Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Sci Total Environ ; : 174507, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971254

RESUMO

Numerous studies have reported that grasslands harbor higher soil organic carbon (SOC) stocks compared with arable land; however, the relevant carbon dynamics and sink persistence remain unclear. Herein, arable fields characterized by historical grassland zones (h_GL; grassland use decades ago) and permanent arable land zones (h_CL) were examined. The h_GL zones were determined using historical maps. The change in land use from grassland to cropland occurred 30-50 years ago. In eight arable fields, SOC and total nitrogen (TN) stocks in the topsoil were analyzed at a high spatial resolution. Additionally, remote sensing via satellites was employed to determine the biomass yield at a high spatial resolution using the normalized difference vegetation index (NDVI). In all the fields, the mean SOC content of the h_GL zones (1.81 %, n = 97 measuring points) was higher than the mean SOC content of the h_CL zones (1.52 %, n = 220). Furthermore, the mean relative NDVI was higher in the h_GL zones than in the h_CL zones. SOC and NDVI were positively correlated (up to r = 0.79), as well as TN and NDVI (up to r = 0.72). To evaluate the first dataset, zonal soil samples were collected from the h_GL and h_CL zones from 14 arable fields to determine the SOC and TN content. The mean SOC content of the h_GL zones was 1.92 % and that of the h_CL zones was 1.39 %-a difference of absolute SOC stocks in the topsoil of 23.8 t ha-1 (bulk density: 1.5 g cm-3). The work combines the knowledge of historical soil maps, remote sensing applications and georeferenced soil sampling and shows that SOC stocks in grassland have a high persistence and can have positive impact on yields even decades after a land use change. Historical land use proved to be a major factor for spatial SOC variability at the study site.

2.
Heliyon ; 10(11): e32082, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867991

RESUMO

There is a significant production of coffee in the Gedeo zone, southern Ethiopia, which has could generate a huge amount of coffee husk wastes that have polluted the environment. However, organically enriching the soil is an effective method to enhance the development and productivity of coffee. Thus, this study aims to understand the effects of the interaction between sowing depth and organic amending practices. Three sowing depths and sixteen different organic amendment compositions were tested in a complete randomized design with three replications. Coffee seedling growth biometrics was measured, and R-program was used to calculate the statistical difference at a 5 % significance level. The organic amendment composition with 3:2:1 (topsoil: forest soil: sand) sown at a depth of 2 cm had statistically higher values of seedling stem height, leaf length, and taproot length by 82.82 %, 93.35 %, and 85.41 % than in the topsoil at a depth of 3 cm. Likewise, the main effect of organic amendment with 3:2:1 (topsoil: forest soil: sand) in internode length, number of nodes per seedling stem, number of true leaves per seedling, and leaf width were also higher by 70.42 %, 63.16 %, 92.23 % and 91.80 % than seedlings grown in topsoil solely. Interestingly, the days of 50 % emergence in 3:2:1 (ratio of topsoil: forest soil: sand) organic amendment composition were earlier by 62.11 days than using topsoil. This could be because of the accessibility of a significant quantity of organic carbon, primary macronutrients, alkaline nature of the growth media in addition to having low bulk and particle densities in the forest soil that could increase coffee seedling growth biometrics by improving soil porosity, aeration and nutrient uptake capacity, producing important soil microbes and neutralizing organic acids in comparison with the topsoil.

3.
Environ Sci Pollut Res Int ; 31(29): 41775-41790, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856853

RESUMO

The rapid expansion of urbanization and construction activities has led to a significant increase in cement production worldwide, resulting in a surge in cement waste generation. This study aims to provide a comprehensive analysis of the repercussions of cement waste on soil fertility and crop productivity, emphasizing its critical implications for global food security. Through a multidisciplinary approach, encompassing field surveys, laboratory experiments, and statistical modeling, we assess the physicochemical alterations induced by cement waste in agricultural soils. Our findings reveal substantial declines in crucial soil parameters, including pH levels, organic matter content, and nutrient availability, which directly translate into diminished crop yields. Furthermore, the study identifies key mechanisms underlying these detrimental effects, including altered microbial communities and disrupted nutrient cycling processes. In addition, the findings underscore the severity of the issue, revealing substantial declines in soil fertility and crop yields in areas affected by cement waste contamination. Additionally, we discuss potential mitigation strategies and policy interventions aimed at mitigating the adverse effects of cement waste on agricultural systems. By quantifying the extent of soil degradation and crop yield reduction attributed to cement waste, this research underscores the urgency for sustainable waste management practices and highlights the need for policy interventions to safeguard agricultural productivity and ensure global food security in the face of escalating urbanization and construction activities.


