Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Med Phys ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873942

RESUMO

BACKGROUND: The Alberta rotating biplanar linac-MR has a 0.5 T magnetic field parallel to the beamline. When developing a new linac-MR system, interactions of charged particles with the magnetic field necessitate careful consideration of skin dose and tissue interface effects. PURPOSE: To investigate the effect of the magnetic field on skin dose using measurements and Monte Carlo (MC) simulations. METHODS: We develop an MC model of our linac-MR, which we validate by comparison with ion chamber measurements in a water tank. Additionally, MC simulation results are compared with radiochromic film surface dose measurements on solid water. Variations in surface dose as a function of field size are measured using a parallel plate ion chamber in solid water. Using an anthropomorphic computational phantom with a 2 mm-thick skin layer, we investigate dose distributions resulting from three beam arrangements. Magnetic field on and off scenarios are considered for all measurements and simulations. RESULTS: For a 20 × 20 cm2 field size, D 0.2 c c ${D_{0.2cc}}$ (the minimum dose to the hottest contiguous 0.2 cc volume) for the top 2 mm of a simple water phantom is 72% when the magnetic field is on, compared to 34% with magnetic field off (values are normalized to the central axis dose maximum). Parallel plate ion chamber measurements demonstrate that the relative increase in surface dose due to the magnetic field decreases with increasing field size. For the anthropomorphic phantom, D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ (minimum skin dose in the hottest 1 × 1 × 1 cm3 cube) shows relative increases of 20%-28% when the magnetic field is on compared to when it is off. With magnetic field off, skin D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ is 71%, 56%, and 21% for medial-lateral tangents, anterior-posterior beams, and a five-field arrangement, respectively. For magnetic field on, the corresponding skin D ∼ 0.2 c c ${D_{ \sim 0.2cc}}$ values are 91%, 67%, and 25%. CONCLUSIONS: Using a validated MC model of our linac-MR, surface doses are calculated in various scenarios. MC-calculated skin dose varies depending on field sizes, obliquity, and the number of beams. In general, the parallel linac-MR arrangement results in skin dose enhancement due to charged particles spiraling along magnetic field lines, which impedes lateral motion away from the central axis. Nonetheless, considering the results presented herein, treatment plans can be designed to minimize skin dose by, for example, avoiding oblique beams and using a larger number of fields.

2.
J Appl Clin Med Phys ; : e14416, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812120

RESUMO

BACKGROUND AND PURPOSE: This study recommends clinical epidermal dose calculation methods based on in-vivo film measurements and registered skin dose distributions with the Eclipse (Varian Medical Systems) treatment planning system's Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) dose calculation algorithms. MATERIALS AND METHODS: Eighteen AAA V13.6 breast plans were recalculated using AXB (dose to medium) V13.5 with the same beam parameters and monitor units as in the original plans. These are compared against in-vivo Gafchromic film measurements from the lateral and inferior breast regions. Three skin structures in the treatment planning system are evaluated: a surface layer of voxels of the body contour, a 0.2 cm internal skin rind, and a 0.5 cm internal skin rind. RESULTS: Systematic shifts are demonstrated between the film measurements of skin dose and the Eclipse dose calculations. On average, the dose to the surface layer of pixels is underestimated by AAA by 8% and overestimated by AXB by 3%. A 5 mm skin rind extended into the body can increase epidermal dose calculations on average by 8% for AAA and 4% for AXB. CONCLUSION: This is the first study to register in-vivo skin dose distributions in the breast to the treatment planning system for comparison. Based on the results from this study it is recommended that epidermal dose is calculated with a 0.5 cm skin rind for the AAA algorithm and with rind thickness up to 0.2 cm for the AXB algorithm.

