Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895577

RESUMO

Burrow-dwelling animals such as the plateau pika (Ochotona curzoniae) often seek sturdy entrances for their burrows, which can reduce the need for frequent maintenance. The toughness of the ground surface is often reinforced by the interweaving of plant roots and often varies with the root characteristics. To better understand ground cover preferences when selecting burrow entrances by plateau pikas, we investigated the ratios of different ground covers at the rear of the entrances, as well as their coverage and underlying soil compaction in an undegraded alpine meadow on the Qinghai-Xizang Plateau. The results indicated a clear preference hierarchy of sedges > forbs > grass > bare soil. This distribution was aligned with the soil compaction hierarchy of the topsoil layer beneath each cover type. The sedge coverage was significantly negatively correlated with burrow density, suggesting that plateau pikas opt for sturdy entrances with a natural inclination toward energy conservation. However, there is consensus that the population density of plateau pikas often reaches its maximum on almost nonvegetated "black soil beaches." We hypothesized that the survival benefits brought about by vegetation degradation would be higher than the maintenance costs of burrow entrances.

2.
Life (Basel) ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929694

RESUMO

There is limited information regarding the influence of mangrove growth on the morphological evolution of intertidal mudflats. In this study, Tan Phu Dong district, Tien Giang Province, Vietnam, was selected for investigating how mangrove growth influenced the morphological evolution of an intertidal mudflat. The authors analyzed a series of satellite images (from 1995 and 2022), calculated the enhanced vegetation index (EVI), and documented field visits and observations in pursuit of the objective of the study. The findings revealed that fine-grained sediment accumulated as unconsolidated substratum (US) in the first step of the morphological evolution of the intertidal mudflat, with sediment accumulation of 910 ha in 1995. The US provided favorable conditions for mangroves to grow, while mangrove growth helped compact the US into a compact substratum (CS) in addition to promoting continuous sediment accumulation, increased the vegetation cover of the island, and elevated the substrate density of the remaining areas. As a result, the US and CS decreased steadily between 1995 and 2020, from 910 ha in 1995 to 401 ha in 2020 and from 433 ha in 2005 to 111 ha in 2020, respectively. Meanwhile, the low-vegetation area (LVA), medium-vegetation area (MVA), and high vegetation area (HVA) gradually increased between 1995 and 2015, from 0 ha in 1995 to 104 ha in 2015, from 0 ha in 1995 to 96 ha in 2015, and from 0 ha in 1995 to 114 ha in 2015, respectively. However, the LVA decreased slightly between 2015 and 2020 due to significant sand accumulation, which significantly killed the mangrove trees. In contrast, the MVA and HVA steadily increased between 2015 and 2020, from 96 ha in 2015 to 116 ha in 2020 and from 114 ha in 2015 to 221 ha in 2020, respectively. In 2022, there was a steady increase in HVA (298 ha in 2022), although the date of the 2022 satellite retrieval was 28 January 2022. This study recommends that the technical design of the existing coastal protection works should be revised or adapted to take account of sediment accumulation as the first step in the morphological evolution of the examined intertidal mudflat, rather than mangrove growth.

3.
Plant Cell Environ ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623641

RESUMO

Pores and old root-channels are preferentially used by roots to allow them to penetrate hard soils. However, there are few studies that have accounted for the effects of pore-rhizosheath on root growth. In this study, we developed an approach by adding the synthetic root exudates using a porous stainless tube with 0.1-mm micropores through a peristaltic pump to reproduce the rhizosheath around the artificial pore, and investigated the effects of pores with and without rhizosheaths on maize root growth in a dense soil. The results indicated that the artificial rhizosheath was about 2.69 mm wide in the region surrounding the pores. The rhizosheath had a higher content of organic carbon, total nitrogen, and abundance of Actinobacteria than that of the bulk soil. Compared with the artificial macropores, the artificial root-pores with a rhizosheath increased the opportunities for root utilisation of the pores space, promoting steeper and deeper root growth. It is concluded that the pore-rhizosheath has a significant impact on root architecture by enhancing root distribution in macropores.

