RESUMO
INTRODUCTION: Clostridioides difficile biofilms are believed to protect the pathogen from antibiotics, in addition to potentially contributing to recurrent infections. METHODOLOGY: Biofilm production of 102 C. difficile isolates was determined using the crystal violet staining technique, and detachment assays were performed. The expression levels of cwp84 and slpA genes were evaluated by real-time PCR on selected isolates. RESULTS: More than 70% of isolates (75/102) were strong biofilm producers, and the highest detachment of biofilm was achieved with the proteinase K treatment (>90%). The overall mean expression of cwp84 was higher in RT027 than in RT001 (p=0.003); among strong biofilm-producing strains, the slpA expression was lower in RT027 than in RT001 (p<0.000). CONCLUSIONS: Proteins seem to have an important role in the biofilm's initial adherence and maturation. slpA and cwp84 are differentially expressed by C. difficile ribotype and biofilm production level.
Assuntos
Clostridioides difficile , Antibacterianos , Proteínas de Bactérias/genética , Biofilmes , Clostridioides , Clostridioides difficile/genética , Endopeptidase K , Violeta Genciana , MéxicoRESUMO
INTRODUCTION: Clostridioides difficile biofilms are believed to protect the pathogen from antibiotics, in addition to potentially contributing to recurrent infections. METHODOLOGY: Biofilm production of 102 C. difficile isolates was determined using the crystal violet staining technique, and detachment assays were performed. The expression levels of cwp84 and slpA genes were evaluated by real-time PCR on selected isolates. RESULTS: More than 70% of isolates (75/102) were strong biofilm producers, and the highest detachment of biofilm was achieved with the proteinase K treatment (>90%). The overall mean expression of cwp84 was higher in RT027 than in RT001 (p=0.003); among strong biofilm-producing strains, the slpA expression was lower in RT027 than in RT001 (p<0.000). CONCLUSIONS: Proteins seem to have an important role in the biofilm's initial adherence and maturation. slpA and cwp84 are differentially expressed by C. difficile ribotype and biofilm production level.
RESUMO
The surface-layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling subunits, non-covalently bound to the most outer cell wall envelope, which constitutes up to 20% of the total cell protein content. These attributes make S-layer proteins an excellent anchor for the development of microbial cell-surface display systems. In L. acidophilus, the S-layer is formed predominantly by the protein SlpA. We have previously shown that the C-terminal domain of SlpA is responsible for the cell wall anchorage on L. acidophilus ATCC 4356. In the present study, we evaluated the C-terminal domain of SlpA of L. acidophilus ATCC 4356 as a potential anchor domain to display functional proteins on the surface of non-genetically modified lactic acid bacteria (LAB). To this end, green fluorescent protein (GFP)-CTSlpA was firstly produced in Escherichia coli and the recombinant proteins were able to spontaneously bind to the cell wall of LAB in a binding assay. GFP was successfully displayed on the S-layer stripped surface of L. acidophilus. Both the binding stability and cell survival of L. acidophilus decorated with the recombinant protein were then studied in simulated gastrointestinal conditions. Furthermore, NaCl was tested as a safer alternative to LiCl for S-layer removal. This study presents the development of a protein delivery platform involving L. acidophilus, a microorganism generally regarded as safe, which utilizes the contiguous, non-covalently attached S-layer at the cell surface of the bacterium without introducing any genetic modification.