Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
J Agric Food Chem ; 72(29): 16475-16483, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987705

RESUMO

Emerging technologies for cell-cultured fish meat as an environmentally friendly protein source for humans still have many obstacles, including large-scale production of high-quality cells, differentiation and bioassembly of cellular material, and improvement of the quality of meat products. Here, we used edible porous microcarriers as scaffolds to support scalable skeletal muscle cell expansion to prepare centimeter-scale cell-cultured fish (CCM) of Carassius auratus for the first time. The quality of CCM was assessed by analyzing the texture, nutrition, flavor, and safety. The results indicated that CCM demonstrated a softer texture than natural fish due to a high moisture content. CCM contained higher protein and lower fat contents, with no significant difference in energy from natural golden crucian carp meat (NGM). CCM had better digestible properties, and 17 volatile components were identified in CCM, ten cocontained compared to NGM. ELISA quantified penicillin, streptomycin, vitamin D, and insulin residues as risk factors in CCM. In conclusion, we utilized edible porous microcarriers to scale-up the expansion of Carassius auratus skeletal muscle cells and bioassembled high-quality CCM of Carassius auratus for the first time, which represents a state-of-the-art protocol applicable to different fish species and even to other economic animals and provides a theoretical basis for scaling up cell-cultured meat production.


Assuntos
Carpa Dourada , Músculo Esquelético , Animais , Músculo Esquelético/química , Músculo Esquelético/citologia , Porosidade , Carne/análise , Técnicas de Cultura de Células , Proteínas de Peixes/química , Células Cultivadas , Alimentos Marinhos/análise
2.
Front Cell Dev Biol ; 12: 1429759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966427

RESUMO

Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.

3.
Ecotoxicol Environ Saf ; 281: 116607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908055

RESUMO

Deoxynivalenol (DON), commonly known as vomitoxin, is a mycotoxin produced by fungi and is frequently found as a contaminant in various cereal-based food worldwide. While the harmful effects of DON have been extensively studied in different tissues, its specific impact on the proliferation of skeletal muscle cells remains unclear. In this study, we utilized murine C2C12 myoblasts as a model to explore the influence of DON on their proliferation. Our observations indicated that DON exhibits dose-dependent toxicity, significantly inhibiting the proliferation of C2C12 cells. Through the application of RNA-seq analysis combined with gene set enrichment analysis, we identified a noteworthy downregulation of genes linked to the extracellular matrix (ECM) and condensed chromosome. Concurrently with the reduced expression of ECM genes, immunostaining analysis revealed notable changes in the distribution of fibronectin, a vital ECM component, condensing into clusters and punctate formations. Remarkably, the exposure to DON induced the formation of multipolar spindles, leading to the disruption of the normal cell cycle. This, in turn, activated the p53-p21 signaling pathway and ultimately resulted in apoptosis. These findings contribute significant insights into the mechanisms through which DON induces toxicity within skeletal muscle cells.


Assuntos
Apoptose , Mioblastos , Tricotecenos , Animais , Tricotecenos/toxicidade , Apoptose/efeitos dos fármacos , Camundongos , Mioblastos/efeitos dos fármacos , Linhagem Celular , Mitose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos
4.
Front Biosci (Landmark Ed) ; 29(6): 237, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38940053

RESUMO

BACKGROUND: Under fasting conditions, the pathway converting gluconeogenesis precursors into muscle glycogen becomes crucial due to reduced glycogen reserves. However, there is limited research on skeletal muscle gluconeogenesis and the impact of fasting on gluconeogenic gene expression. METHODS: Sheep fetal skeletal muscle cells cultured in vitro were used to study the effects of varying lactic acid concentrations (0 to 30 mM) and 2.5 mM glucose on the expression of gluconeogenesis-related genes after 6 h of fasting. The effects on mRNA and protein expression of key genes involved in skeletal muscle gluconeogenesis were measured by quantitative real time polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting at 48 h. RESULTS: Fasting increased the expression of key gluconeogenic genes, fructose-1,6-bisphosphatase 2 (FBP2), glucose-6-phosphatase 3 (G6PC3), pyruvate kinase M (PKM), monocarboxylate transporter1 (MCTS1), glucose transporter type 4 (GLUT4), pyruvate carboxylase (PC), and lactate dehydrogenase A (LDHA). The mRNA levels of FBP2, G6PC3, and MCTS1 significantly decreased with glucose addition. Additionally, 10 mM lactic acid significantly promoted the expression of FBP2, PC, MCTS1, LDHA, GLUT4, and PKM while inhibiting phosphoenolpyruvate carboxykinase (PEPCK) expression. At the protein level, 10 mM lactic acid significantly increased FBP2 and PKM protein expression. CONCLUSIONS: This study shows that fasting regulates key gluconeogenic gene expression in sheep skeletal muscle cells and highlights the role of lactic acid in inducing these gene expressions.