4.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611482

RESUMO

The perennial legume alfalfa (Medicago sativa L.) is of high value in providing cheap and high-nutritive forages. Due to a lack of tillage during the production period, the soil in which alfalfa grows prunes to become compacted through highly mechanized agriculture. Compaction deteriorates the soil's structure and fertility, leading to compromised alfalfa development and productivity. However, the way alfalfa responses to different levels of soil compaction and the underlying molecular mechanism are still unclear. In this study, we systematically evaluated the effects of gradient compacted soil on the growth of different cultivars of alfalfa, especially the root system architecture, phytohormones and internal gene expression profile alterations. The results showed that alfalfa growth was facilitated by moderate soil compaction, but drastically inhibited when compaction was intensified. The inhibition effect was universal across different cultivars, but with different severity. Transcriptomic and physiological studies revealed that the expression of a set of genes regulating the biosynthesis of lignin and flavonoids was significantly repressed in compaction treated alfalfa roots, and this might have resulted in a modified secondary cell wall and xylem vessel formation. Phytohormones, like ABA, are supposed to play pivotal roles in the regulation of the overall responses. These findings provide directions for the improvement of field soil management in alfalfa production and the molecular breeding of alfalfa germplasm with better soil compaction resilience.

5.
Heliyon ; 10(3): e25140, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318017

RESUMO

Farm soil compaction is influenced by animal loads and Agricultural machinery. In this paper the influence of soil physical and chemical characteristics on soil compaction at Awash Melkasa farm field. Compaction of soil test was taken at five different depths which are; 5 cm, 10 cm, 15 cm, 20 cm, and 25 cm with the help of a hydraulically operated cone penetrometer. Those five depths were used in 15 sample points (point A to point O) to take 75 soil compaction data using hydraulic powered a Spot-on digital soil cone penetrometer from an area of 0.6 ha farmland. A correlation of 15 sample points (A to O) of soil compaction in the field was performed. For soil physical and chemical tests in laboratory soil samples were taken from selected farm fields at 3 different ranges of depths (0-10, 10-20, and 20-30 cm). Averagely the highest and the lowest compaction values are 3947.32 Kpa and 2667.72 Kpa respectively. The soil texture laboratory test indicates the soil was a clay loam with 36.74 % sand soil, 30.31 % clay soil, and 33 % silt soil. The highest and the lowest percentages of moisture value were 13.97 and 16.04 respectively. Total organic carbon, organic matter, and total nitrogen increase as the soil compaction increases and vice versa. The output of this study adds value to the field of agricultural mechanization since the weight of machinery is high, knowing the soil's physical and chemical properties and investigating the relation with the soil compaction rate is necessary.

6.
Sci Total Environ ; 922: 171158, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38387558

RESUMO

Soil porosity and its reciprocal bulk density are important environmental state variables that enable modelers to represent hydraulic function and carbon storage. Biotic effects and their 'dynamic' influence on such state variables remain largely unknown for larger scales and may result in important, yet poorly quantified environmental feedbacks. Existing representation of hydraulic function is often invariant to environmental change and may be poor in some systems, particularly non-arable soils. Here we assess predictors of total porosity across two comprehensive national topsoil (0-15 cm) data sets, covering the full range of soil organic matter (SOM) and habitats (n = 1385 & n = 2570), using generalized additive mixed models and machine learning. Novel aspects of this work include the testing of metrics on aggregate size and livestock density alongside a range of different particle size distribution metrics. We demonstrate that porosity trends in Great Britain are dominated by biotic metrics, soil carbon and land use. Incorporating these variables into porosity prediction improves performance, paving the way for new dynamic calculation of porosity using surrogate measures with remote sensing, which may help improve prediction in data sparse regions of the world. Moreover, dynamic calculation of porosity could support representation of feedbacks in environmental and Earth System Models. Representing the hydrological feedbacks from changes in structural porosity also requires data and models at appropriate spatial scales to capture conditions leading to near-saturated soil conditions. Classification. Environmental Sciences.

7.
J Environ Manage ; 351: 119801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091732

RESUMO

Growing demands for on-trail activities have aroused challenges of how to balance outdoor recreation and protected area conservation. Unfortunately, most previous studies have focused on only one or two degradation features, so inconsistent views (i.e., no consensus on impacts induced by hiking and mountain biking) were obtained. This study investigated a mountain biking trail, a hiking trail, and an unmanaged trail in a Hong Kong country park for 1.5 years. Five dimensions of trail degradation, namely Trail Morphometry, Soil Texture, Soil Compaction, Erosion Feature, and Recovery Feature, were identified by Explanatory Factor Analysis. Significant correlations were found between hiking and all five dimensions, while mountain biking was significantly associated only with Trail Morphometry, Erosion Feature, and Recovery Feature. Trail grade and landform grade significantly affected Trail Morphometry, Soil Texture, and Erosion Feature, but trail slope alignment was a null predictor. Hiking caused more severe trail degradation than mountain biking, even after controlling for topography. These findings supplement the existing literature by providing a comprehensive understanding of the multitude of adverse impacts caused by hiking and mountain biking. This study provides a valuable reference for sustainable trail management in protected areas that receive both hikers and mountain bikers.


