Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 337-347, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763029

RESUMO

Electroactive coatings for smart wearable textiles based on a furan bio-epoxy monomer (BOMF) crosslinked with isophorone diamine (IPD) and additivated with carbon nanotubes (CNTs) are reported herein. The effect of BOMF/IPD molar ratio on the curing reaction, as well as on the properties of the crosslinked resins was first assessed, and it was found that 1.5:1 BOMF/IPD molar ratio provided higher heat of reaction, glass transition temperature, and mechanical performance. The resin was then modified with CNT to prepare electrically conductive nanocomposite films, which exhibited conductivity values increased by eight orders of magnitude upon addition of 5 phr of CNTs. The epoxy/CNT nanocomposites were finally applied as coatings onto a cotton fabric to develop electrically conductive, hydrophobic and breathable textiles. Notably, the integration of CNTs imparted efficient and reversible electrothermal behavior to the cotton fabric, showcasing its potential application in smart and comfortable wearable electronic devices.

2.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612091

RESUMO

Given the challenges we face of an ageing infrastructure and insufficient maintenance, there is a critical shift towards preventive and predictive maintenance in construction. Self-sensing cement-based materials have drawn interest in this sector due to their high monitoring performance and durability compared to electronic sensors. While bulk applications have been well-discussed within this field, several challenges exist in their implementation for practical applications, such as poor workability and high manufacturing costs at larger volumes. This paper discusses the development of smart carbon-based cementitious coatings for strain monitoring of concrete substrates under flexural loading. This work presents a physical, electrical, and electromechanical investigation of sensing coatings with varying carbon black (CB) concentrations along with the geometric optimisation of the sensor design. The optimal strain-sensing performance, 55.5 ± 2.7, was obtained for coatings with 2 wt% of conductive filler, 3 mm thickness, and a gauge length of 60 mm. The results demonstrate the potential of applying smart coatings with carbon black addition for concrete strain monitoring.

3.
Small ; 19(30): e2302051, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37189212

RESUMO

While dynamic surface topographies are fabricated using liquid crystal (LC) polymers, switching between two distinct 3D topographies remains challenging. In this work, two switchable 3D surface topographies are created in LC elastomer (LCE) coatings using a two-step imprint lithography process. A first imprinting creates a surface microstructure on the LCE coating which is polymerized by a base catalyzed partial thiol-acrylate crosslinking step. The structured coating is then imprinted with a second mold to program the second topography, which is subsequently fully polymerized by light. The resulting LCE coatings display reversible surface switching between the two programmed 3D states. By varying the molds used during the two imprinting steps, diverse dynamic topographies can be achieved. For example, by using grating and rough molds sequentially, switchable surface topographies between a random scatterer and an ordered diffractor are achieved. Additionally, by using negative and positive triangular prism molds consecutively, dynamic surface topographies switching between two 3D structural states are achieved, driven by differential order/disorder transitions in the different areas of the film. It is anticipated that this platform of dynamic 3D topological switching can be used for many applications, including antifouling and biomedical surfaces, switchable friction elements, tunable optics, and beyond.

4.
Adv Mater ; 35(47): e2300101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36939547

RESUMO

Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.

5.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982545

RESUMO

To meet modern society's requirements for sustainability and environmental protection, innovative and smart surface coatings are continually being developed to improve or impart surface functional qualities and protective features. These needs regard numerous different sectors, such as cultural heritage, building, naval, automotive, environmental remediation and textiles. In this regard, researchers and nanotechnology are therefore mostly devoted to the development of new and smart nanostructured finishings and coatings featuring different implemented properties, such as anti-vegetative or antibacterial, hydrophobic, anti-stain, fire retardant, controlled release of drugs, detection of molecules and mechanical resistance. A variety of chemical synthesis techniques are usually employed to obtain novel nanostructured materials based on the use of an appropriate polymeric matrix in combination with either functional doping molecules or blended polymers, as well as multicomponent functional precursors and nanofillers. Further efforts are being made, as described in this review, to carry out green and eco-friendly synthetic protocols, such as sol-gel synthesis, starting from bio-based, natural or waste substances, in order to produce more sustainable (multi)functional hybrid or nanocomposite coatings, with a focus on their life cycle in accordance with the circular economy principles.


