Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Heliyon ; 10(15): e34742, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144945

RESUMO

Zinc and boron are nutrients that often suffer low bioavailability to pecan trees grown in calcareous soils whereas adequate supplies of these two elements is essential for commercial pecan production. Working with young pecan trees, we evaluated changes in oxidative metabolism, levels of bioactive compounds, yield components and foliar nutrient concentrations in response to foliar sprays (50 or 100 mg L-1) of zinc oxide nanoparticles (ZnO NPs) and boron (H3BO3). Four different treatment solutions were applied in a completely randomised design with six replications per treatment (24 trees in total). Zinc and B treatments were applied before pistil receptivity (3 weeks before anthesis) and at stem elongation stage 31, 39/60; flowering stage 69; fruit stages 7-75 and continued for a total of five applications at 14-day intervals. We evaluated enzyme activities (SOD, H2O2, CAT and GPx), AC, phenols, flavonoids, leaf area, chlorophyll, total anthocyanins and nut yield and quality (nut weight and % kernel). The mineral concentrations in the leaflets were also determined. The mineral concentrations (N, P, K, Ca, Mg, Fe, Cu, Mn, Ni, Zn and B) in the leaflets were also determined. Spraying ZnO NPs and B increased SOD activity, CA, chlorophyll concentration, mineral nutrients (N, K, Ca, Zn and B) and yield. However, reductions were observed for CAT activity, nut quality and concentrations of phenol, flavonoid, anthocyanin and Fe. Boron increased GPx activity and P concentration. These results demonstrate that spraying low doses (50 mg L-1) of ZnO NPs and B can help reduce oxidative stress and increase yield, nut quality and leaf concentrations of Zn and B in young cv. Wichita pecan trees established on a calcareous soil.

2.
Environ Pollut ; 360: 124617, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067737

RESUMO

The aim of this work was to evaluate the presence of 40 pesticides in the PM10 emitted by rural soils of the semiarid region of Argentina. Six agricultural soils for grain production under no till and with high use of pesticides (AG), 5 agricultural soils for forage and grain production under conventional tillage (AFG) and 5 unpaved rural roads (RR) were sampled. The PM10 was generated using the Easy Dust Generator and it was collected with an electrostatic precipitator. The presence of 20 herbicides, 14 insecticides and 6 fungicides was analyzed in the soil and in the PM10. More than 70% of the pesticides analyzed were detected in the soil and in the PM10. All agricultural soils and 87% of RR soils showed at least one residue of pesticides. Multiresidues of pesticides were found in the 100% of PM10 emitted by rural soils. The mean number of pesticides was higher in the PM10 (7) than in the soil (5). Some pesticides were not detected in the soils but they were detected in the PM10 (triticonazole, carbofuran, metsulfuron methyl) and vice versa. In general, the concentrations of herbicides were higher in the PM10 than in the soil, while the concentrations of insecticides and fungicides were lower in the PM10 than in the soil. These results suggest that the concentrations of pesticide in the PM10 (inhalable fraction) should be used instead the concentrations of pesticide in the soil to calculate the exposure factor to pesticides by dust inhalation. This study provides the initial evidence of the presence of multiple pesticide residues in PM10 emitted by rural soils under different land management. Also confirms that the PM10 is a potential source of air contamination with pesticides. Future studies should be driven to measure the concentrations of pesticides and their dynamics in the PM10.


Assuntos
Agricultura , Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Praguicidas , Solo , Argentina , Material Particulado/análise , Solo/química , Poluentes Atmosféricos/análise , Praguicidas/análise , Poluição do Ar/estatística & dados numéricos , Poluentes do Solo/análise , Resíduos de Praguicidas/análise , Herbicidas/análise
3.
J Environ Manage ; 366: 121915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39033627