Assuntos
Regulação da Expressão Gênica , Gluconeogênese , Músculo Esquelético , Animais , Gluconeogênese/genética , Gluconeogênese/efeitos dos fármacos , Ovinos , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células Cultivadas , Ácido Láctico/metabolismo , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo
5.
Acta Physiol (Oxf) ; 240(7): e14156, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711362

RESUMO

BACKGROUND: Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI. METHODS: To characterize inactivity-related disturbances in spinal cord injury, we studied skeletal muscle cells isolated from SCI subjects. Cell cultures were established from biopsy samples from musculus vastus lateralis from subjects with SCI 1 and 12 months after the injury. The myoblasts were proliferated and differentiated into myotubes before fatty acid and glucose metabolism were assessed and gene and protein expressions were measured. RESULTS: The results showed that glucose uptake was increased, while oleic acid oxidation was reduced at 12 months compared to 1 month. mRNA expressions of PPARGC1α, the master regulator of mitochondrial biogenesis, and MYH2, a determinant of muscle fiber type, were significantly reduced at 12 months. Proteomic analysis showed reduced expression of several mitochondrial proteins. CONCLUSION: In conclusion, skeletal muscle cells isolated from immobilized subjects 12 months compared to 1 month after SCI showed reduced fatty acid metabolism and reduced expression of mitochondrial proteins, indicating an increased loss of oxidative capacity with time after injury.


Assuntos
Fibras Musculares Esqueléticas , Traumatismos da Medula Espinal , Fibras Musculares Esqueléticas/metabolismo , Traumatismos da Medula Espinal/metabolismo , Humanos , Células Cultivadas , Adulto , Masculino , Oxirredução , Feminino , Glucose/metabolismo , Fatores de Tempo , Ácidos Graxos/metabolismo , Metabolismo Energético , Pessoa de Meia-Idade
6.
Epigenetics ; 19(1): 2341578, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38615330

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.


Assuntos
Fosfatidilinositol 3-Quinases , RNA Longo não Codificante , Bovinos , Animais , Fosfatidilinositol 3-Quinases/genética , Metilação de DNA , Desenvolvimento Muscular/genética , Apoptose , Diferenciação Celular
7.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570133

RESUMO

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


Assuntos
Células 3T3-L1 , Adipócitos , Fibronectinas , Lipólise , Liraglutida , Proteína Desacopladora 1 , Animais , Fibronectinas/metabolismo , Fibronectinas/genética , Camundongos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Liraglutida/farmacologia , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos
8.
Biochimie ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636798

RESUMO

Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.

9.
Clin Nutr ; 43(6): 1250-1260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653008

RESUMO

BACKGROUND & AIM: Dysfunction of skeletal muscle satellite cells might impair muscle regeneration and prolong ICU-acquired weakness, a condition associated with disability and delayed death. This study aimed to elucidate the distinct metabolic effects of critical illness and ß-OH-butyrate on satellite cells isolated from these patients. METHODS: Satellite cells were extracted from vastus lateralis muscle biopsies of patients with ICU-acquired weakness (n = 10) and control group of healthy volunteers or patients undergoing elective hip replacement surgery (n = 10). The cells were exposed to standard culture media supplemented with ß-OH-butyrate to assess its influence on cell proliferation by ELISA, mitochondrial functions by extracellular flux analysis, electron transport chain complexes by high resolution respirometry, and ROS production by confocal microscopy. RESULTS: Critical illness led to a decline in maximal respiratory capacity, ATP production and glycolytic capacity and increased ROS production in ICU patients' cells. Notably, the function of complex II was impaired due to critical illness but restored to normal levels upon exposure to ß-OH-butyrate. While ß-OH-butyrate significantly reduced ROS production in both control and ICU groups, it had no significant impact on global mitochondrial functions. CONCLUSION: Critical illness induces measurable bioenergetic dysfunction of skeletal muscle satellite cells. ß-OH-butyrate displayed a potential in rectifying complex II dysfunction caused by critical illness and this warrants further exploration.


