Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(7): 4279-4292, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022973

RESUMO

Microbial fertilizers have the characteristics of high efficiency and environmental protection in improving saline soils, and the application of functional microbial fertilizers is of great significance for the green abatement of saline barriers and the improvement of soil quality in coastal areas. The experiment was based on moderately saline soil in the coastal area of Hebei Province, with corn as the indicator crop, on the basis of conventional chemical fertilizer application. Different microbial fertilizer treatments, namely, T1 (conventional chemical fertilizer 750 kg·hm-2 + compound microbial agent 75 kg·hm-2), T2 (conventional chemical fertilizer 750 kg·hm-2 + Bacillus megaterium 300 kg·hm-2), T3 (conventional chemical fertilizer 750 kg·hm-2 + B. mucilaginosus 300 kg·hm-2), T4 (conventional chemical fertilizer 750 kg·hm-2 + organic silicon fertilizer 600 kg·hm-2), T5 (conventional chemical fertilizer 750 kg·hm-2 + bio-organic fertilizer 600 kg·hm-2), T6 (conventional fertilizer 750 kg·hm-2 + active microalgae 15 kg·hm-2), and CK (only fertilizer 750 kg·hm-2), were used for these seven treatments, to study the effects of different microbial fertilizers on soil nutrients, salinity, bacterial community, and corn yield and economic efficiency during two critical periods (V12 stage and maturity stage) of corn. The results showed that compared with that in CK, T1 significantly increased soil total nitrogen (TN) and available phosphorus (AP) contents during the whole growth period. Over the whole reproductive period, soil organic matter (OM) at maturity increased by 10.35% over the V12 stage compared to that in CK, but there was no significant difference between treatments. Compared with that in CK, T5 and T6 significantly reduced soil total salinity and Ca2+ content during the whole growth period by an average of 14.51%-18.48% and 24.25%-25.51%. T1 significantly increased the bacterial diversity index over the whole growth period by 45.16% compared to that in CK. The dominant soil phyla were Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, and the dominant genera were Bacillus and Geminicoccaceae. The most abundant functions of the bacterial community in the study area were chemoheterotrophy and aerobic chemoheterotrophy, with average relative abundances of 28.89% and 27.11%, and T3 and T6 significantly improved soil N cycling function. The results of redundancy analysis (RDA) indicated that Na+, SO42-, pH, and EC were important factors driving the structure of the bacterial community, and correlation heatmaps showed that Na+, SO42-, pH, and EC were significantly and positively correlated mainly with the phylum Planctomycetota, whereas soil OM and TN were significantly and positively correlated with Cyanobacteria. Compared with that in CK, T6 increased the relative abundance of Cyanobacteria and optimized the bacterial community structure during the whole growth period. Using recommended dosages of bacterial fertilizers T1 and T6 increased maize yield by 7.31%-24.83% and economic efficiency by 9.05%-23.23%, respectively. The preliminary results of soil chemical properties and yield correlation analysis revealed that EC, AP, HCO3-, and Mg2+ were the obstacle factors limiting soil productivity in coastal areas. In conclusion, the use of the compound bacterial agent (T1) and active microalgae (T6) at the recommended dosage can significantly enhance soil nutrients, reduce salinity, and improve the structural diversity of soil bacterial communities, which not only ensures the increase in maize yield and efficiency but also realizes the efficient use of microbial fertilizers and the improvement of soil quality.