3.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759672

RESUMO

Objective.This study aimed to develop a new approach to predict radiation dermatitis (RD) by using the skin dose distribution in the actual area of RD occurrence to determine the predictive dose by grade.Approach.Twenty-three patients with head and neck cancer treated with volumetric modulated arc therapy were prospectively and retrospectively enrolled. A framework was developed to segment the RD occurrence area in skin photography by matching the skin surface image obtained using a 3D camera with the skin dose distribution. RD predictive doses were generated using the dose-toxicity surface histogram (DTH) calculated from the skin dose distribution within the segmented RD regions classified by severity. We then evaluated whether the developed DTH-based framework could visually predict RD grades and their occurrence areas and shapes according to severity.Main results.The developed framework successfully generated the DTH for three different RD severities: faint erythema (grade 1), dry desquamation (grade 2), and moist desquamation (grade 3); 48 DTHs were obtained from 23 patients: 23, 22, and 3 DTHs for grades 1, 2, and 3, respectively. The RD predictive doses determined using DTHs were 28.9 Gy, 38.1 Gy, and 54.3 Gy for grades 1, 2, and 3, respectively. The estimated RD occurrence area visualized by the DTH-based RD predictive dose showed acceptable agreement for all grades compared with the actual RD region in the patient. The predicted RD grade was accurate, except in two patients.Significance. The developed DTH-based framework can classify and determine RD predictive doses according to severity and visually predict the occurrence area and shape of different RD severities. The proposed approach can be used to predict the severity and shape of potential RD in patients and thus aid physicians in decision making.


Assuntos
Radiodermite , Humanos , Radiodermite/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Radioterapia de Intensidade Modulada/efeitos adversos , Neoplasias de Cabeça e Pescoço/radioterapia , Idoso , Dosagem Radioterapêutica , Índice de Gravidade de Doença , Doses de Radiação , Pele/efeitos da radiação , Pele/diagnóstico por imagem , Pele/patologia
4.
Technol Cancer Res Treat ; 23: 15330338241258566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803305

RESUMO

Purpose: Determining the impact of air gap errors on the skin dose in postoperative breast cancer radiotherapy under dynamic intensity-modulated radiation therapy (IMRT) techniques. Methods: This was a retrospective study that involved 55 patients who underwent postoperative radiotherapy following modified radical mastectomy. All plans employed tangential IMRT, with a prescription dose of 50 Gy, and bolus added solely to the chest wall. Simulated air gap depth errors of 2 mm, 3 mm, and 5 mm were introduced at depression or inframammary fold areas on the skin, resulting in the creation of air gaps named Air2, Air3, and Air5. Utilizing a multivariable GEE, the average dose (Dmean) of the local skin was determined to evaluate its relationship with air gap volume and the lateral beam's average angle (AALB). Additionally, an analysis was conducted on the impact of gaps on local skin. Results: When simulating an air gap depth error of 2 mm, the average Dmean in plan2 increased by 0.46 Gy compared to the initial plan (planO) (p < .001). For the 3-mm air gap, the average Dmean of plan3 was 0.51 Gy higher than that of planO (p < .001). When simulating the air gap as 5 mm, the average Dmean of plan5 significantly increased by 0.59 Gy compared to planO (p < .001). The TCP results showed a similar trend to those of Dmean. As the depth of air gap error increases, NTCP values also gradually rise. The linear regression of the multivariable GEE equation indicates that the volume of air gaps and the AALB are strong predictors of Dmean. Conclusion: With small irregular air gap errors simulated in 55 patients, the values of skin's Dmean, TCP, and NTCP increased. A multivariable linear GEE regression model may effectively explain the impact of air gap volume and AALB on the local skin.


Assuntos
Neoplasias da Mama , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Pele , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Pele/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade
5.
J Appl Clin Med Phys ; : e14370, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661097