RESUMO

Phosphorus is a limiting element for the productivity of mangroves, which in turn are important ecosystems in regulating nutrients cycle and climate change by sequestering carbon (C). Despite this, there is an intense process of degradation in these environments. In addition to providing socio-environmental services, mangrove replanting can also alter the dynamics of nutrients in soils. Therefore, this study aims to understand the changes in soil phosphorus (P) fractions after a mangrove restoration. Soil samples from an unvegetated area (NV), a mature mangrove (R) and 7 and 9 year old replanted mangroves at SE-Brazil (APA Guapi-mirim, Rio de Janeiro state) were collected and analyzed to characterize the redox conditions (Eh), pH, and iron (Fe) fractionation, Total Organic Carbon (TOC) contents and P fractionation (exchangeable P; P associated with reducible Fe and Mn oxyhydroxides; associated with Al silicates and hydroxides; associated with humic acids; associated with Ca and Mg; associated with humin). The results indicate an increase in TOC as the age of the mangrove restoration increases (from 8.6 to 17.9%). The pH values were significantly lower, reaching very acidic values, associated with an increase in Eh. Both parameters also showed strong seasonal variation, with a drop in Eh during the wet period (from 165% to -46%) and an increase in pH in the same period (from 6.0 to 6.7). Regarding P fractionation, the main P pool was organic P forms, which showed the highest concentrations in all studied sites. Unvegetated areas showed higher organic P forms (NV: 108.8 µg g-1) than vegetated areas (M7: 55.7 µg g-1, M9: 83.6 µg g-1, R: 87.3 µg g-1). Vegetated sites also showed lower levels of the PEx, PFeMn and Papatite fractions (total forest mean: 2.4 µg g-1, 5.8 µg g-1, 3.0 µg g-1, respectively). Besides no clear trend on P fractionation through seasons and forest age, pseudo-total P increased following the forest recovery (e.g. M7

Assuntos
Fósforo , Solo , Áreas Alagadas , Fósforo/análise , Solo/química , Carbono , Ecossistema
4.
Artigo em Inglês | MEDLINE | ID: mdl-38888220

RESUMO

The adaptive nature of the galler habit has been tentatively explained by the nutrition, microenvironment, and enemy hypotheses. Soil attributes have direct relationships with these three hypotheses at the cellular and macroecological scales, but their influence has been restricted previously to effects on the nutritional status of the host plant on gall richness and abundance. Herein, we discuss the ionome patterns within gall tissues and their significance for gall development, physiology, structure, and for the nutrition of the gallers. Previous ecological and chemical quantification focused extensively on nitrogen and carbon contents, evoking the carbon-nutrient defence hypothesis as an explanation for establishing the plant-gall interaction. Different elements are involved in cell wall composition dynamics, antioxidant activity, and regulation of plant-gall water dynamics. An overview of the different soil-plant-gall relationships highlights the complexity of the nutritional requirements of gallers, which are strongly influenced by environmental soil traits. Soil and plant chemical profiles interact to determine the outcome of plant-herbivore interactions and need to be addressed by considering not only the soil features and galler nutrition but also the host plant's physiological traits. The quantitative and qualitative results for iron metabolism in gall tissues, as well as the roles of iron as an essential element in the physiology and reproduction of gallers suggest that it may represent a key nutritional resource, aligning with the nutrition hypothesis, and providing an integrative explanation for higher gall diversity in iron-rich soils.

5.
Microorganisms ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930482

RESUMO

Due to its adsorption with aluminum and iron hydroxides, phosphorus viability is low in acidic soils; thus, the aim of this study was to isolate and identify bacteria from the rhizosphere of four legumes growing in acidic soils of the Cumbaza Sub-basin, San Martín, Peru, as well as to characterize their ability to solubilize aluminum phosphate and iron phosphate. The isolation process was conducted on TSA medium and the isolates were classified based on their origin and morphocolonial characteristics, with the bacillary shape being the most frequent, followed by cocci. To assess the solubilization of aluminum and iron phosphates, the liquid medium GELP was employed. Sixteen strains were selected, among which three stood out for their effectiveness in solubilizing AlPO4 (Sfcv-098-02, 22.65 mg L-1; Sfc-093-04, 26.50 mg L-1; and Sfcv-041-01-2, 55.98 mg L-1) and one for its ability to solubilize FePO4 (Sfcr-043-02, 32.61 mg L-1). These four strains were molecularly characterized, being identified as Enterobacter sp., Pseudomonas sp., and Staphylococcus sp. Additionally, a decrease in pH was observed in the reactions, with values ranging from 5.23 to 3.29, which enhanced the phosphate of solubilization. This suggests that the selected bacteria could be used to improve phosphorus availability in agricultural soils.