Assuntos
Segurança Alimentar , Solo , Solo/química , Produtos Agrícolas , Materiais de Construção , Agricultura
4.
Biology (Basel) ; 13(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927276

RESUMO

Utilizing and improving the productivity of reclaimed land are highly significant for alleviating the problem of food production shortage in China, and the integrated rice-frog farming model can improve soil fertility. However, there are few studies on the use of integrated rice-frog farming technology to improve the fertility of reclaimed land and increase its efficiency in food production. Therefore, this study was conducted to evaluate the effects of the rice-frog co-cropping mode on the soil fertility and microbial diversity of reclaimed land. A rice monoculture group (SF), low-density rice-frog co-cropping group (SD, 5000 frogs/mu, corresponds to 8 frogs/m2), and high-density rice-frog co-cropping group (SG, 10,000 frogs/mu, corresponds to 15 frogs/m2) were established and tested. The contents of total nitrogen, soil organic matter, available potassium, and available phosphorus of the soil in the SG group were significantly higher than those in the SF group (p < 0.05) in the mature stage of rice. Compared with the SF group, the SD and SG groups improved the soil microbial diversity and changed the structure of the microbial community. This study indicates that compared with the rice monoculture mode, the rice-frog co-cropping pattern can improve the soil fertility, as well as microbial diversity, of reclaimed land.

5.
Sci Total Environ ; 945: 173850, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901592

RESUMO

Deforestation and slash combustion have substantial adverse impacts on the atmosphere, soil and microbe. Despite this awareness, numerous individuals persist in opting for high-intensity Eucalyptus planting through slash-burning in pursuit of immediate profits while disregarding the environmental significance and destroying the soil. Slash-unburnt agriculture can effectively safeguard the ecological environment, and compared with slash-burning, there remains a limited understanding of its regulatory mechanisms on soil fertility and microbial community. Also, large uncertainty persists regarding the utilization of harvest residues. Thoroughly investigating these questions from various perspectives encompassing physical soil characteristics, nutrient availability, bacterial community structures, and stability is crucial. To explore the ecological advantages of slash-unburnt techniques on microorganisms and their associated ecosystems, we used two slash-unburnt (Unburnt) planting techniques: Spread (naturally and evenly covering the forest floor after logging) and Stack (residues are piled along contour lines) as well as the traditional slash Burnt method (Burnt) in a Eucalyptus plantation. A comparative analysis was conducted between the two methods. We observed that over a span of 4 years, despite the initial lower application of fertilizer in the Unburnt treatments compared with the Burnt treatment during the first 2 years, the Unburnt treatment gradually caught up or even surpassed and attained similar nutrient levels as the Burnt treatment. Alphaproteobacteria was the main phyla that indicated the difference in soil bacterial communities between Burnt and Unburnt treatments. The microbial networks also highlighted the significance of the Unburnt method, as it contributed to the preservation of crucial network nodes and the stability of soil bacterial communities. Therefore, rational utilization of harvest residue may effectively avoid the vast damage caused by slash-burning to Eucalyptus trees and the soil environment but may also increase the potential for restoring soil fertility, improving fertilizer utilization efficiency, and maintaining microbial community stability over time.