Assuntos
Bacillus megaterium , Fertilizantes , Microbiologia do Solo , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Solo/química , Bacillus megaterium/crescimento & desenvolvimento , Bacillus megaterium/metabolismo , China , Salinidade , Biomassa , Água do Mar/microbiologia , Fósforo/análise
2.
Sci Total Environ ; : 174603, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002579

RESUMO

The investigation of lunar soil encompasses extensive periods, employs many improvement methods, and has generated several simulants. The improvement of lunar soil has recently garnered growing interest as an aspect of In-Situ Resource Utilization (ISRU) for regolith. It is crucial to clarify the challenges of utilizing lunar soil as a planting substrate to develop more effective techniques. This review presents a comprehensive analysis of research on improving lunar soil properties, highlights the disparities in mineral composition between real lunar soil (also called regolith) and simulated lunar soil, then details their deficiencies as planting substrates. Following an investigation of existing improvement methods, a dilemma of metals、salt precipitation and high pH caused by adding organic matter alone was noted, while the function of microbes (bacteria, algae, and lichens) in improvement processes was assessed. Finally, we present a perspective on future the lunar soil plantable research development based on the Bioregenerative Life Support System (BLSS). This review aims to promote the engineering application of lunar soil improvements and sustainable development. We hope that one day, regolith will enable plants to flourish on the Moon.

3.
Chemosphere ; 363: 142890, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025311

RESUMO

Soil improvement techniques utilizing the metabolic functions of microorganisms, including microbially induced carbonate precipitation (MICP), have been extensively researched over the past few decades as part of bio-inspired geotechnical engineering research. Given that metabolic reactions in microorganisms produce carbonate minerals, an enhanced understanding of microbial interaction with soils could improve the effectiveness of MICP as a soil improvement technique. Therefore, this study investigated the effects of sands on MICP by denitrification to employ MICP for geotechnical soil improvement. Under the coexistence of natural sand and artificial silica sand, nitrate-reducing bacteria were cultured in a mixed liquid medium with nitrate, acetate, and calcium ions at 37 °C. Nitrate reduction occurred only in the presence of natural sand. However, the lack of chemical weathering of the composed minerals likely prevented the progress of bacterial growth and nitrate reduction in artificial silica sands. For natural sand, artificial chemical weathering by acid wash and ferrihydrite coating of the sand improved bacterial growth and accelerated nitrate reduction. The calcium carbonate formation induced by denitrification was also influenced by the state of the minerals in the soil and the nitrate reduction rate. The observed MICP enhancement is due to the involvement of coexisting secondary minerals like ferrihydrite with large specific surface areas and surface charges, which may improve the reaction efficiency by serving as adsorbents for bacteria and electron donors and acceptors in the solid phases, thereby promoting the precipitation and crystallization of calcium carbonate on the surfaces. This crystal formation in the minerals provides valuable insights for improving sand solidification via MICP. Considering the interactions between the target soil and microorganisms is essential to improving MICP processes for ground improvement.

4.
Sci Rep ; 14(1): 15748, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977781

RESUMO

An improved electroosmotic method is proposed in this paper to enhance the non-uniform effect and efficiency of electroosmotic process. Such method is electroosmotic flow with injection of calcium chloride through the anode, followed by injection through the central tube (a tube at the midpoint between the anode and the cathode) with a suitable time interval between injections. Experimental results indicate that using this method can significantly improve the non-uniform reduction in water content throughout the soil, mitigate the formation of cracks in the anode section, and therefore considerably inhibit the increase in the electric resistance. After treatment, the drained water could be raised to 3.59 times more than that of pure electroosmotic flow, and 1.3 times that of simultaneous injection through both the anode and the central tube with considerably slight increase in power consumption. Moreover, the area of cementation was also expanded, approximately twice larger than that of pure electroosmotic flow and one and a half that of simultaneous injection. It is also worth noting that the proposed method performs better with the same power consumption. The results demonstrate that electroosmotic flow with a suitable time interval between injections could improve the efficiency of electroosmotic process and expand the treatment region in soils, hence can be a promising and economic technique for soil improvement in practical engineering.