6.
Environ Geochem Health ; 46(7): 260, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907119

RESUMO

The increasing concern over microplastics (MPs) contamination in agricultural soils due to excessive plastic use is a worldwide concern. The objective of this study was to determine which analytical technique is most effective for the analysis of MPs in agricultural soils. Near-infrared spectroscopy (NIR), scanning electron microscopy (SEM), multispectral analysis, and X-ray diffraction were used to analyze sections of clay soil containing varying percentages of virgin white MPs from 0 to 100%. X-ray analysis only detected MPs at high concentrations (20%). However, NIR at 2.300 nm and multispectral analysis at 395 nm demonstrated greater accuracy and sensitivity in distinguishing between all MPs levels. SEM revealed that MPs have an amorphous structure that is distinct from crystalline soil, potentially influencing their interactions with other soil constituents. These findings highlight the value of NIR and multispectral analysis in accurately identifying and measuring MPs in soil. Efficient management plans rely on increased awareness of MPs' environmental impact.


Assuntos
Microplásticos , Microscopia Eletrônica de Varredura , Poluentes do Solo , Poluentes do Solo/análise , Microplásticos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Difração de Raios X , Monitoramento Ambiental/métodos , Solo/química , Agricultura
7.
Microbiol Resour Announc ; 13(7): e0018824, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38860796

RESUMO

To understand microbial metabolism in horticultural soils exposed to pesticides, genome sequencing of Bacillus subtilis sp. strain UAMC was performed. A total of 7,892 genes distributed across 40 contigs were identified. Among these, those related to the degradation of endosulfan such as FMNH2 monooxygenase, or cytochrome p450 stand out.

8.
Waste Manag ; 186: 153-165, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905905

RESUMO

Population growth has driven an increased demand for solid construction materials, leading to higher amounts of construction and demolition waste (C&DW). Efficient strategies to manage this waste include reduction, reuse, and recycling. Technosols-soils engineered from recycled waste-can potentially help with environmental challenges. However, there is a critical need to explore the potential of Technosols constructed with C&DW for land reclamation, through the growth of native vegetation. The objective of this study was to investigate this potential by studying two Brazilian native tree species (Guazuma ulmifolia and Piptadenia gonoacantha). Technosols were created using C&DW, with and without organic compost and a liquid biofertilizer. A soil health index (SHI) was applied to evaluate the soil quality regarding physical, chemical, and biological indicators of Technosols compared to a control soil (Ferralsol). The results showed that P. gonoacantha plants presented the same height and total biomass in all treatments, while G. ulmifolia plants exhibited greater height and total biomass when grown in Technosols. The enhanced plant development in the Technosols was primarily associated with higher cation exchangeable capacity and nutrients concentration in plant tissues. Technosols with added compost provided higher fertility and total organic carbon. Additionally, Technosols presented higher SHI (∼0.68) compared to control (∼0.38) for both studied species. Our experiment reveals that construction and demolition waste (C&DW) have significant potential to form healthy Technosols capable of supporting the growth of native Brazilian trees. This approach offers a promising alternative for addressing C&DW disposal challenges while serving as a nature-based solution for land reclamation.


Assuntos
Materiais de Construção , Reciclagem , Solo , Solo/química , Reciclagem/métodos , Brasil , Compostagem/métodos , Biomassa , Gerenciamento de Resíduos/métodos , Árvores , Resíduos Industriais
9.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925647