Assuntos
Ácido 3-Hidroxibutírico , Estado Terminal , Espécies Reativas de Oxigênio , Células Satélites de Músculo Esquelético , Humanos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Espécies Reativas de Oxigênio/metabolismo , Idoso , Ácido 3-Hidroxibutírico/farmacologia , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Adulto , Células Cultivadas , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Trifosfato de Adenosina/metabolismo , Debilidade Muscular
10.
Tissue Cell ; 88: 102369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555794

RESUMO

Reactive oxygen species (ROS) are normally produced in skeletal muscle. However, an imbalance in their regulatory systems can lead to their accumulation and ultimately to oxidative stress, which is one of the causes of the ageing process. Companion dogs share the same environment and lifestyle as humans, making them an excellent comparative model for the study of ageing, as well as they constitute a growing market for bioactive molecules that improve the quality of life of pets. The anti-ageing properties of oleuropein aglycone (OLE), a bioactive compound from olive leaves known for its antioxidant properties, were investigated in Myok9 canine muscle cell model. After incubation with OLE, senescence was induced in the canine cellular model by hydrogen peroxide (H2O2). Analyses were performed on cells after seven days of differentiation. The oxidative stress induced by H2O2 treatment on differentiated canine muscle cells led to a significant increase in ROS formation, which was reduced by OLE pretreatment alone or in combination with H2O2 by about 34% and 32%, respectively. Cells treated with H2O2 showed a 48% increase the area of senescent cells stained by SA-ß-gal, while OLE significantly reduced the coloured area by 52%. OLE, alone or in combination with H2O2, showed a significant antioxidant activity, possibly through autophagy activation, as indicated by the expression of autophagic markers.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Cães , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Linhagem Celular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Glucosídeos Iridoides/farmacologia , Iridoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Acetatos , Piranos
11.
Vaccine ; 42(6): 1259-1267, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281898

RESUMO

Coronavirus Disease 2019 (COVID-19) vaccines protect the public and limit viral spread. However, inactivated viral vaccines use the whole virus particle, which contains many non-capsid proteins that may cause adverse immune responses. A report has found that the ADP-ribose-binding domains of SARS-CoV-2 non-structural protein 3 (NSP3) and human poly(ADP-ribose) polymerase family member 14 (PARP14) share a significant degree of homology. Here, we further show that antibodies against 2019 novel SARS-like coronavirus (SARS-CoV-2) NSP3 can bind human PARP14 protein. However, when G159R + G162R mutations were introduced into NSP3, the antibody titer against human PARP14 decreased 14-fold. Antibodies against SARS-CoV-2 NSP3 can cross-react with human skeletal muscle cells and astrocytes, but not human embryonic kidney 293T cells. However, when G159R + G162R mutations were introduced into NSP3, the cross-reaction was largely inhibited. The results imply that COVID-19 patients with high antibody titers against NSP3 may have high risks of muscular and/or neurological complications. And the possible strategies to improve the safety of inactivated viral vaccines are also discussed.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/genética , Proteínas não Estruturais Virais/química , Vacinas contra COVID-19 , Anticorpos , Células Musculares/metabolismo , Neuroglia/metabolismo
12.
J Endocrinol Invest ; 47(4): 947-957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37819413