5.
Polymers (Basel) ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794499

RESUMO

The geotechnical properties of clay soil and its mixtures with different proportions (0.75%, 0.85%, 1%, and 1.15%) of Agar Gum biopolymer and Ferrochromium Slag (0.25%, 0.50%, 0.75%, and 1%), having various curing times and freeze-thaw cycles, were studied through a series of soil mechanical tests to investigate possibilities to improve its undesired/problematic plasticity, compaction, and shear strength characteristics. The results revealed that treatment with an optimal ratio of 1% Agar Gum and 1% Ferrochromium Slag alone, as well as together with, improved the geotechnical properties of the clay soil considerably. Both the unconfined and shear strength properties, along with the cohesion and internal friction angle, increased as much as 47 to 173%, depending on the curing time. The higher the curing time, the higher the shear strength, cohesion, and internal friction angle are up to 21 days. Deteriorating the soil structure and/or fabric, freeze-thaw cycles, however, seem to have an adverse effect on the strength. The higher the freeze-thaw cycle, the lower the shear strength, cohesion, and internal friction angle. Also, some improvements in the plasticity and compaction properties were determined, and environmental concerns regarding Ferrochromium Slag usage have been addressed.

6.
Sci Rep ; 14(1): 11618, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773225

RESUMO

This study examines the efficacy of employing calcium sulfoaluminate (CSA) cement, an environmentally friendly binder, for enhancing the geomechanical characteristics of sand, particularly under low confining pressure conditions. A series of triaxial consolidated drained tests were performed on sand samples treated with varying content (5, 7, and 10%) of CSA cement and 10% ordinary Portland cement (OPC) under various low confining pressures (50, 100, 200, and 400 kPa). The test findings demonstrated the importance of cement content and confining pressure on the mode of failure, stress-strain and volumetric behavior, failure characteristics, and shear strength parameters of the treated quartz sand. After a curing period of 14 days, samples treated with 10% CSA cement exhibited a remarkable 212% increase in peak deviator stress and an 89% reduction in axial strain at failure, indicating higher initial stiffness compared to untreated samples under a 400 kPa confining pressure. Furthermore, the samples treated with 10% CSA exhibited higher peak deviator stress, initial stiffness, and strength development compared to those treated with 10% OPC. The scanning electron microscopy analysis provides insights into particle breakage and bond degradation processes, which increase with confining pressure in CSA-treated samples. Also, the mode of failure analysis reveals a transition from ductile to slightly brittle behavior with increasing cement content. Notably, the geomechanical properties of the treated material emphasized the significant impact of CSA cement on soil improvement. Thus offering a sustainable alternative for soil improvement in construction projects.

7.
Sci Rep ; 14(1): 10862, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740896

RESUMO

Soil stabilization is a technique of improving the geotechnical properties of soils for various engineering applications. However, conventional stabilizers such as cement and lime have some limitations, such as high cost, environmental impact, and durability issues. Therefore, there is a need for alternative and innovative stabilizers that can overcome these challenges. This study introduces nano-Illite, a type of clay mineral, as a novel and effective soil stabilizer. Nano-Illite can form nano-cementation (NC) in soil, which is a process of enhancing the durability of various building materials. NC is also known as nano soil-improvement (NSI), a technique that has been developed in recent years. Four formulations of micro- and nano-Illite with concentrations of 0, 1, 2, and 3% were separately added to soil samples. The unconfined compressive strength (UCS) and the secant modulus at 50% of peak stress (E50) of the treated samples were measured and compared with the untreated samples. The results showed that 3% nano-Illite increased the UCS of soil by more than 2.2 times and the E50 by more than 1.5 times after 7 days of curing. Micro-Illite also improved the UCS and E50 of soil, but to a lesser extent. X-ray fluorescence (XRF), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses revealed the micro- and nano-structures of the soil specimens and the performance of Illite as a nano-additive. This research demonstrates the effectiveness of nano-Illite in soil improvement as a NSI technique, and its potential to replace or reduce the use of conventional stabilizers. This study also contributes to the understanding of the mechanisms and factors that influence the NC process in soil.