RESUMO

PURPOSE: To evaluate the accuracy of different dosimeters and the treatment planning system (TPS) for assessing the skin dose due to the electron streaming effect (ESE) on a 1.5 T magnetic resonance (MR)-linac. METHOD: Skin dose due to the ESE on an MR-linac (Unity, Elekta) was investigated using a solid water phantom rotated 45° in the x-y plane (IEC61217) and centered at the isocenter. The phantom was irradiated with 1 × 1, 3 × 3, 5 × 5, 10 × 10, and 22 × 22 cm2 fields, gantry at 90°. Out-of-field doses (OFDs) deposited by electron streams generated at the entry and exit surface of the angled phantom were measured on the surface of solid water slabs placed ±20.0 cm from the isocenter along the x-direction. A high-resolution MOSkin™ detector served as a benchmark due to its shallower depth of measurement that matches the International Commission on Radiological Protection (ICRP) recommended depth for skin dose assessment (0.07 mm). MOSkin™ doses were compared to EBT3 film, OSLDs, a diamond detector, and the TPS where the experimental setup was modeled using two separate calculation parameters settings: a 0.1 cm dose grid with 0.2% statistical uncertainty (0.1 cm, 0.2%) and a 0.2 cm dose grid with 3.0% statistical uncertainty (0.2 cm, 3.0%). RESULTS: OSLD, film, the 0.1 cm, 0.2%, and 0.2 cm, 3.0% TPS ESE doses, underestimated skin doses measured by the MOSkin™ by as much as -75.3%, -7.0%, -24.7%, and -41.9%, respectively. Film results were most similar to MOSkin™ skin dose measurements. CONCLUSIONS: These results show that electron streams can deposit significant doses outside the primary field and that dosimeter choice and TPS calculation settings greatly influence the reported readings. Due to the steep dose gradient of the ESE, EBT3 film remains the choice for accurate skin dose assessment in this challenging environment.

6.
J Radiol Prot ; 44(2)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38507787

RESUMO

The manipulation of unsealed radiopharmaceuticals by healthcare workers can cause accidental personal contamination leading to occupational radiation skin dose. The UK Ionising Radiations Regulations 2017 require that potential skin doses arising from reasonably foreseeable accident scenarios are included in risk assessments. Workers must be designated as classified if these dose estimates exceed 150 mSv equivalent dose averaged over 1 cm2. Updates from the UK Health and Safety Executive recently prompted many in the UK to review the classification of workers in Nuclear Medicine. Skin dose from contamination cannot be measured, it must be estimated. Varskin+ is a code that is widely recommended for estimating skin dose. The subjective choices made by users when defining modelled scenarios in Varskin+ lead to significant variation in the calculated skin doses. At the time of writing there is no definitive calculation method and all calculations rely on theoretical models. NHS Health Boards in Scotland have adopted a standardised framework for performing skin dose estimates for risk assessments. The parametric sensitivity of Varskin+ inputs were examined and the available evidence was reviewed. Generic, reasonably forseeable, worst-case accident scenarios were decided upon for: direct skin contamination, glove contamination and needlestick injury. Standardised inputs and assumptions for each scenario were compiled in a protocol that has been adopted by the Scottish Health Boards. The protocol allows for differences in practice between departments, but standardises most inputs. While significant uncertainty remains in the estimated skin doses, this approach reduces variation and enables the comparison of estimated skin doses between departments. The framework facilitates continuous improvement as more evidence is gathered to refine the standardised assumptions. Task by task skin dose estimates were made for workers in Nuclear Medicine in Scotland and many workers were designated classified as a result.


Assuntos
Medicina Nuclear , Exposição Ocupacional , Humanos , Doses de Radiação , Radioisótopos , Pele , Compostos Radiofarmacêuticos
7.
Phys Eng Sci Med ; 47(2): 539-550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451465

RESUMO

In interventional radiology patient care can be improved by accurately assessing peak skin dose (PSD) from procedures, as it is the main predictor for tissue-reactions such as erythema. Historically, high skin dose procedures performed in radiology departments were almost exclusively planar fluoroscopy. However, with the increase in use of technologies involving repeated or adjacent computed tomography (CT) such as CT fluoroscopy and multi-modality rooms, the peak skin dose delivered by CT needs to be considered. In this paper, a model to estimate the PSD delivered to a patient undergoing CT has been developed to assist in determining the overall PSD. This model relates the PSD to the device-reported CT Dose Index (CTDIvol) by accounting for a variety of CT technique and patient factors. It includes a novel method for estimating dose contributions as a function of patient or phantom size, scanner geometry, and physical measurement of lateral and depth-based beam profiles. Physical measurements of PSD using radiochromic film on several phantoms have been used to determine needed model parameters. The resulting fitted model was found to agree with measured data to a standard deviation of 5.1% for the data used to fit the model, and 6.8% for measurements that were not used for fitting the model. Two methods for adapting the model for specific scanners are provided, one based on local PSD measurements with radiochromic film and another using CTDIvol measurements. The model, when suitably adapted, can accurately assess individual patients' CT PSD. This information can be integrated with radiation exposure data from other modalities, such as planar fluoroscopy, to predict the overall risk of tissue reactions, allowing for more tailored patient care.