Assuntos
Conservação dos Recursos Naturais , Recreação , Solo , Ciclismo , Análise Fatorial
8.
J Exp Bot ; 75(2): 578-583, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950742

RESUMO

Compaction disrupts soil structure, reducing root growth, nutrient and water uptake, gas exchange, and microbial growth. Root growth inhibition by soil compaction was originally thought to reflect the impact of mechanical impedance and reduced water availability. However, using a novel gas diffusion-based mechanism employing the hormone ethylene, recent research has revealed that plant roots sense soil compaction. Non-compacted soil features highly interconnected pore spaces that facilitate diffusion of gases such as ethylene which are released by root tips. In contrast, soil compaction stress disrupts the pore network, causing ethylene to accumulate around root tips and trigger growth arrest. Genetically disrupting ethylene signalling causes roots to become much less sensitive to compaction stress. Such new understanding about the molecular sensing mechanism and emerging root anatomical traits provides novel opportunities to develop crops resistant to soil compaction by targeting key genes and their signalling pathways. This expert view discusses these recent advances and the molecular mechanisms associated with root-soil compaction responses.


Assuntos
Raízes de Plantas , Solo , Raízes de Plantas/metabolismo , Solo/química , Meristema , Etilenos/metabolismo , Água/metabolismo , Gases/metabolismo
9.
Planta ; 259(1): 17, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078944

RESUMO

MAIN CONCLUSION: Soil compaction reduces root exploration in chickpea. We found genes related to root architectural traits in chickpea that can help understand and improve root growth in compacted soils. Soil compaction is a major concern for modern agriculture, as it constrains plant root growth, leading to reduced resource acquisition. Phenotypic variation for root system architecture (RSA) traits in compacted soils is present for various crops; however, studies on genetic associations with these traits are lacking. Therefore, we investigated RSA traits in different soil compaction levels and identified significant genomic associations in chickpea. We conducted a Genome-Wide Association Study (GWAS) of 210 chickpea accessions for 13 RSA traits under three bulk densities (BD) (1.1BD, 1.6BD, and 1.8BD). Soil compaction decreases root exploration by reducing 12 RSA traits, except average diameter (AD). Further, AD is negatively correlated with lateral root traits, and this correlation increases in 1.8BD, suggesting the negative effect of AD on lateral root traits. Interestingly, we identified probable candidate genes such as GLP3 and LRX for lateral root traits and CRF1-like for total length (TL) in 1.6BD soil. In heavy soil compaction, DGK2 is associated with lateral root traits. Reduction in laterals during soil compaction is mainly due to delayed seedling establishment, thus making lateral root number a critical trait. Interestingly, we also found a higher contribution of the  GxE component of the number of root tips (Tips) to the total variation than the other lateral traits. We also identified a pectin esterase, PPE8B, associated with Tips in high soil compaction and a significantly associated SNP with the relative change in Tips depicting a trade-off between Tips and AD. Identified genes and loci would help develop soil-compaction-resistant chickpea varieties.


Assuntos
Cicer , Solo , Estudo de Associação Genômica Ampla , Cicer/genética , Raízes de Plantas/genética , Genômica
10.
J Environ Manage ; 345: 118835, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659361

RESUMO

Grazing livestock plays an important role in the context of food security, agricultural sustainability and climate change. Understanding how livestock move and interact with their environment may offer new insights on how grazing practices impact soil and ecosystem functions at spatial and temporal scales where knowledge is currently limited. We characterized daily and seasonal grazing patterns using Global Positioning System (GPS) data from two grazing strategies: conventionally- and rotationally-grazed pastures. Livestock movement was consistent with the so-called Lévy walks, and could thus be simulated with Lévy-walk based probability density functions. Our newly introduced "Moovement model" links grazing patterns with soil structure and related functions by coupling animal movement and soil structure dynamics models, allowing to predict spatially-explicit changes in key soil properties. Predicted post-grazing management-specific bulk densities were consistent with field measurements and confirmed that rotational grazing produced similar disturbance as conventional grazing despite hosting higher stock densities. Harnessing information on livestock movement and its impacts in soil structure within a modelling framework can help testing and optimizing grazing strategies for ameliorating their impact on soil health and environment.