8.
Sci Rep ; 14(1): 12412, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816387

RESUMO

This study introduces microbiologically induced calcium phosphate precipitation (MICPP) as a novel and environmentally sustainable method of soil stabilization. Using Limosilactobacillus sp., especially NBRC 14511 and fish bone solution (FBS) extracted from Tuna fish bones, the study was aimed at testing the feasibility of calcium phosphate compounds (CPCs) deposition and sand stabilization. Dynamic changes in pH and calcium ion (Ca2+) concentration during the precipitation experiments affected the precipitation and sequential conversion of dicalcium phosphate dihydrate (DCPD) to hydroxyapatite (HAp), which was confirmed by XRD and SEM analysis. Sand solidification experiments demonstrated improvements in unconfined compressive strength (UCS), especially at higher Urea/Ca2+ ratios. The UCS values obtained were 10.35 MPa at a ratio of 2.0, 3.34 MPa at a ratio of 1.0, and 0.43 MPa at a ratio of 0.5, highlighting the advantages of MICPP over traditional methods. Microstructural analysis further clarified the mineral composition, demonstrating the potential of MICPP in environmentally friendly soil engineering. The study highlights the promise of MICPP for sustainable soil stabilization, offering improved mechanical properties and reducing environmental impact, paving the way for novel geotechnical practices.


Assuntos
Fosfatos de Cálcio , Precipitação Química , Areia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Areia/química , Animais , Concentração de Íons de Hidrogênio , Durapatita/química , Solo/química , Força Compressiva , Difração de Raios X
9.
Front Bioeng Biotechnol ; 12: 1380213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585712

RESUMO

Microbially Induced Calcite Precipitation (MICP) represents an environmentally friendly and innovative soil grouting technology. Involving intricate biochemical processes, it poses challenges for a thorough investigation of factors influencing microbial grouting effectiveness through experimentation alone. Consequently, A three-dimensional numerical model was developed to predict the permeability of bio-grouting in porous media. The numerical model is validated by comparing its results with test results available in the literature. The validated model is then used to investigate the effects of variation bacterial solution concentration, cementation solution concentration, grouting rate and grouting time on grouting effectiveness. It was founded that the remediation effect was positively correlated with the bacterial solution concentration and the number of grouting. An increased grouting rate enhanced the transport efficiency of reactants. Additionally, the concentration of cementation solution exhibited no significant effect on the reduction of calcium carbonate yield and permeability.

10.
Plants (Basel) ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592957

RESUMO

The mining of metal minerals generates considerable mining wasteland areas, which are characterized by poor soil properties that hinder plant growth. In this study, a field plot experiment was carried out in the mining wasteland of the Lanping lead-zinc mine in Yunnan Province to study the effects of applying three organic materials-biochar (B), organic fertilizer (OF), and sludge (S)-at concentrations of 1% (mass fraction), on promoting the soil of mining wasteland and the growth of two plant varieties (Huolieniao and Yingshanhong). The results showed that the amount of available nutrients in the surface soil of a mining wasteland could be considerably increased by S and OF compared to the control check (CK). In the rhizosphere soils of two Rhododendron simsii varieties, the application of S increased the available phosphorus (P) content by 66.4% to 108.8% and the alkali-hydrolyzed nitrogen (N) content by 61.7% to 295.5%. However, the contents of available cadmium (Cd) and available lead (Pb) were reduced by 17.1% to 32.0% and 14.8% to 19.0%, respectively. Moreover, three organic materials increased the photosynthetic rate and biomass of two R. simsii varieties. Specifically, OF and S were found to significantly increase the biomass of R. simsii. Organic materials have direct impacts on the increased plant height and biomass of R. simsii. Additionally, organic materials indirectly contribute to the growth of R. simsii by reducing the content of available Cd and available Pb in rhizosphere soil while increasing the content of available nutrients according to the structural equation model (SEM). Overall, S can stabilize Cd and Pb, increase soil nutrient contents, and promote the growth of R. simsii effectively, and has great potential in the vegetation reconstruction of mining wasteland.