Assuntos
Nanoestruturas , Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Conservação dos Recursos Naturais
6.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630315

RESUMO

Legionella pneumophila contamination of water systems is a crucial issue for public health. The pathogen is able to persist in water as free-living planktonic bacteria or to grow within biofilms that adhere to and clog filters and pipes in a water system, reducing its lifespan and, in the case of hospital buildings, increasing the risk of nosocomial infections. The implementation of water management is considered to be the main prevention measure and can be achieved from the optimization of water system architecture, notably introducing new materials and strategies to contrast Legionella biofilm proliferation and so prolong the water system functionality. In this research, we propose a new smart surface against L. pneumophila biofilm formation. This is based on an innovative type of coating consisting of a sulfonated pentablock copolymer (s-PBC, commercially named Nexar™) deposited on top of a polypropylene (PP) coupon in a sandwich filter model. The covering of PP with s-PBC results in a more hydrophilic, acid, and negatively charged surface that induces microbial physiological inhibition thereby preventing adhesion and/or proliferation attempts of L. pneumophila prior to the biofilm formation. The antibiofilm property has been investigated by a Zone of Inhibition test and an in vitro biofilm formation analysis. Filtration tests have been performed as representative of possible applications for s-PBC coating. Results are reported and discussed.

7.
J. appl. oral sci ; 30: e20210643, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375708

RESUMO

Abstract Objective The aim of this study is to test, in vitro, the anti-cariogenic effect of experimental hybrid coatings, with nano clays of halloysite or bentonite, loaded with sodium fluoride or with a combination of sodium fluoride and stannous chloride, respectively. Methodology The varnish Fluor Protector (1,000 ppm of F-) was used as positive control and no treatment was the negative control. Enamel specimens (5 mm × 5 mm) were obtained from bovine teeth. The specimens (n=10) had their surfaces divided into two halves (5 mm × 2.5 mm each), in which one half received one of the treatments (Hybrid; Hybrid + NaF; Hybrid + NaF + SnCl2; Hybrid + NaF Loaded; Hybrid + NaF + SnCl2 Loaded). The specimens were submitted to a cariogenic challenge using a biofilm model (S. mutans UA159, for 5 days). Enamel surfaces both under and adjacent to the treated area were analyzed for mineral loss and lesion depth, by transverse microradiography. The pH of the medium was measured twice a day, and the fluoride release was analyzed. Additional specimens were submitted to confocal analysis. Results Data were statistically analyzed by two-way ANOVA followed by Tukey test (α=0.05). None of hybrid groups were able to reduce the lesion depth; the Hybrid + NaF group, however, was able to reduce mineral loss differing from the negative control (p=0.008). The groups showed no significant difference in the pH measurement and fluoride release. Confocal analysis confirmed that for all groups the biofilm growth was similar. Conclusion None of the hybrid groups reduced lesion depth, but the Hybrid + NaF group was able to promote protection against mineral loss.

8.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835852

RESUMO

Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.

9.
ACS Appl Mater Interfaces ; 13(43): 51459-51473, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34674522

RESUMO

Smart polymeric composite coatings demonstrating multilevel self-healing characteristics were developed and characterized. The pH-responsive smart carriers were synthesized by loading halloysite nanotubes (HNTs) with the benzotriazole corrosion inhibitor (BTA) using the vacuum cycling method, referred to as (BTA-loaded HNTs). Similarly, mechanically triggered melamine urea-formaldehyde microcapsules encapsulated with the boiled linseed oil-self-healing agent (LO) denoted as (MUFMCs) having an average size of a ∼120 µm diameter with a wall thickness of ∼1.84 µm were synthesized by the in situ polymerization technique. The newly designed double-layered smart polymeric composite coatings (DLPCs) were developed by mixing 3 wt % BTA-loaded HNTs with epoxy and applying it on the clean steel substrate to form a primer layer. After its complete curing, a top layer of epoxy containing 5 wt % of MUFMCs was deposited on it. For an exact comparison, single-layer polymeric composite coatings (SLPCs) containing 3 wt % BTA-loaded HNTs were also developed. The Fourier transform infrared radiation spectra of MUFMCs and BTA-loaded HNTs indicate the existence of all desired functional groups, confirming the presence of loaded chemical species such as LO and BTA into the smart carriers. Thermogravimetric analysis (TGA) indicates that ∼18% BTA is successfully loaded into HNTs. Quantitative UV-spectroscopic analysis indicates a pH-responsive release of BTA from BTA-loaded HNTs, which is time-dependent, attaining its maximum value of ∼ 90% in an acidic medium after 30 h. Electrochemical impedance spectroscopy analysis conducted in 3.5 wt % NaCl solution at room temperature for different immersion times reveals that SLPC exhibits the maximum charge-transfer resistance (Rct) of 55.47 GΩ cm2 after the 7th day of immersion, and then, a declining trend is observed, reaching 26.6 GΩ cm2 after the 9th day. However, in the case of DLPC, the Rct values show a continuous increment, attaining a maximum value of 82.11 GΩ cm2 after the 9th day of immersion. The improved performance of DLPC can be ascribed to the efficient triggering of the individual carriers in the isolated matrices, resulting in the release of LO and BTA to form individual protective films at the damaged area due to the oxidative polymerization process and triazoles' ability of passive film formation on the substrate, respectively. The tempting self-healing properties of DLPCs justify their decent role for long-term corrosion protection in many industrial applications.