RESUMO

AIM: Bacteria that promote plant growth, such as diazotrophs, are valuable tools for achieving a more sustainable production of important non-legume crops like rice. Different strategies have been used to discover new bacteria capable of promoting plant growth. This work evaluated the contribution of soil diazotrophs to the endophytic communities established in the roots of rice seedlings cultivated on seven representative soils from Uruguay. METHODS AND RESULTS: The soils were classified into two groups according to the C and clay content. qPCR, terminal restriction fragment length polymorphism (T-RFLP), and 454-pyrosequencing of the nifH gene were used for analyzing diazotrophs in soil and plantlets' roots grown from seeds of the same genotype for 25 days under controlled conditions. A similar nifH abundance was found among the seven soils, roots, or leaves. The distribution of diazotrophs was more uneven in roots than in soils, with dominance indices significantly higher than in soils (nifH T-RFLP). Dominant soils' diazotrophs were mainly affiliated to Alphaproteobacteria and Planctomycetota. Conversely, Alpha, Beta, Gammaproteobacteria, and Bacillota were predominant in different roots, though undetectable in soils. Almost no nifH sequences were shared between soils and roots. CONCLUSIONS: Root endophytic diazotrophs comprised a broader taxonomic range of microorganisms than diazotrophs found in soils from which the plantlets were grown and showed strong colonization patterns.


Assuntos
Endófitos , Oryza , Raízes de Plantas , Microbiologia do Solo , Solo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/classificação , Solo/química , Polimorfismo de Fragmento de Restrição , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Fixação de Nitrogênio , Oxirredutases/genética
10.
Chemosphere ; 361: 142471, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815814

RESUMO

The assessment of human health risk due to the presence of hazardous elements in the environment is now necessary for environmental management and legislative initiatives. This study aims to determine the contamination by As, Cd, Pb, and Cr in soils near gold mines in three municipalities located in the Andean region of Colombia. One of the main objectives of the study is to explore possible correlations between the Lifetime Cancer Risk (LCR) and phytotoxicity biomarkers using a simple and rapid-response plant model, radish (Raphanus sativus L.). In the municipality of Yalí, Puerto Berrío, and Buriticá, the hazardous elements concentrations ranged from 8.1 to 35.5, 1.7 to 892, and 5.8 to 49.8 for As, 0.1 to 4.6, 0.1 to 65.2, and 0.5 to 18.2 for Cd, 18.5 to 201.3, 13.0 to 1908, and 189 to 2345 for Pb, and 5.4 to 118.4, 65.4 to 301, and 5.4 to 102.3 for Cr, respectively. The results showed that the biomarkers intracellular H2O2 concentration, antioxidant activity, and radicle elongation exhibited significant (P < 0.05) variations associated with the concentration of hazardous elements in the soils. Significant correlations (P < 0.05, r > 0.58) were found between the biomarkers and the LCR for Cd, Pb, and Cr, but not for As. The results using biomarkers reveal that soil pH and organic matter content are important variables that control the bioavailability of these elements in the soil. The use of indicators like LCR alone has limitations and should be accompanied by the use of biomarkers that allow for a better understanding of the biological system's response to exposure to potentially toxic elements. The results obtained show the urgent need to implement public policies to minimize exposure to hazardous substances in areas near gold mining projects.


Assuntos
Biomarcadores , Monitoramento Ambiental , Ouro , Mineração , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Humanos , Colômbia , Solo/química , Medição de Risco , Raphanus/efeitos dos fármacos , Substâncias Perigosas/análise , Substâncias Perigosas/toxicidade , Cádmio/análise , Cádmio/toxicidade , Arsênio/análise , Arsênio/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade
11.
Braz J Microbiol ; 55(2): 1625-1634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652442

RESUMO

Antarctic soils represent one of the most pristine environments on Earth, where highly adapted and often endemic microbial species withstand multiple extremes. Specifically, fungal diversity is extremely low in Antarctic soils and species distribution and diversity are still not fully characterized in the continent. Despite the unique features of this environment and the international interest in its preservation, several factors pose severe threats to the conservation of inhabiting ecosystems. In this light, we aimed to provide an overview of the effects on fungal communities of the main changes endangering the soils of the continent. Among these, the increasing human presence, both for touristic and scientific purposes, has led to increased use of fuels for transport and energy supply, which has been linked to an increase in unintentional environmental contamination. It has been reported that several fungal species have evolved cellular processes in response to these soil contamination episodes, which may be exploited for restoring contaminated areas at low temperatures. Additionally, the effects of climate change are another significant threat to Antarctic ecosystems, with the expected merging of previously isolated ecosystems and their homogenization. A possible reduction of biodiversity due to the disappearance of well-adapted, often endemic species, as well as an increase of biodiversity, due to the spreading of non-native, more competitive species have been suggested. Despite some studies describing the specialization of fungal communities and their correlation with environmental parameters, our comprehension of how soil communities may respond to these changes remains limited. The majority of studies attempting to precisely define the effects of climate change, including in situ and laboratory simulations, have mainly focused on the bacterial components of these soils, and further studies are necessary, including the other biotic components.