11.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674620

RESUMO

Microalgae have great potential for remediating salt-affected soil. In this study, the microalgae species Coelastrella sp. SDEC-28, Dunaliella salina SDEC-36, and Spirulina subsalsa FACHB-351 were investigated for their potential to rehabilitate salt-affected soils. Nylon screens with optimal aperture sizes and layer numbers were identified to efficiently intercept and harvest biomass, suggesting a correlation between underflow capability and the tough cell walls, strong motility, and intertwining characteristics of the algae. Our investigations proved the feasibility of incorporating monosodium glutamate residue (MSGR) into soil extracts at dilution ratios of 1/200, 1/2000, and 1/500 to serve as the optimal medium for the three microalgae species, respectively. After one growth period of these three species, the electrical conductivities of the media decreased by 0.21, 1.18, and 1.78 mS/cm, respectively, and the pH remained stable at 7.7, 8.6, and 8.4. The hypotheses that microalgae can remediate soil and return profits have been verified through theoretical calculations, demonstrating the potential of employing specific microalgal strains to enhance soil conditions in eco-farms, thereby broadening the range of crops that can be cultivated, including those that are intolerant to saline-alkali environments.

12.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654167

RESUMO

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Assuntos
Azospirillum brasilense , Carvão Vegetal , Solo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiologia , Solo/química , Desidratação , Secas
13.
Sci Total Environ ; 929: 172609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663623

RESUMO

Nitrogen-fixing cyanobacteria (NFC) are photosynthetic prokaryotic microorganisms capable of nitrogen fixation. They can be used as biofertilizers in paddy fields, thereby improving the rice tillering capacity and yield. To reveal the microbiological mechanisms by which nitrogen-fixing cyanobacteria alter soil carbon storage, we conducted a field experiment using NFC as a partial substitute for nitrogen fertilizer in paddy fields in the Sanjiang Plain of Northeast China's Mollisols region. Using metagenomic sequencing technology and Biolog Ecoplate™ carbon matrix metabolism measurements, we explored the changes in the soil microbial community structure and carbon utilization in paddy fields. The results indicated that the replacement of nitrogen fertilizer with NFC predisposed the soil microbial community to host a great number of copiotrophic bacterial taxa, and Proteobacteria and Actinobacteria were closely associated with the metabolism of soil carbon sources. Moreover, through co-occurrence network analysis, we found that copiotrophic bacteria clustered in modules that were positively correlated with the metabolic level of carbon sources. The addition of NFC promoted the growth of copiotrophic bacteria, which increased the carbon utilization level of soil microorganisms, improved the diversity of the microbial communities, and had a potential impact on the soil carbon stock. The findings of this study are helpful for assessing the impact of NFC on the ecological function of soil microbial communities in paddy fields in the black soil area of Northeast China, which is highly important for promoting sustainable agricultural development and providing scientific reference for promoting the use of algal-derived nitrogen fertilizers.


Assuntos
Carbono , Cianobactérias , Microbiota , Oryza , Microbiologia do Solo , Solo , Carbono/metabolismo , Cianobactérias/metabolismo , China , Solo/química , Fertilizantes , Fixação de Nitrogênio , Nitrogênio/metabolismo , Agricultura/métodos
14.
Pest Manag Sci ; 80(8): 4110-4124, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38578650