Assuntos
Imagens de Fantasmas , Doses de Radiação , Pele , Tomografia Computadorizada por Raios X , Humanos , Pele/diagnóstico por imagem , Relação Dose-Resposta à Radiação
8.
Appl Radiat Isot ; 206: 111213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340533

RESUMO

A parallel-plate ionization chamber (PPC) with a nominal volume of 8.16 cm³ was developed based on theoretically simulated design parameters. Its purpose is to serve as a transfer standard for dosimetry in a beta radiation field. The entrance window of the PPC consists of an aluminized Mylar sheet with a thickness of 1.4 mg/cm2. The collecting and guard electrodes are created by applying a graphite coating on a Poly Methyl Methacrylate (PMMA) substrate with a thickness of 5 mm. The nominal sheet resistance of the graphite-coated PMMA substrate was measured using a four-probe technique and found to be approximately 800 Ω per square (Ω/□). Dosimetric characterization of the PPC was performed in the ISO 6980 reference beta radiation field, utilizing 90Sr-90Y and 85Kr beta radiation sources. The assessment included studies on short-term stability, linearity, current-to-voltage characteristics, stabilization time, and leakage current. The PPC was calibrated and established as a transfer standard using the 'Extrapolation Ionization Chamber,' recognized as an absolute standard for dose to tissue in 90Sr-90Y and 85Kr beta sources within the laboratory. The calibration coefficient of the PPC indicates an energy dependence of 0.6 % for 90Sr-90Y and 85Kr beta sources.

9.
J Radiol Prot ; 44(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194908

RESUMO

Cancer is a major health challenge and causes millions of deaths worldwide each year, and the incidence of lung cancer has increased. Augmented fluoroscopic bronchoscopy (AFB) procedures, which combine bronchoscopy and fluoroscopy, are crucial for diagnosing and treating lung cancer. However, fluoroscopy exposes patients and physicians to radiation, and therefore, the procedure requires careful monitoring. The National Council on Radiation Protection and Measurement and the International Commission on Radiological Protection have emphasised the importance of monitoring patient doses and ensuring occupational radiation safety. The present study evaluated radiation doses during AFB procedures, focusing on patient skin doses, the effective dose, and the personal dose equivalent to the eye lens for physicians. Skin doses were measured using thermoluminescent dosimeters. Peak skin doses were observed on the sides of the patients' arms, particularly on the side closest to the x-ray tube. Differences in the procedures and experience of physicians between the two hospitals involved in this study were investigated. AFB procedures were conducted more efficiently at Hospital A than at Hospital B, resulting in lower effective doses. Cone-beam computed tomography (CT) contributes significantly to patient effective doses because it has higher radiographic parameters. Despite their higher radiographic parameters, AFB procedures resulted in smaller skin doses than did image-guided interventional and CT fluoroscopy procedures. The effective doses differed between the two hospitals of this study due to workflow differences, with cone-beam CT playing a dominant role. No significant differences in left and right eyeHp(3) values were observed between the hospitals. For both hospitals, theHp(3) values were below the recommended limits, indicating that radiation monitoring may not be required for AFB procedures. This study provides insights into radiation exposure during AFB procedures, concerning radiation dosimetry, and safety for patients and physicians.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Médicos , Exposição à Radiação , Humanos , Broncoscopia , Fluoroscopia , Doses de Radiação , Neoplasias Pulmonares/diagnóstico por imagem , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise
10.
Phys Eng Sci Med ; 47(2): 443-451, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38224383