10.
Materials (Basel) ; 14(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443056

RESUMO

Due to the possibility of bacterial infections occurring around peri-implant tissues, it is necessary to provide implant coatings that release antibacterial substances. The scientific goal of this paper was to produce by electrophoretic deposition (EPD) a smart, chitosan/Eudragit E 100/silver nanoparticles (chit/EE100/AgNPs) composite coating on the surface of titanium grade 2 using different deposition parameters, such as the content of AgNPs, applied voltage, and time of deposition. The morphology, surface roughness, thickness, chemical and phase composition, wettability, mechanical properties, electrochemical properties, and silver release rate at different pH were investigated. Using lower values of deposition parameters, coatings with more homogeneous morphology were obtained. The prepared coatings were sensitive to the reduced pH environment.

11.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066573

RESUMO

Herein, smart coatings based on photo-responsive polymer nanocapsules (NC) and deposited by laser evaporation are presented. These systems combine remotely controllable release and high encapsulation efficiency of nanoparticles with the easy handling and safety of macroscopic substrates. In particular, azobenzene-based NC loaded with active molecules (thyme oil and coumarin 6) were deposited through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on flat inorganic (KBr) and organic (polyethylene, PE) and 3D (acrylate-based micro-needle array) substrates. SEM analyses highlighted the versatility and performance of MAPLE in the fabrication of the designed smart coatings. DLS analyses, performed on both MAPLE- and drop casting-deposited NC, demonstrated the remarkable adhesion achieved with MAPLE. Finally, thyme oil and coumarin 6 release experiments further demonstrated that MAPLE is a promising technique for the realization of photo-responsive coatings on various substrates.

12.
ACS Appl Mater Interfaces ; 12(33): 37571-37584, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686396

RESUMO

Novel hybrid halloysite nanotubes (HHNTs) were developed and used as smart carriers for corrosion protection of steel. For this purpose, as-received halloysite nanotubes (HNTs) were loaded with a corrosion inhibitor, imidazole (IM), by vacuum encapsulation. In the next step, a layer by layer technique was employed to intercalate another inhibitor, dodecylamine (DDA), in the polyelectrolyte multilayers of polyethylenimine and sulfonated polyether ether ketone, leading to the formation of HHNTs. During this process, IM (5 wt %) was successfully encapsulated into the lumen of HNTs, while DDA (0.4 wt %) was effectively intercalated into the polyelectrolyte layers. Later, the HHNTs (3 wt %) were thoroughly dispersed into the epoxy matrix to develop smart hybrid self-healing polymeric coatings designated as hybrid coatings. For a precise evaluation, epoxy coatings containing as-received HNTs (3 wt %) without any loading denoted to as reference coatings and modified coatings containing HNTs loaded with IM-loaded HNTs (3 wt %) were also developed. A comparative analysis elucidates that the hybrid coatings demonstrate decent thermal stability, improved mechanical properties, and promising anticorrosion properties compared to the reference and modified coatings. The calculated corrosion inhibition efficiencies of the modified and hybrid coatings are 92 and 99.8%, respectively, when compared to the reference coatings. Noticeably, the superior anticorrosion properties of hybrid coatings can be attributed to the synergetic effect of both the inhibitors loaded into HHNTs and their efficient release in response to the localized pH change of the corrosive medium. Moreover, IM shows an active release in both acidic and basic media, which makes it suitable for the protection of steel at the early stages of damage, while DDA being efficiently released in the acidic medium may contribute to impeding the corrosion activity at the later stages of deterioration. The tempting properties of hybrid coatings demonstrate the beneficial role of the development of novel HHNTs and their use as smart carriers in the polymeric matrix for corrosion protection of steel.