RESUMO

PURPOSE: Hypoparathyroidism is a rare endocrine disorder characterized by low or absent secretion of parathyroid hormone (PTH), which leads to decreased calcium and increased phosphorus levels in the serum. The diagnosis of hypoparathyroidism is based on the identification of the aforementioned biochemical abnormalities, which may be accompanied by clinical manifestations. Symptoms of hypoparathyroidism, primarily attributed to hypocalcemia, include muscle cramps or spasms, facial, leg, and foot pain, seizures, and tingling in the lips or fingers. The treatment of hypoparathyroidism depends on the severity of symptoms and the underlying pathology. Over the long term, calcium supplements, active vitamin D analogs, and thiazide diuretics may be needed. In fact, in patient cohorts in which optimal disease control still remains elusive, replacement therapy with recombinant parathyroid hormone analogs may be contemplated. Despite the predominantly neuromuscular symptoms of hypoparathyroidism, further effects of parathyroid hormone deficiency at the muscle cell level remain poorly understood. Thus, the aim of our study was to evaluate the effects of hypocalcemia in combination with hyperphosphatemia on muscle cells differentiation in vitro. METHODS: C2C12 cells, an in vitro model of muscle cells, were differentiated for 2 or 6 days in the presence of hypocalcemia (CaCl2 0.9 mmol/l) and moderate (PO4 1.4 mmol/l) or severe (PO4 2.9 mmol/l) hyperphosphatemia, or combinations of both conditions. Cell differentiation and expression of genes linked to muscle differentiation were evaluated. RESULTS: The combination of hypocalcemia with hyperphosphatemia induced a significant reduction (50%) in differentiation marker levels, such as MyoD (protein 1 for myoblast determination) and myogenin on the 1st day of differentiation, and MHC (myosin heavy chains) after 6 days of differentiation compared to control. Furthermore, this condition induced a statistically significant reduction of insulin-like growth factor-1 (IGF-1) mRNA expression and inhibition of IGF signaling and decrease in ERK phosphorylation compared to control cells. CONCLUSIONS: Our results showed that a condition of hypocalcemia with hyperphosphatemia induced an alteration of muscle cell differentiation in vitro. In particular, we observed the reduction of myogenic differentiation markers, IGF-1 signaling pathway, and ERK phosphorylation in differentiated skeletal myoblasts. These data suggest that this altered extracellular condition might contribute to the mechanisms causing persistence of symptoms in patients affected by hypoparathyroidism.


Assuntos
Hiperfosfatemia , Hipocalcemia , Hipoparatireoidismo , Humanos , Hipocalcemia/etiologia , Cálcio , Fator de Crescimento Insulin-Like I , Hormônio Paratireóideo , Hipoparatireoidismo/etiologia , Diferenciação Celular , Músculos/metabolismo
13.
Adv Healthc Mater ; 13(9): e2303485, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38150609

RESUMO

The integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment. PyC scaffolds are fabricated using micro-stereolithography, followed by pyrolysis. Furthermore, an innovative design strategy using revolute joints is employed to obtain novel, compliant structures of architected PyC. The pyrolysis process results in a pyrolysis temperature- and design-geometry-dependent shrinkage of up to 73%, enabling the geometrical features of microarchitected compatible with skeletal muscle cells. The stiffness of architected PyC varies with the pyrolysis temperature, with the highest value of 29.57 ± 0.78 GPa for 900 °C. The PyC scaffolds exhibit excellent biocompatibility and yield 3D cell colonization while culturing skeletal muscle C2C12 cells. They further induce good actin fiber alignment along the compliant PyC construction. However, no conclusive myogenic differentiation is observed here. Nevertheless, these results are highly promising for architected PyC scaffolds as multifunctional tissue implants and encourage more investigations in employing compliant architected PyC structures for high-performance tissue engineering applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Carbono , Células Musculares , Impressão Tridimensional
14.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068954

RESUMO

Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC. We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage.