Assuntos
Biodiversidade , Mudança Climática , Fungos , Microbiologia do Solo , Regiões Antárticas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Ecossistema , Solo/química , Micobioma
12.
Environ Sci Pollut Res Int ; 31(22): 32152-32167, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648003

RESUMO

Under laboratory conditions, the toxicological effects of pesticides tend to be less variable and realistic than under field conditions, limiting their usefulness in environmental risk assessment. In the current study, the earthworm Eisenia fetida was selected as a bioindicator for assessing glyphosate toxic effects in two different trials to solve this dilemma. In Trial 1, the worms were exposed for 7 and 14 days to concentrations of a commercial glyphosate formulation (1 to 500 mg a.i. kg-1) currently used in the field. In Trial 2, the worms were kept in nine soils collected from different plots with crops for 14 days of exposure. In both experiments, glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE) activities and contents of lipid peroxidation (LPO) were evaluated. In T1, the glyphosate formulation produced a 40% inhibition of AChE activity and a significant increase in GST, SOD, CAT, and GPx activities and LPO contents in E. fetida on day 7. In T2, higher concentrations of glyphosate were detected in the soils of soybean, papaya, and corn (0.92, 0.87, and 0.85 mg kg-1), which induced a positive correlation between the levels of glyphosate residues with GST, SOD, CAT, GPx, and LPO and a negative correlation with AChE. These findings indicate that crop soils polluted with glyphosate elicited higher oxidative stress than under laboratory conditions, confirmed by IBRv2, PCA, and AHC analyses.


Assuntos
Glutationa Transferase , Glicina , Glifosato , Oligoquetos , Poluentes do Solo , Solo , Animais , Oligoquetos/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Glutationa Transferase/metabolismo , México , Catalase/metabolismo , Acetilcolinesterase/metabolismo , Glutationa Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Produtos Agrícolas , Herbicidas/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos
13.
Environ Sci Pollut Res Int ; 31(23): 33623-33637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684615

RESUMO

We present an analytical method to detect and quantify residues of currently used pesticides (CUPs), which include 31 active ingredients (ai) and seven transformation products (TPs) in tropical and agricultural soils of Cuba. Ten isotopically labeled analogous compounds served as internal standards (IL-IS). The novelty of this research is the inclusion of different tropical soils type scarcely studied for CUPs and TPs, based on the QuEChERS (quick, easy, cheap, effective, rugged and safe) method, followed by chromatography tandem mass spectrometry. All figures of merit proved to be satisfactory according to SANTE guidelines 2020 and 2021. Matrix effects (ME) calculated by the external standard method were significant (|ME| > 20% for almost all compounds; grand mean ± standard deviation (STD) 104 ± 108%) in all soils. The internal standard method compensated ME to non-significant levels (8 ± 50%), even for analytes with a non-structure identical IL-IS (STD, 13 ± 57%). Repeatability (relative standard deviation, RSDr) and reproducibility (RSDR) for skeletic regosol (SR) were 7.5 ± 2.8% and 11.7 ± 4.7%, respectively. Absolute (quantified for 11 analytes with structure identical IL-IS) and relative recovery from SR was 92 ± 13% (mean ± STD) and 90 ± 12%, respectively. Limits of quantification for SR ranged from 0.1 to 10 ng/g, except metalaxyl and oxyfluorfen (25 ng/g each). Linearity of matrix-matched (MM) calibration curves (5 to 100 ng/g) had an R2 of ≥ 0.99 for all soils and almost all analytes. The method was successfully applied to 30 real soil samples.