RESUMO

With the increasing use of flattening filter free (FFF) beams, it is important to evaluate the impact on the skin dose and target coverage of breast cancer treatments. This study aimed to compare skin doses of treatments using FFF and flattening filter (FF) beams for breast cancer. The study established treatment plans for left breast of an anthropomorphic phantom using Halcyon's 6-MV FFF beam and TrueBeam's 6-MV FF beam. Volumetric modulated arc therapy (VMAT) with varying numbers of arcs and intensity modulated radiation therapy (IMRT) were employed, and skin doses were measured at five points using Gafchromic EBT3 film. Each measurement was repeated three times, and averaged to reduce uncertainty. All plans were compared in terms of plan quality to ensure homogeneous target coverage. The study found that when using VMAT with two, four, and six arcs, in-field doses were 19%, 15%, and 6% higher, respectively, when using Halcyon compared to TrueBeam. Additionally, when using two arcs for VMAT, in-field doses were 10% and 15% higher compared to four and six arcs when using Halcyon. Finally, in-field dose from Halcyon using IMRT was about 1% higher than when using TrueBeam. Our research confirmed that when treating breast cancer with FFF beams, skin dose is higher than with traditional FF beams. Moreover, number of arcs used in VMAT treatment with FFF beams affects skin dose to the patient. To maintain a skin dose similar to that of FF beams when using Halcyon, it may be worth considering increasing the number of arcs.


Assuntos
Neoplasias da Mama , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Pele , Humanos , Pele/efeitos da radiação , Feminino , Neoplasias da Mama/radioterapia , Mama/efeitos da radiação , Mama/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Relação Dose-Resposta à Radiação , Doses de Radiação
11.
Eur J Radiol ; 170: 111248, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103493

RESUMO

PURPOSE: To assess doses variabilities in the same abdomen and chest RX exams for adults, to check the need for dose harmonization. To calculate Diagnostic Reference Levels (DRL), mandatory in the European Union, for the Algarve district in Portugal. Our results can be a valuable reference for the Portuguese official determination of DRLs, still in progress. METHOD: We considered 4,936 abdomen and 41,320 chest radiographs of adults, covering 7 health centres and 35 radiographers in Algarve. Entrance skin dose (ESD) was calculated for each radiograph and the corresponding uncertainty estimated. Mean doses per centre and per technician, and their uncertainties, were calculated to access dose variabilities. DRLs, set at the 3rd quartile of the total ESD distribution, were determined for a standard patient and for intervals of body mass index (BMI) to study their correlation with patient anatomical variations. Standard quartile errors were estimated. RESULTS: Our results suggest significant dispersion in applied ESDs among different centres and radiographers. Estimates of DRLs also show small fluctuations across years and an important dependence on BMI intervals. For a standard patient, they are 8.7 ± 0.1 (abdomen) and 0.44 ± 0.01 (chest), while the European DRLs are, respectively, 5.1 and 0.2 (all in mGy). CONCLUSIONS: Results suggest that there is room for dose optimization and harmonization with European DRLs, urging a national dose survey and the establishment of official national DRLs. Official DRLs in intervals of BMI would be quite beneficial, to avoid unnecessary dose exposures.


Assuntos
Abdome , Níveis de Referência de Diagnóstico , Adulto , Humanos , Portugal/epidemiologia , Doses de Radiação , Radiografia , Abdome/diagnóstico por imagem , Valores de Referência
12.
J Radiol Prot ; 43(4)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37827133

RESUMO

The manipulation of radiopharmaceuticals in nuclear medicine can result in the droplet contamination of operators resulting in the accumulation of a significant skin dose. Current methods to estimate this skin dose often utilise a 50µl cylindrical droplet model, which can lead to unrealistically high estimated skin doses for some radiopharmaceuticals. By conducting experiments to measure the volume of real droplets arising from simulating the manipulation of radiopharmaceuticals, this work found that 50µl is an overestimation of a realistic contamination droplet. For almost all radiopharmaceuticals considered in this work, incorporating a smaller droplet volume into skin dose simulations resulted in higher estimates of skin dose rate per unit of activity, which, when combined with appropriate activity concentrations and droplet volumes, resulted in lower skin doses for contamination droplet incidents. The results presented in this work challenge the 50µl contamination droplet volume and highlight the importance of having an accurate model when estimating the skin dose for contamination scenarios.