Assuntos
Agricultura , Eucalyptus , Microbiologia do Solo , Solo , Solo/química , Agricultura/métodos , Microbiota , Fertilizantes/análise , Reciclagem , Bactérias
6.
Heliyon ; 10(10): e31528, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826734

RESUMO

Soil microbiomes play a crucial role in enhancing plant growth, health, and overall agricultural productivity. Nevertheless, the influence of distinct agricultural management practices on the microbial diversity and community structure within tea (Camellia sinensis) plantations has remained enigmatic. This study postulates that organic agricultural management models can enhance microbial diversity and optimise the microbial community structure within tea plantations, indirectly augmenting soil fertility and tea quality. We employed metagenome technology and conducted molecular ecological network analysis to explore the impact of organic management, pollution-free management, and conventional management on the microbial network structure of tea plantation soil in Weng'an County in the southwestern karst region. Soils subjected to organic management exhibited a higher relative abundance of soil microbial and carbohydrate-active enzyme functional genes than those subjected to other management regimes. Additionally, the relative abundance and diversity of dominant bacteria and keystone species were notably higher under organic management than under the other management regimes. Correlation analysis showed that soil microorganisms were closely related to soil fertility and tea quality, respectively. One-way analysis of variance and the structural equation modelling results showed significant variability in soil fertility under the three agricultural management modes and that soil fertility and soil microbial diversity had a direct impact on tea quality (P > 0.05). In conclusion, this study underscores the profound impact of management modes on microbial diversity and community structure within tea plantations. These management practices alter the soil microbial network structure and potential function, ultimately regulating the microecological dynamics of the soil community in tea plantations.

7.
PeerJ ; 12: e17512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832033

RESUMO

The sand fixing shelter forests in the Horqin Sandy Land are a key area in the "3-North" Shelter Forest Program in China, which has a history of over 50 years of artificial afforestation. Populus simonii Carr is one of the most dominant silvicultural species in the region. The aim of this study is to understand the soil characteristics and soil fertility of Populus simonii shelter forests at different growth stages and to establish a scientific basis for soil nutrient regulation and sustainable management of Populus simonii shelter forests at the southern edge of the Horqin Sandy Land. Sample plots were selected for young (≤15 a), middle-aged (16-25 a), near-mature (26-30 a), mature (31-40 a), and over-mature (≥41 a) forests. Each forest studied was in a state of natural restoration with uniform stand conditions and no artificial fertilizer was applied. These sites were selected to study changes in the soil characteristics in soil depths of 0-20, 20-40, and 40-60 cm. In order to avoid the problem of multicollinearity between soil variables and to reduce redundancy, principal component analysis (PCA), Pearson's correlation analysis, and Norm value calculation were used to select the least correlated indicators with the highest factor loadings. This was used to establish the minimum data set. The soil fertility quality of these shelterbelts in different forest ages was quantified using the soil quality index (SQI). In the growth stage from young to nearly mature forests, the soil bulk weight and pH decreased with increasing forest age. Soil capillary porosity, noncapillary porosity, total porosity, water content, field water holding capacity, and organic carbon content increased with increasing forest age and soil nutrient content gradually improved. At the stage of near-mature to over-mature forests, the effect of forest age on soil bulk density was not significant and all other soil characteristics decreased to varying degrees as the forest age increased. The soil also developed from alkaline to neutral. The SQI of the total data set and the SQI of the minimum data set consistently showed that near-mature forests (NMF) > middle-aged forests (MAF) > mature forests (MF) > over-mature forests (OMF) > young forests (YF). The results of the two evaluation systems showed a significant positive correlation (P < 0.05, R 2 = 0.8263) indicating that it is feasible to use the minimum data set to evaluate the soil fertility of shelter forests of different forest ages. The age of the forest has an obvious effect on the soil characteristics and overall soil fertility of shelter forests. The Populus simonii shelter forests on the southern edge of the Horqin Sandy Land have great soil development at the early stage of afforestation and the soil nutrient content gradually increases. The soil fertility reaches a peak when the forest is nearly mature and the soil fertility declines after the age of the forest reaches 30 years.