13.
Materials (Basel) ; 13(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575481

RESUMO

Polymers with light-responsive groups have gained increased attention in the design of functional materials, as they allow changes in polymers properties, on demand, and simply by light exposure. For the synthesis of polymers and polymer networks with photolabile properties, the introduction o-nitrobenzyl alcohol (o-NB) derivatives as light-responsive chromophores has become a convenient and powerful route. Although o-NB groups were successfully exploited in numerous applications, this review pays particular attention to the studies in which they were included as photo-responsive moieties in thin polymer films and functional polymer coatings. The review is divided into four different sections according to the chemical structure of the polymer networks: (i) acrylate and methacrylate; (ii) thiol-click; (iii) epoxy; and (iv) polydimethylsiloxane. We conclude with an outlook of the present challenges and future perspectives of the versatile and unique features of o-NB chemistry.

14.
Polymers (Basel) ; 12(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183463

RESUMO

Protein adsorption on solid surfaces provides either beneficial or adverse outcomes, depending on the application. Therefore, the desire to predict, control, and regulate protein adsorption on different surfaces is a major concern in the field of biomaterials. The most widely used surface modification approach to prevent or limit protein adsorption is based on the use of poly (ethylene oxide) (PEO). On the other hand, the amount of protein adsorbed on poly(2-(dimethylamine)ethyl methacrylate) (PDMAEMA) coatings can be regulated by the pH and ionic strength of the medium. In this work, ultra-thin PEO/PDMAEMA coatings were designed from solutions with different ratios of PEO to PDMAEMA, and different molar masses of PEO, to reversibly adsorb and desorb human serum albumin (HSA), human fibrinogen (Fb), lysozyme (Lys), and avidine (Av), four very different proteins in terms of size, shape, and isoelectric points. X-ray photoelectron spectroscopy (XPS), quartz crystal microbalance (QCM), and atomic force microscopy (AFM) were used to characterize the mixed polymer coatings, revealing the presence of both polymers in the layers, in variable proportions according to the chosen parameters. Protein adsorption at pH 7.4 and salt concentrations of 10-3 M was monitored by QCM. Lys and Av did not adsorb on the homo-coatings and the mixed coatings. The amount of HSA and Fb adsorbed decreased with increasing the PEO ratio or its molar mass in a grafting solution. It was demonstrated that HSA and Fb, which were adsorbed at pH 7.4 and at an ionic strength of 10-3 M, can be fully desorbed by rinsing with a sodium chloride solution at pH 9.0 and ionic strength 0.15 M from the mixed PEO5/PDMAEMA coatings with PEO/PDMAEMA mass ratios of 70/30, and 50/50, respectively. The results demonstrate that mixed PEO/PDMAEMA coatings allow protein adsorption to be finely tuned on solid surfaces.

15.
ACS Appl Mater Interfaces ; 12(6): 7302-7309, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31968158

RESUMO

Vanadium dioxide (VO2)-based thermochromic coatings has attracted considerable attention in the application of smart windows as a result of their intriguing property of metal-insulator transition at moderate temperatures. However, the practical requirements of smart windows, i.e., the high luminous transmittance of Tlum > 60% and large solar modulating ability of ΔTsol > 10%, are competing to a large extent and hardly satisfied simultaneously. Here, we proposed a facile and universal method to prepare VO2 coatings for exceeding the criteria above using double-sided localized surface plasmon resonances (LSPRs), which are excited by the VO2 nanoparticles dispersed evenly on both surfaces of the fused silica substrate. With subtle engineering of the sol-gel and heat treatment processes, the morphology of as-prepared VO2 nanoparticles and corresponding LSPRs are controlled to achieve a high luminous transmittance (Tlum = 68.2%) and solar modulating ability (ΔTsol = 11.7%) simultaneously. Further simulation suggests that the double-sided LSPRs can collectively enhance the performance of VO2 smart coatings. Moreover, the double-sided VO2 nanoparticle coatings demonstrate stable performance with no more than 1% degradation of Tlum and ΔTsol after 1500 cycles. This study provides an alternative strategy to obtain high-quality VO2 (M) solar modulating coatings.

