis syndrome in rats. CONCLUSION: The blood deficiency and blood stasis syndrome model of TCM disease caused by ice bath combined with cyclophosphamide lead to changes in the pharmacology, metabolomics, and gut microbiota. The intervention of THSWD can improve the symptoms caused by blood deficiency and blood stasis. The mechanism is mainly through the regulation of platelet function and amino acid metabolism.

19.
J Ethnopharmacol ; 307: 116203, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36682599

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Taohong Siwu Decoction (THSWD) is a conventional traditional Chinese prescription aiming at promoting blood circulation and alleviating blood stasis. It is widely prescribed in instances of ischemic strokes, cardiovascular diseases, osteoporosis and bone fracture. However, its molecular functions in bone formation remain uncharacterized. AIM OF STUDY: This study aims to explore the potential effects of THSWD treatment on human bone marrow mesenchymal stem cells (BMSCs) proliferation, osteogenic differentiation, and migration. MATERIALS AND METHODS: BMSCs undergo osteogenic, adipogenic, and chondrogenic differentiation to determine cell stemness. BMSCs were treated with low dose (200 µg/ml), medium dose (400 µg/ml) and high dose (600 µg/ml) THSWD. The cell viability was determined by CCK-8 assays, the osteogenic differentiation ability was determined by alizarin red staining and ALP staining, and cell migration was determined by wound healing and transwell assays. The effect of THSWD on the vascular endothelial growth factor (VEGF)/focal adhesion kinase (FAK) pathway was determined by immunoblotting. RESULTS: THSWD time-dependently and dose-dependently promoted BMSC viability. Moreover, THSWD also promoted BMSC osteogenic differentiation and migration. As opposed to THSWD, VEGF receptor inhibitor Bevacizumab suppressed BMSC osteogenic differentiation and migration. In BMSCs that have been co-treated with THSWD and Bevacizumab, THSWD effects on BMSC functions were partially eliminated by Bevacizumab. Moreover, THSWD treatment boosted VEGF content in the supernatant and was conducive to the phosphorylation of FAK and Src, whereas Bevacizumab exerted opposite effects; similarly, Bevacizumab partially abolished THSWD effects on VEGF and FAK (Tyr397) and Src (Tyr418) phosphorylation. CONCLUSION: THSWD enhances the capacities of BMSCs to proliferate, differentiate, and migrate, possibly through VEGF and the FAK-Src, thereby improving fracture healing.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Osteogênese , Bevacizumab/farmacologia , Diferenciação Celular , Fatores de Crescimento do Endotélio Vascular , Consolidação da Fratura , Proliferação de Células , Células da Medula Óssea , Células Cultivadas
20.
J Ethnopharmacol ; 301: 115784, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36206870

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Taohong Siwu Decoction (THSWD) is a traditional Chinese medicine formula used to invigorate blood circulation and resolve blood stasis. It consists of Paeonia lactiflora Pall., Conioselinum anthriscoides (H.Boissieu) Pimenov & Kljuykov, Rehmannia glutinosa (Gaertn.) DC., Prunus persica (L.) Batsch, Angelica sinensis (Oliv.) Diels, and Carthamus creticus L. in the ratio of 3:2:4:3:3:2. THSWD is a common prescription for the treatment of ischemic stroke. AIM OF THE STUDY: To study the protective effect and mechanism of Taohong Siwu Decoction (THSWD) on PC12 cells damaged by oxygen glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS: OGD/R model of PC12 cells was used to simulate ischemia-reperfusion (I/R) injury of nerve cells in vitro. The experiment was grouped as follows: control, OGD/R and OGD/R + THSWD (5%, 10% and 15%) group. Oxygen and glucose was restored for 24 h after 4-6 h of deprivation. The severity of damage to PC12 cells was evaluated by CCK8, flow cytometry and lactate dehydrogenase (LDH). Mitochondrial morphology and function were examined by transmission electron microscopy (TEM), ATP and mitochondrial membrane potential (MMP) assay kits. Cellular autophagy and NLRP3 inflammasome-associated proteins were detected by Western blot and immunofluorescence staining. RESULTS: THSWD treatment improved the survival rate of PC12 cells injured by OGD/R, reduced cell damage and apoptosis. Moreover, ATP, MMP and the expression of autophagy marker proteins (LC3-II/LC3-I, Beclin1, Atg5) and mitophagy marker proteins (Parkin and PINK-1) was significantly elevated. The reactive oxygen species (ROS), NLRP3 inflammasome and pro-inflammatory cytokines induced by OGD/R were distinctly reduced. In contrast, these above beneficial effects of THSWD on mitochondrial autophagy and NLRP3 inflammasome were reversed by mitochondrial division inhibitory factor 1 (Mdivi-1). CONCLUSION: THSWD protects PC12 cells against OGD/R injury by heightening mitophagy and suppressing the activation of NLRP3 inflammasome.


Assuntos
Inflamassomos , Traumatismo por Reperfusão , Ratos , Animais , Células PC12 , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glucose/metabolismo , Mitofagia , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose , Reperfusão , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...