Assuntos
Medicina Nuclear , Compostos Radiofarmacêuticos , Doses de Radiação , Método de Monte Carlo , Pele
13.
Technol Cancer Res Treat ; 22: 15330338231197520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37774753

RESUMO

Purpose: The dose expansion methods as the skin flash and virtual bolus were used to solve intrafraction movement for breast planning due to breathing motion. We investigated the skin dose in each planning method by using optically stimulated luminescence on an in-house moving phantom for breast cancer treatment in tomotherapy. The impact of respiratory motion on skin dose between static and dynamic phantom's conditions was evaluated. Methods: A phantom was developed with movement controlled by the respirator for generating the respiratory waveforms to simulate respiratory motion. Five optically stimulated luminescence dosimeters were placed on the phantom surface to investigate the skin dose for the TomoDirect and TomoHelical under static and dynamic conditions. Eight treatment plans were generated with and without skin flash or virtual bolus by varying the thickness. The difference in skin dose between the two phantom conditions for each plan was explored. Results: All plans demonstrated a skin dose of more than 87% of the prescription dose under static conditions. However, the skin dose was reduced to 84.1% (TomoDirect) and 78.9% (TomoHelical) for dynamic conditions. The treatment plans without skin flash or virtual bolus showed significant skin dose differences under static and dynamic conditions by 4.83% (TomoDirect) and 9.43% (TomoHelical), whereas the skin flash with two leaves (TomoDirect 2L) or virtual bolus of at least 1.0 cm thickness (VB1.0) application compensated the skin dose in case of intrafraction movements by presenting a skin dose difference of less than 2% between the static and dynamic conditions. Conclusion: The skin dose was reduced under dynamic conditions due to breathing motion. The skin flash method with TomoDirect 2L or virtual bolus application with 1.0 cm thickness was useful for maintaining skin dose following the prescription by compensating for intrafraction movement due to respiratory motion for breast cancer in tomotherapy.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Feminino , Humanos , Neoplasias da Mama/radioterapia , Movimento (Física) , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
14.
Front Oncol ; 13: 1147775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519814

RESUMO

Purpose: This research aimed to analyze electron stream effect (ESE) during magnetic resonance image guided radiotherapy (MRgRT) for breast cancer patients on a MR-Linac (0.35 Tesla, 6MV), with a focus on the prevention of redundant radiation exposure. Materials and methods: RANDO phantom was used with and without the breast attachment in order to represent the patients after breast conserving surgery (BCS) and those received modified radical mastectomy (MRM). The prescription dose is 40.05 Gy in fifteen fractions for whole breast irradiation (WBI) or 20 Gy single shot for partial breast irradiation (PBI). Thirteen different portals of intensity-modulated radiation therapy were created. And then we evaluated dose distribution in five areas (on the skin of the tip of the nose, the chin, the neck, the abdomen and the thyroid.) outside of the irradiated field with and without 0.35 Tesla. In addition, we added a piece of bolus with the thickness of 1cm on the skin in order to compare the ESE difference with and without a bolus. Lastly, we loaded two patients' images for PBI comparison. Results: We found that 0.35 Tesla caused redundant doses to the skin of the chin and the neck as high as 9.79% and 5.59% of the prescription dose in the BCS RANDO model, respectively. For RANDO phantom without the breast accessory (simulating MRM), the maximal dose increase were 8.71% and 4.67% of the prescription dose to the skin of the chin and the neck, respectively. Furthermore, the bolus we added efficiently decrease the unnecessary dose caused by ESE up to 59.8%. Conclusion: We report the first physical investigation on successful avoidance of superfluous doses on a 0.35T MR-Linac for breast cancer patients. Future studies of MRgRT on the individual body shape and its association with ESE influence is warranted.