Assuntos
Campos Eletromagnéticos , Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas , Movimento Celular , Estresse Oxidativo
15.
BMC Complement Med Ther ; 23(1): 412, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968654

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is frequently associated with dyslipidemia, which corresponds to the increase in the triglycerides and fatty acid concentrations in tissues, such as the skeletal muscle. Also, T2DM molecular mechanism involves increasing in reactive oxygen species (ROS) production and oxidative stress. The use of herbal medicines such as Uncaria tomentosa (Ut) has been proposed as an auxiliary treatment for patients with T2DM. In this study, it was evaluated the effect of Ut aqueous extract on cell viability and ROS production, in skeletal myoblasts from C2C12 lineage exposed to the free fatty acid palmitate (PA). METHODS: Cells were incubated with PA in different concentrations ranging from 10 to 1000 µM, for 24 or 48 h, for cytotoxicity assay. Cell death, DNA fragmentation and ROS production assays were performed in cell cultures incubated with PA for 24 h, in the pre (preventive condition) or post treatment (therapeutic condition) with 250 µg/ml Ut aqueous extract, for 2 or 6 h. Cell death was evaluated by MTT method or flow cytometry. ROS generation was measured by fluorescence spectroscopy using the DCFDA probe. RESULTS: Cell viability was reduced to approximately 44% after the incubation with PA for 24 h from the concentration of 500 µM. In the incubation of cells with 500 µM PA and Ut extract for 6 h, in both conditions (preventive or therapeutic), it was observed an increase of 27 and 70% in cell viability respectively, in comparison to the cultures incubated with only PA. Also, the incubation of cultures with 500 µM PA, for 24 h, increased 20-fold the ROS formation, while the treatment with Ut extract, for 6 h, both in the preventive or therapeutic conditions, promoted decrease of 21 and 55%, respectively. CONCLUSION: The Ut extract was efficient in promoting cell protection against PA lipotoxicity and ROS generation, potentially preventing oxidative stress in C2C12 skeletal muscle cells. Since T2DM molecular mechanism involves oxidative stress condition and it is often associated with dyslipidemia and fatty acid accumulation in muscle tissue, these results open perspectives for the use of Ut as an auxiliary strategy for T2DM management.


Assuntos
Unha-de-Gato , Diabetes Mellitus Tipo 2 , Dislipidemias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Palmitatos/toxicidade , Palmitatos/metabolismo , Unha-de-Gato/química , Unha-de-Gato/metabolismo , Músculo Esquelético , Água/química
16.
Acta Biomater ; 171: 327-335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37730079

RESUMO

Decellularized plant scaffolds have drawn attention as alternative tissue culture platforms due to their wide accessibility, biocompatibility, and diversity of innate microstructures. Particularly, in this work, monocot leaves with innate uniaxial micropatterned topography were utilized to promote cell alignment and elongation. The leaf scaffold was biofunctionalized with poly(PEGMEMA-r-VDM-r-GMA) copolymer that prevented non-specific protein adsorption and was modified with cell adhesive RGD peptide to enable cell adhesion and growth in serum-free media. The biofunctionalized leaf supported the adhesion, growth, and alignment of various human cells including embryonic stem cells (hESC) derived muscle cells. The hESC-derived myogenic progenitor cells cultured on the biofunctionalized leaf scaffold adopted a parallel orientation and were elongated along the leaf topography. These cells showed significant early myogenic differentiation and muscle-like bundled myotube formation. The aligned cells formed compact myotube assemblies and showed uniaxial muscle contraction under chemical stimulation, a critical requirement for developing functional skeletal muscle tissue. Polymer-functionalized plant leaf scaffolds offer a novel human cell culture platform and have potential in human tissue engineering applications that require parallel alignment of cells. STATEMENT OF SIGNIFICANCE: Plant scaffolds are plentiful sources in nature and present a prefabricated construct to present topographical cues to cells. Their feature width is ideal for human cell alignment and elongation, especially for muscle cells. However, plant scaffolds lack proteins that support mammalian cell culture. We have developed a polymer coated leaf scaffold that enables cell adhesion and growth in serum-free media. Human muscle cells cultured on the biofunctionalized leaf, aligned along the natural parallel micro-patterned leaf topography, and formed muscle-like bundled myotube assemblies. These assemblies showed uniaxial muscular contraction, a critical requirement for developing functional skeletal muscle tissue. The biodiversity of the plant materials offers a novel human cell culture platform with potential in human tissue engineering.


Assuntos
Músculo Esquelético , Alicerces Teciduais , Animais , Humanos , Alicerces Teciduais/química , Meios de Cultura Livres de Soro/metabolismo , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Engenharia Tecidual , Diferenciação Celular , Polímeros/química , Mamíferos
17.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37760170

RESUMO

Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.