Assuntos
Florestas , Populus , Solo , Populus/crescimento & desenvolvimento , China , Solo/química , Conservação dos Recursos Naturais
8.
Plants (Basel) ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931046

RESUMO

As global ecological degradation intensifies, the long-term impacts of afforestation on productivity and soil fertility in barren lands have become critical in improving global ecological security and productivity. Through meta-analysis, this study integrates data from 109 barren land afforestation sites across China, aiming to comprehensively analyze the effects on plant productivity and soil fertility while identifying the key environmental drivers of these changes. We found that afforestation consistently enhances plant productivity across 60 years. However, soil fertility and moisture initially surged significantly after afforestation but gradually declined after the first decade, indicating the limited long-term benefits. Climatic factors, namely precipitation and humidity index, are crucial in enhancing plant productivity, while geographic factors, specifically lower elevations and gentler slopes, are associated with greater increases in soil fertility. Elevation and slope are two key factors that influence soil moisture after afforestation. These findings highlight the need for ongoing soil management and ecological maintenance in afforestation projects to sustain the soil fertility benefits. Our study provides a robust scientific foundation for afforestation strategies aimed at barren land restoration and offers valuable insights for policy formulation in barren land afforestation.

9.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700640

RESUMO

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Assuntos
Monitoramento Ambiental , Nitrogênio , Fósforo , Solo , Triticum , Solo/química , Nitrogênio/análise , Fósforo/análise , Fertilizantes/análise , Agricultura/métodos , Nutrientes/análise , Carbono/análise
10.
Polymers (Basel) ; 16(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794635

RESUMO

Soil conservation is one of the best methods to improve soil fertility and enhance crop growth efficiency. Replacing plastic mulch with biomass is an environmentally friendly strategy. Innovative encapsulated soil granules (ESGs) were developed using PVA/PC film as the wall material and rural soil as the core. The PVA/PC was synthesized using 60% protein polypeptide (PC) from leather waste scrap and 35% poly (vinyl alcohol) (PVA), which was optimized for water absorption expansion and water retention performance. The ESG-10 granulated with 10% PVA/PC exhibited good water absorption, moisture retention, and resistance to water solubility. As an auxiliary material for soil improvement, the amount of ESGs mixed with the topsoil at ratios of 0 g/m2, 200 g/m2, and 400 g/m2 was proportional to the soil insulation and moisture retention. In rapeseed cultivation, the experimental results indicated that the soil mulched with ESG-10 can maintain seedling vitality for a long time under low water content conditions.

11.
Environ Res ; 255: 119150, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763282

RESUMO

The coverage of accumulated snow plays a significant role in inducing changes in both microbial activity and environmental factors within freeze-thaw soil systems. This study aimed to analyze the impact of snow cover on the dynamics of archeal communities in freeze-thaw soil. Furthermore, it seeks to investigate the role of fertilization in freeze-thaw soil. Four treatments were established based on snow cover and fertilization:No snow and no fertilizer (CK-N), snow cover without fertilizer (X-N), fertilizer without snow cover (T-N), and both fertilizer and snow cover (T-X). The research findings indicated that after snow cover treatment, the carbon, nitrogen, and phosphorus content in freeze-thaw soil exhibit periodic fluctuations. Snow covered effectively altered the community composition of bacteria and archaea in the soil, with a greater impact on archaeal communities than on bacterial communities. Snow covered improves the stability of archaeal communities in freeze-thaw soil. Additionally, the arrival of snow also enhanced the correlation between archaea and environmental factors, with the key archaeal phyla involved being Nanoarchaeota and Crenarchaeota. Further research showed that the application of organic fertilizers also had some impact on freeze-thaw soil, but this impact was smaller compared to snow cover. In summary, the arrival of snow could alter the archaeal community and protect nutrient elements in freeze-thaw soil, reducing their loss, and its effect is more pronounced compared to the application of organic fertilizers.


Assuntos
Archaea , Fertilizantes , Congelamento , Neve , Microbiologia do Solo , Solo , Fertilizantes/análise , Solo/química , Nitrogênio/análise
12.
Environ Res ; 252(Pt 4): 119076, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710430