15.
J Cancer Res Ther ; 19(3): 650-656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470589

RESUMO

Introduction: Intraoperative electron radiation therapy (IOERT) is one of the most recently popular therapeutic methods for breast cancer. This study aimed to measure the skin dose near the applicator during IOERT of breast cancer patients, as well as, the incidence of acute toxicity after surgery. Materials and Methods: Thirty-six female patients participated in the current study with the prescribed dose of 21 and 12 Gy for IOERT as full and boost, respectively. The skin dose was investigated based on different applicator sizes, tumor bed thicknesses, and monitor units (MUs). The energy was chosen 8 MeV, and EBT3 film was used for the dosimetric process. In addition, the acute toxicity included healing time for the surgical wound, scaling of the skin, itching, necrosis, redness as well as seroma formation for 1 week and 1 month were recorded. The results were compared to those of 22 patients who underwent the surgery without IOERT. Results: The highest skin dose for the patients was obtained 2.09 Gy, which is lower than the threshold dose (6 Gy). Furthermore, the findings showed that the average skin dose was higher in bigger applicator sizes and MU and lower tumor bed thicknesses. The average of wound healing for the patient underwent IOERT and without the use of IOERT (as the control group) was 19.32 and 11.67 days, respectively. One month after surgery, the volume of aspirated seroma was higher in the patients who performed IOERT compared to the control group (250 ml vs. 200 ml). It is notable that there were not observed any redness, itching, scaling, and necrosis in both investigated groups. Conclusion: Owing to the results, the skin dose during IOERT was lower than the recommended level. The dose of IOERT as a full was higher than boost which can be related to the lower number of the patients in full method; however, there was a well-tolerated without severe acute complication, especially seroma formation and wound healing time in both full and boost methods.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Elétrons , Seroma/etiologia , Prurido , Necrose/etiologia , Dosagem Radioterapêutica , Radioterapia
16.
Z Med Phys ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150728

RESUMO

PURPOSE: To determine 10 MV IMRT and VMAT based protocols with a daily bolus targeting a skin dose of 45 Gy in order to replace the 6 MV tangential fields with a 5 mm thick bolus on alternate days method for post-mastectomy radiotherapy. METHOD: We measured the mean surface dose along the chest wall PTV as a function of different bolus thicknesses for sliding window IMRT and VMAT plans. We analyzed surface dose profiles and dose homogeneities and compared them to our standard 6 MV strategy. All measurements were performed on a thorax phantom with Gafchromic films while dosimetric plans were computed using the Acuros XB algorithm (Varian). RESULTS: We obtained the best compromise between measured surface dose (mean dose and homogeneity) and skin toxicity threshold obtained from the literature using a daily 3 mm thick bolus. Mean surface doses were 91.4 ±â€¯2.8% [85.7% - 95.4%] and 92.2 ±â€¯2.3% [85.6% - 95.2%] of the prescribed dose with IMRT and VMAT techniques, respectively. Our standard 6 MV alternate days 5 mm thick bolus leads to 89.0 ±â€¯3.7% [83.6% - 95.5%]. Mean dose differences between measured and TPS results were < 3.2% for depths as low as 2 mm depth. CONCLUSION: 10 MV IMRT-based protocols with a daily 3 mm thick bolus produce a surface dose comparable to the standard 6 MV 5 mm thick bolus on alternate days method but with an improved surface dose homogeneity. This allows for a better control of skin toxicity and target volume coverage.

17.
Asian Pac J Cancer Prev ; 24(4): 1239-1248, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116146

RESUMO

OBJECTIVE: The aim of this study is to makethe standard total body irradiation (TBI) protocol for Helical tomotherapy© (HT) and to analyze the optimal pitch and modulation factor (MF) with respect to dose homogeneity index (HI), target dose coverage, target overdose, beam on time (BOT) and mean lung dose. MATERIALS AND METHODS: Ten patients who underwent high-dose TBI were taken for this study. For each patient, 35 dose plans were created by different combination of pitch and MF. The optimal pitch and MF were deduced using scatter plot and regression methodology based on target coverage, HI, target volume receiving 103%(V103%), 105%(V105%) and 107% (V107%) of the prescription dose and BOT. Using these optimal pitch and MF, the final dose plan was made and the planning aim and achieved dose was compared using two tailed student's t-test. Radiochromic films and ionization chambers were used to measure the delivered dose using anthropomorphic phantom on various points for the head and pelvis regions to verify the skin flash margin and its effect on skin dose. RESULTS: The optimal pitch and MF value were 0.287 and 2.4 respectively. Based on optimal pitch and MF, the mean BOT was 1692 seconds with optimal inhomogeneity (7.4%). For target, D95 and D98 were 97.09% (range:94.7-99.6%, p=0.002) and 93.9% (range:91.5-94.4%,p=0.007) respectively, and mean D2 was within 107% with SD of ±1.22% (p=0.04). The mean of PTV receiving V103, V105 and V107 was 24.48% (range=7.7-36.6%, p=0.03), 5.76% (range=1.4-12.1%, SD=±3.3%), 1.93% (range=0.1-4.6%, p=0.008) respectively. Our measurements show that the flash margin did not increase the skin dose. CONCLUSION: In our study, the optimal combination of pitch value of 0.287 and MF value of 2.4 provided acceptable plans for all patients planned for TBI in HT. The flash margin can provide adequate coverage during patient position uncertainty without increasing the skin dose.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Irradiação Corporal Total , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radiometria/métodos
18.
Mol Clin Oncol ; 18(5): 43, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37035470