18.
Front Pharmacol ; 14: 1205651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771728

RESUMO

Bitter taste receptors are involved not only in taste perception but in various physiological functions as their anatomical location is not restricted to the gustatory system. We previously demonstrated expression and activity of the subtype hTAS2R46 in human airway smooth muscle and broncho-epithelial cells, and here we show its expression and functionality in human skeletal muscle cells. Three different cellular models were used: micro-dissected human skeletal tissues, human myoblasts/myotubes and human skeletal muscle cells differentiated from urine stem cells of healthy donors. We used qPCR, immunohistochemistry and immunofluorescence analysis to evaluate gene and protein hTAS2R46 expression. In order to explore receptor activity, cells were incubated with the specific bitter ligands absinthin and 3ß-hydroxydihydrocostunolide, and calcium oscillation and relaxation were evaluated by calcium imaging and collagen assay, respectively, after a cholinergic stimulus. We show, for the first time, experimentally the presence and functionality of a type 2 bitter receptor in human skeletal muscle cells. Given the tendentially protective role of the bitter receptors starting from the oral cavity and following also in the other ectopic sites, and given its expression already at the myoblast level, we hypothesize that the bitter receptor can play an important role in the development, maintenance and in the protection of muscle tissue functions.

19.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445724

RESUMO

Irisin is a hormone-like myokine produced in abundance by skeletal muscle (SkM) in response to exercise. This myokine, identical in humans and mice, is involved in many signaling pathways related to metabolic processes. Despite much evidence on the regulators of irisin and the relevance of sphingolipids for SkM cell biology, the contribution of these latter bioactive lipids to the modulation of the myokine in SkM is missing. In particular, we have examined the potential involvement in irisin formation/release of sphingosine-1-phosphate (S1P), an interesting bioactive molecule able to act as an intracellular lipid mediator as well as a ligand of specific G-protein-coupled receptors (S1PR). We demonstrate the existence of distinct intracellular pools of S1P able to affect the expression of the irisin precursor FNDC. In addition, we establish the crucial role of the S1P/S1PR axis in irisin formation/release as well as the autocrine/paracrine effects of irisin on myoblast proliferation and myogenic differentiation. Altogether, these findings provide the first evidence for a functional crosstalk between the S1P/S1PR axis and irisin signaling, which may open new windows for potential therapeutic treatment of SkM dysfunctions.


Assuntos
Fibronectinas , Esfingosina , Camundongos , Humanos , Animais , Receptores de Esfingosina-1-Fosfato/metabolismo , Fibronectinas/metabolismo , Esfingosina/metabolismo , Músculo Esquelético/metabolismo , Lisofosfolipídeos/metabolismo
20.
Biochem Biophys Res Commun ; 672: 177-184, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354611

RESUMO

Extracellular vesicles (EVs) released into the blood during exercise mediate its whole-body health effects. The differentiation of EVs released by skeletal muscle cells in vivo from those released by other cells is challenging, therefore, it is unclear whether exercise increases the number of EVs secreted by skeletal muscle cells. In this study, we investigated whether exercise affects the quantity of EVs released from skeletal muscle cells using in vitro exercise models. C2C12 myotubes were cultured on a gel layer with 1 or 30 Hz electrical pulse stimulation (EPS) to induce contractions as an artificial simulating exercise. We found that tetanic contraction induced by 30 Hz EPS increased the number of secreted EVs. MicroRNA (miRNA)-seq analysis revealed that 30 Hz EPS altered the miRNA in the secreted EVs. Furthermore, expression analysis of genes related to the biogenesis and transport of EVs revealed that the expression of ALG-2 interacting protein X (Alix) was increased in response to 30 Hz EPS, and the peak value of intracellular Ca2+ in myotubes at 30 Hz EPS was higher than that at 1 Hz, indicating that the increase in intracellular Ca2+ concentration may be related to the increased secretion of EVs in response to 30 Hz EPS.


Assuntos
Vesículas Extracelulares , MicroRNAs , Fibras Musculares Esqueléticas/metabolismo , Linhagem Celular , Células Cultivadas , Estimulação Elétrica , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Contração Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...