RESUMO

The large yield of anaerobic digestates and the suboptimal efficacy of nutrient slow-release severely limit its practical application. To address these issues, a new biochar based fertilizer (MAP@BRC) was developed using biogas residue biochar (BRC) to recover nitrogen and phosphorus from biogas slurry. The nutrient release patterns of MAP@BRC and mechanisms for enhancing soil fertility were studied, and it demonstrated excellent performance, with 59% total nitrogen and 50% total phosphorus nutrient release rates within 28 days. This was attributed to the coupling of the mechanism involving the dissolution of struvite skeletons and the release of biochar pores. Pot experiments showed that crop yield and water productivity were doubled in the MAP@BRC group compared with unfertilized planting. The application of MAP@BRC also improved soil nutrient levels, reduced soil acidification, increased microbial populations, and decreased soil heavy metal pollution risk. The key factors that contributed to the improvement in soil fertility by MAP@BRC were an increase in available nitrogen and the optimization of pH levels in the soil. Overall, MAP@BRC is a safe, slow-release fertilizer that exhibits biochar-fertilizer interactions and synergistic effects. This slow-release fertilizer was prepared by treating a phosphorus-rich biogas slurry with a nitrogen-rich biogas slurry, and it simultaneously addresses problems associated with livestock waste treatment and provides a promising strategy to promote zero-waste agriculture.


Assuntos
Biocombustíveis , Carvão Vegetal , Fertilizantes , Nitrogênio , Fósforo , Solo , Fertilizantes/análise , Carvão Vegetal/química , Solo/química , Fósforo/análise , Nitrogênio/análise , Biocombustíveis/análise , Agricultura/métodos
13.
Heliyon ; 10(9): e30484, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737265

RESUMO

Erythrina brucei has been applied as a green manure to improve soil fertility in southern Ethiopia. It has been nodulated by indigenous rhizobia. The objectives of this study were to evaluate the effects of E. brucei inoculation with microbial consortia consisted of Bradyrhizobium shewense, Acinetobacter soli and arbuscular mycorrhizal fungi (AMF)on E.brucei growth, soil nitrogen and phosphorous status after application as a green manure.A field experiment was conducted by inoculating E. Brucei with different microbial consortia. E. brucei inoculated with the microbial consortia were grown for 150 days. Its shoot length was measured at 60, 90, 120 and 150 days after planting. Then, plants were uprooted and mulched as a green manure. The soil nitrogen, available phosphorous and soil organic matter analysis were done. The experimental design was completely randomized block design with eight treatments comprised of three replications. Inoculated treatments did not show a significant (p < 0.05) difference in shoot length in the first 60 days. However, shoot length was increased between 19.1 and 41.3 %, 10.5-43.4 % and 8.7-37.6 %, respectively at 90, 120 and 150 days. The soil organic matter was improved in both inoculated and un-inoculated treatments. The improvements in the soil organic matter of un-inoculated treatments may be due to the decomposition of un-inoculated plants biomass in the soil. The B. shewense inoculation improved the soil nitrogen by 17 %. The soil phosphorous was improved in 57 % of inoculated treatments. The inoculation of E. brucei with microbial consortia enhanced its growth and improved soil fertility when applied as a green manure. Inoculating the green manure legumes with symbiotically effective rhizobia and plant-beneficial microbes can enhance the growth of E. brucei and its nutrient uptake.

14.
Front Plant Sci ; 15: 1379485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716343

RESUMO

Organic fertilizer substitution is an effective measure for increasing both the quantity and quality of wheat grain while reducing chemical fertilizer input. However, the effects of reducing nitrogen (N) fertilizer combined with organic fertilizer substitution on grain yield, grain protein content and protein yield, plant N accumulation and translocation, N use efficiency, soil fertility, N apparent surplus and nitrate-N residue in rain-fed drought-prone areas remains limited. In this study, field experiments were conducted over four consecutive seasons (2019-2023) at two sites with four treatments: zero N application (ZN), farmer N application (FN), reduced 20% N of FN (RN), and organic fertilizer substituting 20% N of RN (OSN). The results showed that compared with the ZN treatment, the FN, RN and OSN treatments increased grain yield and its components, grain protein content and protein yield, aboveground N accumulation at the anthesis and maturity stages, pre-anthesis N translocation, post-anthesis N accumulation, N use efficiency, soil fertility. Compared with RN and FN, OSN increased grain yield by 17.12% and 15.03%, grain protein yield by 3.31% and 17.15%, grain N accumulation by 17.78% and 15.58%, and N harvest index by 2.63% and 4.45% averaged across years and sites, respectively. Moreover, OSN increased the contents of organic matter, total N, available P and available K in both 0-20 and 20-40 cm soil layers, decreased N apparent surplus and nitrate-N residue in 0-100 cm, and pH in both 0-20 and 20-40 cm soil layer. Fundamentally, this study suggests that integrating a 20% reduction N from conventional farmer practices with the utilization of organic fertilizer to replace 20% of the chemical N fertilizer (OSN) represents an effective strategy. This approach shows promise in enhancing wheat grain yield, grain protein yield, and N use efficiency. Additionally, it supports the improvement of soil fertility while simultaneously reducing soil nitrate-N residues and the apparent surplus of N in rain-fed drought-prone regions.