Assuntos
Agricultura , Poluentes do Solo , Solo , Espectrometria de Massas em Tandem , Cuba , Poluentes do Solo/análise , Solo/química , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos
14.
Toxics ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38668472

RESUMO

Soil pollution by TNT(2,4,6-trinitrotoluene), RDX(hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane), and HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), resulting from the use of explosives, poses significant challenges, leading to adverse effects such as toxicity and alteration of microbial communities. Consequently, there is a growing need for effective bioremediation strategies to mitigate this damage. This review focuses on Microbial and Bio-omics perspectives within the realm of soil pollution caused by explosive compounds. A comprehensive analysis was conducted, reviewing 79 articles meeting bibliometric criteria from the Web of Science and Scopus databases from 2013 to 2023. Additionally, relevant patents were scrutinized to establish a comprehensive research database. The synthesis of these findings serves as a critical resource, enhancing our understanding of challenges such as toxicity, soil alterations, and microbial stress, as well as exploring bio-omics techniques like metagenomics, transcriptomics, and proteomics in the context of environmental remediation. The review underscores the importance of exploring various remediation approaches, including mycorrhiza remediation, phytoremediation, bioaugmentation, and biostimulation. Moreover, an examination of patented technologies reveals refined and efficient processes that integrate microorganisms and environmental engineering. Notably, China and the United States are pioneers in this field, based on previous successful bioremediation endeavors. This review underscores research's vital role in soil pollution via innovative, sustainable bioremediation for explosives.

15.
Heliyon ; 10(6): e27916, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524626

RESUMO

The hydrobiological diversity in the basin depends on biotic and abiotic factors. A predictive model of hydrobiological diversity for periphyton and macrobenthos was developed through multiple linear regression analysis (MLRA) based on the physicochemical parameters of water (PPW) and metal content in sediments (MCS) from eight monitoring stations in the Asana-Tumilaca Basin during the dry and wet seasons. The electrical conductivity presented values between 47.9 and 3617 µS/cm, showing the highest value in the Capillune River due to the influence of geothermal waters. According to Piper's diagram, the water in the basin had a composition of calcium sulfate and calcium bicarbonate-sulfate. According to the Wilcox diagram, the water was found to be between good and very good quality, except for in the Capillune River. The Shannon-Wiener diversity indices (H') were 2.62 and 2.88 for periphyton, and 2.10 and 2.44 for macrobenthos, indicating moderate diversity; for the Pielou's evenness index (J'), they were 0.68 and 0.70 for periphyton, and 0.68 and 0.59 for macrobenthos, indicating similar equity, in the dry and wet seasons, respectively, for both indices. In the model there were three cases, where the first two cases only worked with PPW or MCS, and case 3 worked with PPW and MCS. For case 3, the predicted values for H' and J' of periphyton and macrobenthos concerning those observed presented correlation coefficients of 0.7437 and 0.6523 for periphyton and 0.9321 and 0.8570 for macrobenthos, respectively, which were better than those of cases 1 and 2. In addition, principal component analysis revealed that the As, Pb, and Zn contents in the sediments negatively influenced the diversity, uniformity, and richness of the macrobenthos. In contrast, Cu and Cr had positive impacts because of the adaptation processes.

16.
Metabolites ; 14(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535304

RESUMO

Many biogeochemical processes are modulated by dissolved organic matter (DOM), but the drivers influencing the chemodiversity of DOM compounds in Amazonian soils are poorly understood. It has also been theorized whether deforestation controls the decline of DOM. In this study, we collected soil samples from thirty sites across different regions of Brazil's Legal Amazon, and we investigated the trade-offs among soil physical-chemical properties and DOM chemodiversity. We employed optical spectroscopy, Fourier transform ion cyclotron resonance, and multivariate analysis. Our results indicated that, despite variations in land use and soil physical-chemical properties, factors such as the deforested site, geometric mean diameter, weighted average diameter, and soil organic carbon were the main influencers of DOM chemodiversity variation. These findings highlight the importance of considering DOM chemodiversity as closely related to land use and its potential use in developing deforestation models for predicting soil quality decline in Brazil's Legal Amazon.

17.
Sci Rep ; 14(1): 6845, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514851

RESUMO

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability.