Assuntos
Ecossistema , Solo , Animais , Gado , Agricultura , Mudança Climática
11.
Heliyon ; 9(8): e18984, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609409

RESUMO

Soil compaction by tires of agricultural machinery severely affects field crop growth. In this study, nonpneumatic tires (NPT) were used in agricultural machinery. Experimental, empirical, and numerical approaches have been used to study the effects of NPTs on soil compaction. Random pneumatic tires and original- and reduced-spoke NPTs were experimentally examined. The results indicate that the pneumatic tire and original TWEEL increased the soil sinkage and bulk density, respectively, as compared to the reduced spoke TWEEL. This confirms that NPT have the potential to be developed for agricultural applications. Relative equations for the contact pressure and soil sinkage were derived from the experimental results. The combination of the empirical model and FEM was validated and found to be in good agreement with the experimental results of the NPT-soil compression test. The numbers and thicknesses of the NPT spoke were then varied to investigate the NPT-soil compression effects. Eventually, the soil sinkage equation was developed as a function of spoke number and thickness. Moreover, it was used to predict soil bulk density. The effects of NPT on soil compaction can be evaluated using the proposed mathematical models.

12.
Front Plant Sci ; 14: 1002943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409307

RESUMO

Soil compaction due to field trafficking involves a complex interplay of machine-soil properties. In contrast to previous studies simulating worst field scenarios, this two-year field experiment investigated the effects of traffic-induced compaction involving moderate machine operational specifications (axle load, 3.16 Mg; mean ground contact pressure, 77.5 kPa) and lower field moisture contents (< field capacity) at the time of trafficking on soil physical properties, spatial root distribution, and corresponding maize growth and grain yield in sandy loam soil. Two compaction levels, i.e. two (C2) and six (C6) vehicle passes, were compared with a control (C0). Two maize (Zea mays L.) cultivars, i.e. ZD-958 and XY-335, were used. Results showed topsoil (< 30 cm) compaction with increases in bulk density (BD) and penetration resistance (PR) up to 16.42% and 127.76%, respectively, in the 10-20 cm soil layer in 2017. Field trafficking resulted in a shallower and stronger hardpan. An increased number of traffic passes (C6) aggravated the effects, and the carryover effect was found. Higher BD and PR impaired root proliferation in deeper layers of topsoil (10-30 cm) and promoted shallow horizontal root distribution. However, XY-335, compared with ZD-958, showed deeper root distribution under compaction. Compaction-induced reductions in root biomass and length densities were respectively up to 41% and 36% in 10-20 cm and 58% and 42% in the 20-30 cm soil layer. Consequent yield penalties (7.6%-15.5%) underscore the detriments of compaction, even only in topsoil. In crux, despite their low magnitude, the negative impacts of field trafficking under moderate machine-field conditions after just two years of annual trafficking foreground the challenge of soil compaction.

13.
Front Plant Sci ; 14: 1095790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342146

RESUMO

Since soil compaction of potato fields delays shoot emergence and decreases total yield, the causes and effects of this compaction need to be better understood. In a controlled environment trial with young (before tuber initiation) plants, roots of cv. Inca Bella (a phureja group cultivar) were more sensitive to increased soil resistance (3.0 MPa) than cv. Maris Piper (a tuberosum group cultivar). Such variation was hypothesized to cause yield differences in two field trials, in which compaction treatments were applied after tuber planting. Trial 1 increased initial soil resistance from 0.15 MPa to 0.3 MPa. By the end of the growing season, soil resistance increased three-fold in the upper 20 cm of the soil, but resistance in Maris Piper plots was up to twice that of Inca Bella plots. Maris Piper yield was 60% higher than Inca Bella and independent of soil compaction treatment, whilst compacted soil reduced Inca Bella yield by 30%. Trial 2 increased initial soil resistance from 0.2 MPa to 1.0 MPa. Soil resistance in the compacted treatments increased to similar, cultivar-dependent resistances as trial 1. Maris Piper yield was 12% higher than Inca Bella, but cultivar variation in yield response to compacted soil did not occur. Soil water content, root growth and tuber growth were measured to determine whether these factors could explain cultivar differences in soil resistance. Soil water content was similar between cultivars, thus did not cause soil resistance to vary between cultivars. Root density was insufficient to cause observed increases soil resistance. Finally, differences in soil resistance between cultivars became significant during tuber initiation, and became more pronounced until harvest. Increased tuber biomass volume (yield) of Maris Piper increased estimated mean soil density (and thus soil resistance) more than Inca Bella. This increase seems to depend on initial compaction, as soil resistance did not significantly increase in uncompacted soil. While increased soil resistance caused cultivar-dependent restriction of root density of young plants that was consistent with cultivar variation in yield, tuber growth likely caused cultivar-dependent increases in soil resistance in field trials, which may have further limited Inca Bella yield.