15.
J Hazard Mater ; 470: 134234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608584

RESUMO

Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.


Assuntos
Olea , Fenóis , Punica granatum , Punica granatum/química , Fenóis/análise , Olea/química , Solo/química , Resíduos Industriais , Resíduos Sólidos , Rizosfera , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Microbiologia do Solo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Agricultura
16.
Open Life Sci ; 19(1): 20220844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585627

RESUMO

The aim of this study is to establish area-specific NPSB (18.9% N, 37.7% P2O5, 6.95% S, and 0.1% B) fertilizer rate recommendations for the optimal grain yield of faba bean. The field experiment was conducted in two locations in the 2021 and 2022 cropping seasons using a randomized complete block design with three replications. The nine treatments included 0, 25, 50, 75, 100, 125, 150, 175, and 200 kg ha-1 NPSB fertilizer rates. An economic analysis was conducted for grain yield using the International Maize and Wheat Improvement Center procedure. The analysis of variance results showed that blended fertilizer significantly (p < 0.01) affected plant height, number of pods per plant, number of seeds per plant, hundred seeds weight, biomass yield, grain yield (GY), and harvest index. The combined location mean result showed that applying a 125 kg ha-1 NPSB rate produced the highest GY (4857.2 kg ha-1). The result of economic analysis demonstrated that applying a 125 kg ha-1 NPSB rate earned the highest net benefits (212824.0 ETB ha-1) and marginal rate of return (3653.43%). Therefore, a 125 kg ha-1 NPSB fertilizer rate is recommended for high yield and profitability of faba bean production in the study area and other similar soil types.

17.
Heliyon ; 10(7): e28751, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586365

RESUMO

In this work, the utilization of phosphogypsum (PG), a waste coming from the manufacture of phosphate fertilizers, as fertilizer for alfalfa (Medicago sativa L.) crops was investigated using pot experiments. The objective of this study was to evaluate the effects of both phosphogypsum and red mud (RM) in two soils representative of the pasture production area in Southern Spain. The morpho-physiological parameters of biomass, plant height, number of stems and number of leaves, as well as the chemical parameters of soil content, were measured. High doses of PG inhibited seed germination in some treatments. In addition, the treatment substrate (2550 g soil + 50 g kg-1 PG + 100 g kg-1 RM) also affected seed germination, possibly due to the large amount of RM. The application of PG and RM to the soil increased the availability of important nutrients for alfalfa, such as phosphorus (P), calcium (Ca2+) and magnesium (Mg2+). The results demonstrate that the treatment with PG significantly improved the uptake of P in alfalfa.

18.
Front Plant Sci ; 15: 1323124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601312

RESUMO

Agronomy research traditionally relies on small, controlled trial plots, which may not accurately represent the complexities and variabilities found in larger, real-world settings. To address this gap, we introduce a Bayesian methodology for the analysis of yield monitor data, systematically collected across extensive agricultural landscapes during the 2020/21 and 2021/22 growing seasons. Utilizing advanced yield monitoring equipment, our method provides a detailed examination of the effects of green manure on wheat yields in a real-world context. The results from this comprehensive analysis reveal significant insights into the impact of green manure application on wheat production, demonstrating enhanced yield outcomes across varied landscapes. This evidence suggests that the Bayesian approach to analyzing yield monitor data can offer more precise and contextually relevant information than traditional experimental designs. This research underscores the value of integrating large-scale data analysis techniques in agronomy, moving beyond small-scale trials to offer a broader, more accurate perspective on agricultural practices. The adoption of such methodologies promises to refine farming strategies and policies, ultimately leading to more effective and sustainable agricultural outcomes. The inclusion of a Python script in the appendix illustrates our analytical process, providing a tangible resource for replicating and extending this research within the agronomic community.