16.
Nanomicro Lett ; 11(1): 99, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34138048

RESUMO

The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications. Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing. Here, we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films. Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%. By means of experiments and model, we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle. Moreover, the change of drop size was utilized to measure the applied strain and liquid viscosity, enabling a strain sensitivity as high as 1068 µm2/%. The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays, biological assays, soft robots, and so on.

17.
ACS Appl Bio Mater ; 2(7): 2853-2861, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030819

RESUMO

In vitro cultured neuronal networks with defined connectivity are required to improve neuronal cell culture models. However, most protocols for their formation do not provide sufficient control of the direction and timing of neurite outgrowth with simultaneous access for analytical tools such as immunocytochemistry or patch-clamp recordings. Here, we present a proof-of-concept for the dynamic (i.e., time-gated) control of neurite outgrowth on a cell culture substrate based on 2D-micropatterned coatings of thermoresponsive polymers (TRP). The pattern consists of uncoated microstructures where neurons can readily adhere and neurites can extend along defined pathways. The surrounding regions are coated with TRP that does not facilitate cell or neurite growth at 33 °C. Increasing the ambient temperature to 37 °C renders the TRP coating cell adhesive and enables the crossing of gaps coated with TRP by neurites to contact neighboring cells. Here, we demonstrate the realization of this approach employing human neuronal SH-SY5Y cells and human induced neuronal cells. Our results suggest that this approach may help to establish a spatiotemporal control over the connectivity of multinodal neuronal networks.

18.
Ultrason Sonochem ; 49: 316-324, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30150026

RESUMO

A novel composite system composed of zirconia and double hydroxide layers (LDHs) was successfully fabricated on the plasma electrolysis (PE) coating. For this aim, the molybdate-loaded LDHs film grown on the PE film of aluminum alloy was modified additionally by zirconia nanoparticles via a facile dip-coating method. The MoO42- anions which were obtained by anion exchange process from the precursor CeMgAl-LDH film, led to decrease the distance between the flakes of LDHs film where a flower-like structure was successfully developed. Moreover, the inclusion of zirconia helped to decrease the size of pores present in the LDHs films. Accordingly, a superior smart protective film was obtained due to the possible synergetic effects between the MoO42- and Ce3+ ions released from LDHs film as well as the high chemical stability of zirconia. The LDHs film modified by zirconia can be regarded as a stable smart coating, meaning that it has the ability to control the release of corrosion inhibitors and providing an excellent long-term electrochemical performance as well.

19.
Adv Mater ; 30(10)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29349814

RESUMO

Vanadium dioxide/titanium nitride (VO2 /TiN) smart coatings are prepared by hybridizing thermochromic VO2 with plasmonic TiN nanoparticles. The VO2 /TiN coatings can control infrared (IR) radiation dynamically in accordance with the ambient temperature and illumination intensity. It blocks IR light under strong illumination at 28 °C but is IR transparent under weak irradiation conditions or at a low temperature of 20 °C. The VO2 /TiN coatings exhibit a good integral visible transmittance of up to 51% and excellent IR switching efficiency of 48% at 2000 nm. These unique advantages make VO2 /TiN promising as smart energy-saving windows.

20.
ACS Appl Mater Interfaces ; 9(31): 26029-26037, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28723095

RESUMO

In the pursuit of energy efficient materials, vanadium dioxide (VO2) based smart coatings have gained much attention in recent years. For smart window applications, VO2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr2O3/VO2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr2O3 layer not only provides a structural template for the growth of VO2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr2O3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO2 coating. According to optical measurements, the Cr2O3/VO2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔTsol = 12.2%) and a high luminous transmittance (Tlum,lt = 46.0%), which makes a good balance between ΔTsol and Tlum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr2O3/VO2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr2O3/VO2 coating glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...