14.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772346

RESUMO

Soil is the habitat for soil organisms and associated soil physical and chemical processes. The subsoil is a large reserve of water and nutrients. Soil and subsoil are thus significantly involved in the yield capacity of a site and its resilience in the case of unfavorable weather conditions. Subsoil can also retain water in drought phases and stores carbon. In times of climate change and scarcity of resources, many scientific activities involve subsoil and require sensors to assess subsoil conditions and properties. An electrically driven penetrometer with an integrated soil water content sensor could be an appropriate tool for such applications; however, such a subsoil measurement tool does not exist. One major reason for this is that, when penetrating compacted subsoil, high penetration forces (including friction) act on the penetrating thin rod (diameter 1 cm). The development of a tractor-mounted subsoil penetrometer for depths up to 2 m is described in this study. An ASABE standard cone is implemented, which can access heavy compacted layers. The rod, which includes wires for embedding an FDI moisture sensor in the cone tip, is covered by a protection tube. The penetration resistance measurement can be performed without being influenced by shaft friction. The rod, along with the sensor, is implemented in a tower that can be shifted laterally and can take probes in a single line without moving the tractor. To confirm the quality of the developed subsoil penetrometer, a suitable evaluation method is presented. Typical arable soil (loamy silt) was filled in boxes and compacted homogeneously using a hydraulic stamp so that different setups of the penetrometer could be compared and evaluated. The evaluation concludes that the distance between the free cone tip and the protection shaft should be at least 10 cm to measure the penetration resistance of soil without being influenced by the protection tube. Furthermore, the developed penetrometer has sufficient stability and precision for accessing subsoil. In field trials, the subsoil penetrometer was compared with a standard penetrometer and has proved its suitability.

15.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679683

RESUMO

The economic and environmental sustainability of extensive livestock production systems requires the optimisation of soil management, pasture production and animal grazing. Soil compaction is generally viewed as an indicator of soil degradation processes and a determinant factor in crop productivity. In the Montado silvopastoral ecosystem, characteristic of the Iberian Peninsula, animal trampling is mentioned as a variable to consider in soil compaction. This study aims: (i) to assess the spatial variation in the compaction profile of the 0-0.30 m deep soil layer over several years; (ii) to evaluate the effect of animal trampling on soil compaction; and (iii) to demonstrate the utility of combining various technological tools for sensing and mapping indicators of soil characteristics (Cone Index, CI; and apparent electrical conductivity, ECa), of pastures' vegetative vigour (Normalised Difference Vegetation Index, NDVI) and of cows' grazing zones (Global Positioning Systems, GPS collars). The significant correlation between CI, soil moisture content (SMC) and ECa and between ECa and soil clay content shows the potential of using these expedient tools provided by the development of Precision Agriculture. The compaction resulting from animal trampling was significant outside the tree canopy (OTC) in the four evaluated dates and in the three soil layers considered (0-0.10 m; 0.10-0.20 m; 0.20-0.30 m). However, under the tree canopy (UTC), the effect of animal trampling was significant only in the 0-0.10 m soil layer and in three of the four dates, with a tendency for a greater CI at greater depths (0.10-0.30 m), in zones with a lower animal presence. These results suggest that this could be a dynamic process, with recovery cycles in the face of grazing management, seasonal fluctuations in soil moisture or spatial variation in specific soil characteristics (namely clay contents). The NDVI shows potential for monitoring the effect of livestock trampling during the peak spring production phase, with greater vigour in areas with less animal trampling. These results provide good perspectives for future studies that allow the calibration and validation of these tools to support the decision-making process of the agricultural manager.