19.
Ying Yong Sheng Tai Xue Bao ; 35(3): 622-630, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646749

RESUMO

Soil nitrogen and phosphorus are two key elements limiting tree growth in subtropical areas. Understanding the regulation of soil microorganisms on nitrogen and phosphorus nutrition is beneficial to reveal maintenance mechanism of soil fertility in plantations. We analyzed the characteristics of soil nitrogen and phosphorus fractions, soil microbial community composition and function, and their relationship across three stands of two-layered Cunninghumia lanceolata + Phoebe bournei with different ages (4, 7 and 11 a) and the pure C. lanceolata plantation. The results showed that the contents of most soil phosphorus fractions increased with increasing two-layered stand age. The increase in active phosphorus fractions with increasing stand age was dominated by the inorganic phosphorus (9.9%-159.0%), while the stable phosphorus was dominated by the organic phosphorus (7.1%-328.4%). The content of soil inorganic and organic nitrogen also increased with increasing two-layered stand age, with NH4+-N and acid hydrolyzed ammonium N contents showing the strongest enhancement, by 152.9% and 80.2%, respectively. With the increase of stand age, the composition and functional groups of bacterial and fungal communities were significantly different, and the relative abundance of some dominant microbial genera (such as Acidothermus, Saitozyma and Mortierella) increased. The relative abundance of phosphorus solubilization and mineralization function genes, nitrogen nitrification function and aerobic ammonia oxidation function genes tended to increase. The functional taxa of fungi explained 48.9% variation of different phosphorus fractions. The conversion of pure plantations to two-layered mixed plantation affected soil phosphorus fractions transformation via changing the functional groups of saprophytes (litter saprophytes and soil saprophytes). Changes in fungal community composition explained 45.0% variation of different nitrogen fractions. Some key genera (e.g., Saitozyma and Mortierella) play a key role in promoting soil nitrogen transformation and accumulation. Therefore, the conversion of pure C. lanceolata plantation to two-layered C. lanceolata + P. bournei plantation was conducive to improving soil nitrogen and phosphorus availability. Bacteria and fungi played important roles in the transformation process of soil nitrogen and phosphorus forms, with greater contribution of soil fungi.


Assuntos
Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Fósforo/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química , Cunninghamia/crescimento & desenvolvimento , China , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo
20.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611514

RESUMO

Straw return utilizes waste resources to reduce the use of chemical fertilizers worldwide. However, information is still lacking on the relative impact of straw return on soil fertility, the nutrient composition of different soil aggregates, and soil microbial communities. Therefore, this study aimed to understand the effects of different management practices on the crop yield, soil fertility, and soil community composition in a 14-year wheat-rice rotation system. The treatments included a control (without fertilizer and straw addition), chemical fertilization (NPK), straw return without fertilizer (S), and straw addition with chemical fertilizer (NPKS). The results showed that NPKS improved the wheat and rice yield by 185.12% and 88.02%, respectively, compared to the CK treatment. Additionally, compared to the CK treatment, the N, P, and K contents of the wheat stem were increased by 39.02%, 125%, and 20.23% under the NPKS treatment. Compared to the CK treatment, SOM, TN, TP, AN, AP, AK, CEC, AFe, AMn, ACu, and AZn were increased by 49.12%, 32.62%, 35.06%, 22.89%, 129.36%, 48.34%, 13.40%, 133.95%, 58.98%, 18.26% and 33.33% under the NPKS treatment, respectively. Moreover, straw addition promoted the creation and stabilization of macro-aggregates in crop soils. The relative abundance of macro-aggregates (0.25-2 mm) increased from 37.49% to 52.97%. Straw addition was associated with a higher proportion of aromatic and carbonyl carbon groups in the soil, which, in turn, promoted the formation of macro-aggregates. Redundancy analysis showed that straw return significantly increased the microbial community diversity. These findings demonstrate that straw addition together with chemical fertilizer could increase the crop yield by improving soil fertility, soil aggregate stability, and the diversity of fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...