RESUMO

BACKGROUND: Bacillus, as a plant-growth-promoting rhizobacteria, can enhance the resistance of plants to phytopathogens. In our study, Bacillus strains showing excellent biocontrol were screened and used to control ginkgo leaf blight (Alternaria tenuissima). RESULTS: Four biocontrol Bacillus strains-Bsa537, Bam337, Bso544, and Bsu503-were selected from 286 isolates based on their capacity to inhibit pathogens and promote plant growth. The four Bacillus strains significantly improved the resistance of ginkgo to leaf blight. This was especially the case when the four strains were used as a mixture, which contributed to a decrease in lesion area of >40%. Hence, a mixture of Bacillus strains was used to control ginkgo leaf blight in the field. Treatment efficiency varied from 30% to 100% (average 81.5%) and was higher than that of the control (-2% to -18%, average - 8.5%); the antioxidant capacity of the treated ginkgo was also stronger. In addition, ginkgo biomass increased as a result of treatment with the Bacillus mixture, including leaf weight, area, thickness, number of lateral roots and root weight. Furthermore, the Bacillus mixture improved the ginkgo rhizosphere soil by boosting the number of beneficial microorganisms, lowering the number of pathogens and hastening soil catabolism. CONCLUSION: The Bacillus mixture improved the health status of ginkgo by protecting it from pathogen attack, promoting its growth and improving the microorganism community in the rhizosphere. This work closes a technological gap in the biological control of ginkgo leaf blight, investigates application methods for compound Bacillus biofertilizers and establishes a framework for the popularity and commercialization of these products. © 2024 Society of Chemical Industry.


Assuntos
Alternaria , Bacillus , Ginkgo biloba , Doenças das Plantas , Ginkgo biloba/microbiologia , Bacillus/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/fisiologia , Alternaria/efeitos dos fármacos , Resistência à Doença , Folhas de Planta , Controle Biológico de Vetores/métodos
15.
Ying Yong Sheng Tai Xue Bao ; 35(1): 55-61, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511440

RESUMO

Improving soil fertility is one of the key approaches for ecological restoration of the wind-sand area in northwest Liaoning Province. Taking wind-sand area in northwest Liaoning Province as test object, we conducted a fertilization experiment with treatments of inorganic fertilizer (nitrogen, phosphorus and potassium fertilizers), organic fertilizer, combined application of organic and inorganic fertilizers, and organic fertilizer combined with a biologically organic matrix (γ-polyglutamic acid), and no fertilizer as control. We measured soil organic matter content and extractable cations concentrations, vegetation coverage, and biomass under different fertilization treatments and determine the suitable fertilization mode. The results showed that compared to the control, inorganic fertilizer rapidly increased vegetation coverage and biomass, but high levels of inorganic fertilizer (150 kg N·hm-2) led to soil acidification and Ca2+ leaching. Organic fertilizer increased soil organic matter content, exchangeable K+, Ca2+, and Mg2+ contents, as well as coverage and biomass vegetation, especially combined with γ-polyglutamic acid. Overall, the combination of low levels of inorganic fertilizer (50 kg N·hm-2) and moderate levels of organic fertilizer (30000 kg·hm-2) was the best fertilization practice for the rapid and stable restoration of grassland in wind-sand area. Moreover, the extra addition of γ-polyglutamic acid (60 kg·hm-2)could effectively improve soil fertility.


Assuntos
Agricultura , Solo , Agricultura/métodos , Fertilizantes , Areia , Pradaria , Ácido Poliglutâmico , China , Nitrogênio/análise , Fertilização
16.
Environ Sci Pollut Res Int ; 31(11): 16188-16205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329669

RESUMO

Phytoremediation is a cost-effective and eco-friendly plant-based approach promising technique to repair heavy metal-contaminated soils. However, a significant quantity of plant residues needs to be properly treated and utilized. Pyrolysis is an effective technology for converting residues to biochar, which can solve the problem and avoid secondary contamination. This paper reviews the generation, and physicochemical properties of biochar from phytoremediation residues, and its application in soil improvement, environmental remediation, and carbon sequestration. In spite of this, it is important to be aware of the potential toxicity of heavy metals in biochar and the environmental risks of biochar before applying it to practical applications. Future challenges in the production and application of residue-derived biochar include the rational selection of pyrolysis parameters and proper handling of potentially hazardous components in the biochar.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Carvão Vegetal/química , Metais Pesados/análise , Solo/química
17.
Environ Res ; 246: 118144, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191043