Assuntos
Ecossistema , Solo , Feminino , Animais , Bovinos , Argila , Agricultura , Gado , Árvores
16.
Ecol Appl ; 33(3): e2800, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546663

RESUMO

Livestock production in drylands requires consideration of the ecological applications of ecohydrological redistribution of water. Intensive cattle trampling and the associated increase of surface runoff are common concerns for rangeland productivity and sustainability. Here, we highlight a regional livestock production system in which cattle trails and trampling surrounding an artificial impoundment are purposely managed to enhance redistribution and availability of water for cattle drinking. Based on literature synthesis and field measurements, we first describe cattle production systems and surface water redistribution in the Dry Chaco rangelands of South America, and then develop a conceptual framework to synthesize the ecohydrological impacts of livestock production on these ecosystems. Critical to this framework is the pioshere-a degraded overgrazed and overtrampled area where vegetation has difficulties growing, usually close to the water points. The Dry Chaco rangelands have three key distinctive characteristics associated with the flat sedimentary environment lacking fresh groundwater and the very extensive ranching conditions: (1) cattle drinking water is provided by artificial impoundments filled by runoff, (2) heavy trampling around the impoundment and its adjacent areas generates a piosphere that favors runoff toward the impoundment, and (3) the impoundment, piosphere, and extensive forage areas are hydrologically connected with a network of cattle trails. We propose an ecohydrological framework where cattle transit and trampling alter the natural water circulation of these ecosystems, affecting small fractions of the landscape through increased runoff (compaction in piosphere and trails), surface connectivity (convergence of trails to piosphere to impoundment), and ponding (compaction of the impoundment floor) that operate together making water harvesting and storage possible. These effects have likely generated a positive water feedback on the expansion of livestock in the region with a relatively low impact on forage production. We highlight the role of livestock transit as a geomorphological agent capable of reshaping the hydrology of flat sedimentary rangelands in ways that can be managed positively for sustainable ranching systems. We suggest that the Dry Chaco offers an alternative paradigm for rangelands in which cattle trampling may contribute to sustainable seminatural production systems with implications for other dry and flat rangelands of the world.


Assuntos
Ecossistema , Gado , Animais , Bovinos , Água , Hidrologia , América do Sul
17.
Sci Total Environ ; 854: 158742, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108872

RESUMO

Losses of C and N from the forest floor and top 20-cm of soil were estimated following separate severe wildfires at two Long-Term Soil Productivity sites in the Sierra Nevada of California, USA. Experimental treatments applied 20 years prior to the wildfires included factorial combinations of 1) organic matter (OM) removal following clear-cut harvesting (SO, stem only harvest, WTH, whole-tree harvest, and WTH + FF, WTH plus the forest floor removal), 2) soil compaction (three levels of intensity), and 3) with and without understory vegetation control. Wildfires caused complete losses of the forest floor in all treatments and also oxidized varying portions of OM in the topsoil. As such, pre-fire forest floor measures were used as an estimate of forest floor C and N loss, and post-fire soil measures of C and N were compared to pre-fire soil data to estimate of mineral soil losses. Averaged over all treatments, the less-productive site that also had lesser accumulations of detritus (Wallace) lost 35.1 Mg C ha-1, or 25 % of its original C stores, while the more-productive site with greater detritus (Rogers) lost 18.4 Mg C ha-1, or 20 % of its original. The SO treatments that left harvest residue on site ended up with much greater losses of C: 36 % versus 15 and 17 % for WTH and WTH + FF, respectively. The SO also yielded the largest losses (25-30 %) of C in the top 10-cm of soil. The other treatments had smaller or inconsistent effects (understory vegetation control) or no effect (soil compaction). Our results suggest that potential benefits from SO by leaving residue on site to soil C and N accumulation can also be readily eliminated by wildfire which commonly occurs at these fire-prone forest ecosystems.