RESUMO

In the present study, it was aimed to investigate the optimized plan of radiotherapy with dose modulation in the pelvis to reduce the dose on the skin in patients having pelvic region radiotherapy. The series of images of 45 pelvic cancer patients were selected, intensity-modulated radiation therapy (IMRT) plan was made, the skin dose reduction was optimized, and evaluated verifying the plan verification. As a result, skin volume receiving dose ≥10, ≥20, ≥30, ≥40 and ≥50 Gy of the IMRT Skin plan were all less than those of the IMRT plan. Particularly, skin volumes receiving doses ≥20, ≥30, ≥40 and ≥50 Gy of the Skin IMRT plan were markedly lower than those of the IMRT plan, the reduction values were 8.76, 18.83, 46.84 and 100%, respectively. Furthermore, the Skin IMRT plan was no longer affected by the 50 Gy dose. In conclusion, the present study revealed that the skin's dose can be decreased with optimal plan processing; thus, this decrease of the skin's dose ensures the continuation of radiotherapy and improved life quality of the patient.

19.
Med Dosim ; 48(2): 113-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907800

RESUMO

To inform clinical practice for women receiving post-mastectomy radiotherapy (PMRT), this study demonstrates the dosimetric impact of removing daily bolus on skin and subcutaneous tissue. Two planning strategies were used: clinical field-based (n = 30) and volume-based planning (n = 10). The clinical field-based plans were created with bolus and recalculated without bolus for comparison. The volume-based plans were created with bolus to ensure a minimum target coverage of the chest wall PTV and recalculated without bolus. In each scenario, the dose to superficial structures, including skin (3 mm and 5 mm) and subcutaneous tissue (a 2 mm layer, 3 mm deep from surface) were reported. Additionally, the difference in the clinically evaluated dosimetry to skin and subcutaneous tissue in volume-based plans were recalculated using Acuros (AXB) and compared to the Anisotropic Analytical Algorithm (AAA) algorithm. For all treatment planning strategies, chest wall coverage (V90%) was maintained. As expected, superficial structures demonstrate significant loss in coverage. The largest difference observed in the most superficial 3 mm where V90% coverage is reduced from a mean (± standard deviation) of 95.1% (± 2.8) to 18.9% (± 5.6) for clinical field-based treatments with and without bolus, respectively. For volume-based planning, the subcutaneous tissue maintains a V90% of 90.5% (± 7.0) compared to the clinical field-based planning coverage of 84.4% (± 8.0). In all skin and subcutaneous tissue, the AAA algorithm underestimates the volume of the 90% isodose. Removing bolus results in minimal dosimetric differences in the chest wall and significantly lower skin dose while dose to the subcutaneous tissue is maintained. Unless the skin has disease involvement, the most superficial 3 mm is not considered part of the target volume. The continued use of the AAA algorithm is supported for the PMRT setting.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Humanos , Feminino , Dosagem Radioterapêutica , Tela Subcutânea , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Mastectomia , Radioterapia de Intensidade Modulada/métodos , Algoritmos
20.
Phys Eng Sci Med ; 46(2): 787-800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988905

RESUMO

The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin™, for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin™ entry surface doses, relative to Dmax, were (9.9 ± 0.2)%, (10.1 ± 0.3)%, (11.3 ± 0.6)%, (12.9 ± 1.0)%, and (13.4 ± 1.0)% for 1 × 1 cm2, 3 × 3 cm2, 5 × 5 cm2, 10 × 10 cm2, and 22 × 22 cm2 fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin™ measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 × 10 cm2 field size using the MOSkin™ and 17.9% for the 22 × 22 cm2 field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin™ detector for transverse MR-linac surface dosimetry.


Assuntos
Imageamento por Ressonância Magnética , Radiometria , Doses de Radiação , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...