RESUMO

Soil degradation has become a major global problem owing to the rapid development of agriculture. The problems of soil drought and decreased soil fertility caused by soil degradation severely affect the development of the agricultural and forestry industries. In this study, we designed sodium alginate (SA)/sodium lignosulfonate (SLS) hydrogel based on the activation and crosslinking of inert Ca2+. CaCO3 and SA were mixed, and then, inert Ca2+ was activated to prepare a gel with a stable structure and a uniform interior and exterior. The crosslinking activated by inert Ca2+ enhanced the stability of the hydrogel, and the optimal swelling rate of the hydrogel reached 28.91 g/g, thereby effectively improving the water-holding capacity of the soil (77.6-108.83 g/kg). SLS was degraded into humic acid (HA) and gradually released, demonstrating a positive growth-promoting effect in plant growth experiments. The SA/SLS hydrogel can be used for soil water retention and mitigation to significantly decrease the water loss rate of soil. This study will assist in addressing soil drought and fertility loss.


Assuntos
Conservação dos Recursos Hídricos , Hidrogéis , Lignina/análogos & derivados , Hidrogéis/química , Alginatos/química , Solo/química , Água/química , Sódio
18.
Carbohydr Polym ; 327: 121676, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171662

RESUMO

In this paper, an eco-friendly versatile superabsorbent material was designed for soil improvement, and a synchronous chemical loading strategy was proposed. In this strategy, urea not only acted as fertilizer but also acted as a crosslinker to construct an alginate network. The microstructure, chemical structure, thermal stability and composition of the obtained SA/urea hydrogel were characterized in detail. Adsorption behavior and application performance in agriculture were evaluated. The results demonstrated that urea had two different conformations in the network. The SA/urea hydrogel had abundant pore structures with excellent water absorption performance. It could not only improve the water retention capacity of soil but also release nitrogen, phosphorus and potassium elements with degradation for as long as 9 weeks. Moreover, the hydrogel could promote plant growth, increase the nutritional composition of plants and inhibit the accumulation of harmful nitrate in plants. With advantages, including biodegradability, high water absorption, controllable degradation, excellent water retention, sustained NPK release and improved plant nutrition value, the SA/urea hydrogel has great potential for soil improvement in agriculture as an eco-friendly versatile water retention agent and can be expected to extend to more fields as a novel superabsorbent material.

19.
Microb Cell Fact ; 23(1): 27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238808

RESUMO

BACKGROUND: Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS: Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS: This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.


Assuntos
Solo , Zeolitas , Hidrogênio , Amônia , Mostardeira , Nitrogênio , Glucose
20.
Environ Res ; 242: 117794, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036209

RESUMO

Biochar is a growing tool for bioremediation and soil improvement applications. Researchers are focusing on biochar due to its efficacy, eco-friendly composition, and cost-effective solutions to a variety of environmental issues. In recent times biochar has been used in enhancing the soil, increasing nutrient content, and sequestering carbon in paddy cultivation soils. India and Southeast Asian countries consume paddy as a major source of food in large quantities. Therefore, improving the growth condition of paddy fields using an easily available and safe technique will help increase the production rate. This will fulfill the needs of the growing population. Biochar is developed by the thermal decomposition of organic materials in low or no oxygen through pyrolysis, gasification, and co-pyrolysis methods. It improves paddy soil fertility due to its special physicochemical properties such as porosity, high surface area, efficient slow release, nutrient holding capacity, and maintenance of soil microbiota. Considering the importance of biochar in paddy soil fertility, the present work reviews the sources of biochar, functionalization of biochar, mechanism, and beneficial role of biochar.


Assuntos
Oryza , Solo , Solo/química , Carvão Vegetal/química , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...