18.
Sci Total Environ ; 858(Pt 3): 160121, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370790

RESUMO

Sustainable cities require spacious infrastructures such as roadways to serve multiple functions, including transportation and water treatment. This can be achieved by installing stormwater control measures (SCM) such as biofilters and swales on the roadside compacted soil, but compacted soil limits infiltration and other functions of SCM. Understanding the effect of compaction on subsurface processes could help design SCM that could alleviate the negative impacts of compaction. Therefore, we synthesize reported data on compaction effects on subsurface processes, including infiltration rate, plant health, root microbiome, and biochemical processes. The results show that compaction could reduce runoff infiltration rate, but adding sand to roadside soil could alleviate the negative impact of compaction. Compaction could decrease the oxygen diffusion rate in the root zone, thereby affecting plant root activities, vegetation establishment, and microbial functions in SCM. The impacts of compaction on carbon mineralization rate and root biomass vary widely based on soil type, aeration status, plant species, and inherent soil compaction level. As these processes are critical in maintaining the long-term functions of SCM, the analysis would help develop strategies to alleviate the negative impacts of compaction and turn road infrastructure into a water solution in sustainable cities.


Assuntos
Solo , Purificação da Água , Chuva , Abastecimento de Água , Cidades
19.
PeerJ ; 10: e14050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193426

RESUMO

Endangered wetland plants are important as the potential keystone species and mediators for plant-soil interactions. Establishing conservation strategies for endangered plants is also prioritized because of the elevating extinction risk by human-induced wetland disturbances. The present study examined the factors controlling the incidence of Pterygopleurum neurophyllum, the endangered wetland plant experiencing severe habitat loss throughout Northeast Asia. Here, P. neurophyllum populations and their surrounding environments were addressed in the last natural Korean habitat to assess the possible influential factors (vegetation coverage, species richness, exotic plant species, coarse rock content, soil bulk density, and soil electroconductivity and pH) under anthropogenic wetland interventions (with or without soil disturbance). Our results showed that P. neurophyllum occurred 6 out of 32 plots in the study area. All P. neurophyllum were found in Miscanthus-dominated area, but preferred microhabitats featuring reduced vegetation coverage, increased species richness, and undisturbed soils under vegetation removal. Multimodel inference also indicated that vegetation coverage (relative importance = 1.00) and coarse rock content (relative importance = 0.70) were the major influential factors for P. neurophyllum population size, and the surviving P. neurophyllum were strictly limited to where both of them were kept lowered. Furthermore, the wetland intervention with soil disturbance had a negative effect on P. neurophyllum by creating the rocky and compacted soil surface as a result of land reclamation treatments. Conversely, the wetland intervention without soil disturbance enhanced the P. neurophyllum incidence by decreasing vegetation coverage of the overcrowding competitive plants. Overall findings reflect that the strategies to counteract habitat loss and manage the overly dense competitive plants should be necessary for conserving P. neurophyllum, as well as other wetland plants threatened by the human-induced disturbances and excessive competition intensities.


Assuntos
Espécies em Perigo de Extinção , Áreas Alagadas , Humanos , Animais , Ecossistema , Plantas , Solo/química
20.
PeerJ ; 10: e14170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217383

RESUMO

Background: Cover crops and mulching can ameliorate soil porosity and nutrient availability, but their effects on the physical characteristics and nutrients in the raised bed soils are unclear. Methods: The field experiment was conducted in a pomelo orchard from 2019 to 2021, with an area of 1,500 m2. The treatments included control (no cover crop), non-legume cover crop (Commelina communis L.), legume cover crop (Arachis pintoi Krabov & W.C. Gregory), and rice straw mulching (Oryza sativa L.). At the end of each year (2019, 2020, and 2021), soil samples were collected at four different layers (0-10, 10-20, 20-30, and 30-40 cm) in each treatment. Soil bulk density, soil porosity, and the concentration of nutrients in the soil were investigated. Results: The results revealed that soil bulk density at two depths, 0-10 and 10-20 cm, was reduced by 0.07 and 0.08 g cm-3 by rice straw mulch and a leguminous cover crop, thus, increasing soil porosity by ~2.74% and ~3.01%, respectively. Soil nutrients (Ca, K, Fe, and Zn) at topsoil (0-10 cm) and subsoil (10-20 cm) layers were not significantly different in the first year, but those nutrients (Ca, K, Fe, and Zn) improved greatly in the second and third years. Conclusions: Legume cover crops and straw mulch enhanced soil porosity and plant nutrient availability (Ca, K, Fe, and Zn). These conservation practices best benefit fruit orchards cultivated in the raised bed soils.


Assuntos
Citrus , Oryza , Solo , Agricultura/métodos , Frutas , Produtos Agrícolas , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...