Assuntos
Bactérias , Solo , RNA Ribossômico 16S/genética , Brasil , Bactérias/genética , Acidobacteria/genética , Microbiologia do Solo
18.
Sci Total Environ ; 927: 172053, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556010

RESUMO

Tropical environments show great potential to sequester CO2 by enhanced rock weathering (ERW) of powdered mafic rocks applied to agricultural fields. This study seeks to assess carbon dioxide reduction (CDR) potential in the humid tropics (1) by experimental weathering of mafic rock powders in conditions simulating humid tropical soils, and (2) from weathering rates determined from a Holocene tropical soil chronosequence where parent material is andesitic sediments. Experimentally determined weathering rates by leaching of basaltic andesites from Costa Rica (Arenal and Barva) for 50 t ha-1 applications indicate potential sequestration of 2.4 to 4.5 t CO2 ha-1 yr-1, whereas the USGS basalt standard BHVO-1 yields a rate of 11.9 t ha-1 yr-1 (influenced by more mafic composition and finer particle size). The chronosequence indicates a rate of 1.7 t CO2 ha-1 yr-1. The weathering experiment consisted of 0.6 mm of powdered rock applied atop 12 mm of Ultisol at 35 °C. To simulate a tropical soil solution, 100-mL aliquots of a dilute solution of oxalic acid in carbonated DI water were rained onto soils over a 14-day period to simulate soil moisture in the humid tropics. Solutions were collected and analyzed by ICPMS for concentrations of leached cations. A potential ERW scenario for Costa Rica was assessed assuming that one-half of lowland agricultural kaolinitic soils (mainly Ultisols, common crop and pasture soils, excluding protected areas) were to receive 50 t ha-1 of annual or biennial applications of powdered mafic rock. With an experimentally determined humid tropical CDR rate for basaltic andesite (3.5 t ha-1 yr-1) and allowances for carbon costs (e.g. emissions from processing and delivery) that reduce CDR to a net 3.2 t ha-1 yr-1, potential annual CDR of this tropical nation is ∼2-4 million tons, amounting to ∼25-50 % of annual CO2 emissions (mainly from transportation in Costa Rica).

19.
Environ Geochem Health ; 46(3): 84, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367079

RESUMO

Heavy metals can play an important biological role as micronutrients but also as potentially toxic elements (PTEs). Understanding the natural concentrations of PTEs-Pb and Zn included-in soils allows for the identification and monitoring of contaminated areas and their role in environmental risk assessment. In this study, we aim to determine semi-total or natural and available concentrations of Pb and Zn in topsoils (0-20 cm depth) from 337 samples under native vegetation in the State of Minas Gerais, Brazil. Additionally, we sought to interpret the spatial geochemical variability using geostatistical techniques and quality reference values for these elements in soils were established. The semi-total concentrations were determined by flame and graphite furnace atomic absorption after microwave-assisted nitric acid digestion method. The available concentrations were extracted using the Mehlich-I extractor and determined by atomic absorption spectrometer. Spatial variability was modeled using semivariance estimators: Matheron's classic, Cressie and Hawkins' robust, and Cressie median estimators, the last two being less sensitive to extreme values. This allowed the construction of digital maps through kriging of semi-total Pb and Zn contents using the median estimator, as well as other soil properties by the robust estimator. The dominance of acidic pH and low CEC values reflects highly weathered low-fertility soils. Semi-total Pb contents ranged from 2.1 to 278 mg kg-1 (median: 9.35 mg kg-1) whereas semi-total Zn contents ranged from 2.7 to 495 mg kg-1 (median: 7.7 mg kg-1). The available Pb contents ranged from 0.1 to 6.92 mg kg-1 (median: 0.54 mg kg-1) whereas available Zn contents ranged from 0.1 to 78.2 mg kg-1 (median: 0.32 mg kg-1). The highest Pb and Zn concentrations were observed near Januária, in the northern part of the territory, probably on limestone rocks from the Bambuí group. Finally, the QRVs for Pb and Zn in natural soils were lower than their background values from other Brazilian region and below the prevention values suggested by Brazilian environmental regulations.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Brasil , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Zinco
20.
Sci Total Environ ; 919: 170691, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325468

RESUMO

Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.


Assuntos
Ecossistema , Níquel , Níquel/análise , Malásia , Fazendas , Cálcio/metabolismo , Agricultura , Solo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA