Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121612, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971060

RESUMO

Productive activities such as pig farming are a fundamental part of the economy in Mexico. Unfortunately, because of this activity, large quantities of wastewater are generated that have a negative impact in the environment. This work shows an alternative for treating piggery wastewater based on advanced oxidation processes (Fenton and solar photo Fenton, SPF) that have been probed successfully in previous works. In the first stage, Fenton and SPF were carried out on a laboratory scale using a Taguchi L9-type experimental design. From the statistical analysis of this design, the operating parameters: pH, time, hydrogen peroxide concentration [H2O2], and iron ferrous concentration [Fe2+] that maximize the response variables: Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), and color were chosen. From these, a cascade forward neural network was implemented to establish a correlation between data from the variables to the physicochemical parameters to be measure being that a great fit of the data was obtained having a correlation coefficient of 0.99 which permits to optimize the pollutant degradation and predict the removal efficiencies at pilot scale but with a projection to a future industrial scale. A relevant result, it was found that the optimal values for maximizing the removal of physicochemical parameters were pH = 3, time = 60 min, H2O2/COD = 1.5 mg L-1, and H2O2/Fe2+ = 2.5 mg L-1. With these conditions degradation percentages of 91.44%, 47.14%, and 97.89% for COD, TOC, and color were obtained from the Fenton process, while for SPF the degradation percentage increased moderately. From the ANN analysis, the possibility to establish an intelligent system that permits to predict multiple results from operational conditions has been achieved.

2.
Photochem Photobiol Sci ; 23(6): 1143-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748080

RESUMO

Epoxiconazole (EPO) is classified as a persistent organic pollutant due to its ability to persist in the environment for prolonged periods. Its degradation is pivotal in mitigating its environmental impact. This investigation focuses on assessing the degradation of EPO using various methodologies, namely Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis, conducted in both Milli-Q water and groundwater. These experiments encompassed evaluations at both the standard pH typically used in photo-Fenton reactions and the natural pH levels inherent to the respective aqueous environments. Additionally, EPO degradation products were analyzed after a 60-min reaction. Notably, in systems utilizing groundwater, the inclusion of additional iron was unnecessary, as the naturally occurring iron content in the groundwater facilitated the intended processes. Specifically, in Milli-Q water, solar photo-Fenton demonstrated an EPO degradation efficiency of 97%. Furthermore, the substitution of Milli-Q water with groundwater in Fenton-like processes did not significantly affect the efficacy of EPO degradation. These findings underscore the potential of solar photo-Fenton as an economically viable and environmentally sustainable strategy for EPO degradation.

3.
Sci Rep ; 14(1): 8573, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609385

RESUMO

Textile industry wastewater containing toxic dyes and high COD poses environmental hazards and requires treatment before discharge. This study addresses the challenge of treating complex textile wastewater using a novel integrated system. The system combines sedimentation, screening, adsorption, and an optimized solar photo-Fenton process to provide a sustainable treatment solution. A novel parabolic collector with a larger absorber tube diameter enhances solar radiation utilization at lower catalyst concentrations. This design is versatile, treating all types of wastewaters, especially those that contain colors, smells, solid and suspended materials, in addition to its importance for the treatment of difficult substances that may be present in industrial and sewage wastewaters that are difficult to dispose of by traditional treatment methods. Multivariate experiments optimized key photo-Fenton parameters (pH, catalyst dose, etc.) achieving significant pollutant removal (85% COD, 82% TOC, complete color) under specific conditions (pH 3, 0.2 g/L Fe(II), 1 mL/L H2O2, 40 °C and 100 L/h flow rate after 60 min irradiation). Kinetic modeling revealed second-order reaction kinetics, and multivariate regression analysis led to the development of models predicting treatment efficiency based on process factors. The key scientific contributions are the integrated system design combining conventional and advanced oxidation technologies, novel collector configuration for efficient utilization of solar radiation, comprehensive process optimization through multivariate experiments, kinetic modeling and predictive modeling relating process factors to pollutant degradation. This provides an economical green solution for textile wastewater treatment and reuse along with useful design guidelines. The treatment methodology and modeling approach make valuable additions for sustainable management of textile industry wastewater.

4.
J Hazard Mater ; 465: 133102, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070270

RESUMO

The interference of three types of microplastics (MPs) on the inactivation of Escherichia coli (E. coli) by advanced oxidation processes (AOPs) (namely, sunlight/H2O2 and solar photo-Fenton (SPF) with Ethylenediamine-N,N'-disuccinic acid (EDDS)), in real secondary treated urban wastewater was investigated for the first time. Inactivation by sunlight/H2O2 treatment decreased as MPs concentration and H2O2 dose were increased. Noteworthy, an opposite behaviour was observed for SPF process where inactivation increased as MPs concentration was increased. Biofilm formation and microbial attachment on surfaces of post-treated MPs were observed on polyethylene (PE) and polyvinyl chloride (PVC) MPs by field emission scanning electron microscopy. In presence of PE MPs, a complete inactivation of E. Coli was achieved by SPF with EDDS (Fe:EDDS = 1:2) after 90 min treatment unlike of sunlight/H2O2 treatment (∼4.0 log reduction, 40 mg/L H2O2 dose, 90 min treatment). The lower efficiency of sunlight/H2O2 process could be attributed to the blocking/scattering effect of MPs on sunlight, which finally reduced the intracellular photo Fenton effect. A reduced E. coli regrowth was observed in presence of MPs. SPF (Fe:EDDS = 1:1) with PE MPs was less effective in controlling bacterial regrowth (∼120 CFU/100 mL) than sunlight/H2O2 (∼10 CFU/100 mL) after 48 h of post-treatment. These results provide useful information about possible interference of MPs on urban wastewater disinfection by solar driven AOPs and possible implications for effluent reuse.


Assuntos
Desinfecção , Águas Residuárias , Desinfecção/métodos , Escherichia coli , Peróxido de Hidrogênio/química , Microplásticos/farmacologia , Plásticos , Ferro/química , Luz Solar , Concentração de Íons de Hidrogênio , Oxirredução
5.
Environ Sci Pollut Res Int ; 30(42): 96208-96218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37566324

RESUMO

The increasing occurrence of micropollutants in natural water bodies has medium to long-term effects on both aquatic life and human health. The aim of this study is to optimize the degradation of two pharmaceutical pollutants of emerging concern: amoxicillin and acetaminophen in aqueous solution at laboratory and pilot scale, by solar photo-Fenton process carried out at neutral pH using ethylenediamine-N,N'-disuccinic acid (EDDS) as a complexing agent to maintain iron in solution. The initial concentration of each compound was set at 1 mg/L dissolved in a simulated effluent from a municipal wastewater treatment plant (MWTP). A factorial experimental design and its surface response analysis were used to optimize the operating parameters to achieve the highest initial degradation rate of each target. The evolution of the degradation process was measured by ultra-performance liquid chromatography (UPLC/UV), obtaining elimination rates above 90% for both contaminants. Statistical study showed the optimum concentrations of Fe(III) at 3 mg/L at an Fe-EDDS ratio of 1:2 and 2.75 mg/L H2O2 for the almost complete removal of the target compounds by solar photo-Fenton process. Validation of the experimental design was successfully carried out with actual MWTP effluent spiked with 100 µg/L of amoxicillin and acetaminophen, each at pilot plant scale.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Humanos , Peróxido de Hidrogênio/química , Compostos Férricos , Acetaminofen , Ferro/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Oxirredução
6.
Sci Total Environ ; 891: 164488, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247729

RESUMO

The extensive use of Chlorpyrifos (CP) as insecticide has raised concern to their hazardous impact on human health and ecosystems. Bioremediation has been proved as one of the key eco-compatible method for reducing these environmental toxicants. This study explores and evaluate the effectiveness of a combined process including solar Photo-Fenton process followed by bacterial degradation using Ochrobactrum sp. CPD-03 for effective CP degradation in wastewater. Moreover, the in vivo molecular biotoxicity of CP and degraded CP has been evaluated with embryonic zebrafish. The solar Photo-Fenton treatment showed CP degradation efficiency of ∼42 % in 4 h and ∼92 % in 96 h with combined bacterial degradation process. In vivo biotoxicity analysis showed increased survivability of embryonic zebrafish exposed to CP with CPD-03 in water with lesser morphological abnormalities. The mechanistic molecular analysis showed decreased acetylcholinesterase inhibition and GST activity in embryos exposed to CP with CPD-03 for a lesser apoptosis due to influential intrinsic interaction with metabolic proteins. The study advocated to the use of solar Photo-Fenton process followed by bacterial degradation for an efficient ecological degradation of CP for effective reduction of in vivo biotoxicity.


Assuntos
Clorpirifos , Poluentes Químicos da Água , Animais , Humanos , Clorpirifos/toxicidade , Peixe-Zebra , Eliminação de Resíduos Líquidos/métodos , Ferro , Acetilcolinesterase , Ecossistema , Peróxido de Hidrogênio , Bactérias , Poluentes Químicos da Água/toxicidade , Oxirredução
7.
Environ Technol ; 44(28): 4441-4459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35757857

RESUMO

The aim of the present work was to provide a viable and active way to remove COD and colour from landfill leachate treated by adopting combined process of electrocoagulation and solar photo Fenton process. Coagulating agents such as metal hydroxides are created by the electrolysis process through self-sacrificial electrodes. Aluminium and iron dissolves at the anode and hydrogen gas are generated at the cathode when aluminium and iron electrodes are utilised. The contaminants interact with the coagulating agent to generate enormous organic flocs. The leachate was obtained from a landfill in Madurai and then it was characterised in terms of its major predominant pollutants. In this study, the electrocoagulation process was used in conjunction with the solar photo Fenton process to treat the leachate under ideal conditions of pH = 7, NaCl = 2 g/L, voltage = 4 V, Al & Fe electrodes and inter electrode distance = 3 cm with a COD and colour removal effectiveness of 75% and 76%, respectively. Furthermore, the effluent from the electrocoagulation process was treated using a solar photo Fenton process at pH = 3, H2O2 = 10 g/L and Fe2+ = 1 g/L with COD and colour reduction effectiveness of 90% and 91%, respectively. In this combination of treatment systems, leachate biodegradability increased from 0.35 to 0.73, favouring the biological oxidation process in conventional treatment plants. This research demonstrates that employing this paired electrocoagulation-solar photo Fenton to treat landfill leachate can achieve consistent treatment effects with high removal efficiencies, and that it is an acceptable treatment technique for landfill leachate.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Alumínio , Peróxido de Hidrogênio , Índia , Eletrocoagulação/métodos , Ferro , Oxirredução
8.
Sci Total Environ ; 852: 158338, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041605

RESUMO

Commercial (fluoro)quinolones ((F)Qs), ciprofloxacin (CIP), enrofloxacin (ENR), ofloxacin (OFL), oxolinic acid (OA) and flumequine (FLU) (3 µM each), were degraded with solar-photo-Fenton in a compound parabolic concentrator photoreactor (total volume 5 L) in ultra-pure water at pH = 5.0, salty water at pH = 5.0, and simulated wastewater at pH = 5.0 and 7.5. Iron speciation (its hydrolysis and the complexation with (F)Qs 15 µM and/or chlorides 0.5 M) was calculated at pH 5.0, observing, negligible formation of Fe(III)-chloride complexes, and that >99 % of the total (F)Qs are forming complexes stoichiometry 1:1 with Fe(III) (which also increases the percentage of Fe(OH)2+), being minoritarian the free antibiotic form. On the other hand, EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) was employed to simultaneously study the behaviour of: i) 4 structure-related groups corresponding to parent pollutants and slightly oxidised by-products, ENR-like (including CIP), OFL-like, OA-like, FLU-like; ii) intermediates still showing (F)Q characteristics (exhibiting analogous fluorescent fingerprint to ENR-like one, but shifted to shorter wavelengths); iii) humic-like substances. The scores from the 4 PARAFAC components corresponding to the parent pollutants were plotted vs. accumulated energy, exhibiting slower decay than their individual removals (measured with HPLC-UV/vis) due to the contribution of the aforementioned by-products to the overall fluorescence. Moreover, thiabendazole (TBZ) 3 µM was added as fluorescence interference. The presence of (F)Qs greatly enhanced TBZ degradation due to (F)Q-Fe(III) complex formation, keeping iron active at pH = 5.0 for Fenton process. The EEM-PARAFAC model was able to recognise the former six components plus an additional one attributable to TBZ-like.


Assuntos
Poluentes Ambientais , Quinolonas , Poluentes Químicos da Água , Águas Residuárias , Água , Tiabendazol , Enrofloxacina , Poluentes Químicos da Água/análise , Cloretos , Compostos Férricos , Peróxido de Hidrogênio/química , Ácido Oxolínico , Substâncias Húmicas/análise , Ferro/química , Ofloxacino , Corantes , Ciprofloxacina , Antibacterianos
9.
Sci Total Environ ; 850: 157940, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952890

RESUMO

The application of solar photo-Fenton as post-treatment of municipal secondary effluents (MSE) in developing tropical countries is the main topic of this review. Alternative technologies such as stabilization ponds and upflow anaerobic sludge blanket (UASB) are vastly applied in these countries. However, data related to the application of solar photo-Fenton to improve the quality of effluents from UASB systems are scarce. This review gathered main achievements and limitations associated to the application of solar photo-Fenton at neutral pH and at pilot scale to analyze possible challenges associated to its application as post-treatment of MSE generated by alternative treatments. To this end, the literature review considered studies published in the last decade focusing on CECs removal, toxicity reduction and disinfection via solar photo-Fenton. Physicochemical characteristics of effluents originated after UASB systems alone and followed by a biological post-treatment show significant difference when compared with effluents from conventional activated sludge (CAS) systems. Results obtained for solar photo-Fenton as post-treatment of MSE in developed countries indicate that remaining organic matter and alkalinity present in UASB effluents may pose challenges to the performance of solar advanced oxidation processes (AOPs). This drawback could result in a more toxic effluent. The use of chelating agents such as Fe3+-EDDS to perform solar photo-Fenton at neutral pH was compared to the application of intermittent additions of Fe2+ and both of these strategies were reported as effective to remove CECs from MSE. The latter strategy may be of greater interest in developing countries due to costs associated to complexing agents. In addition, more studies are needed to confirm the efficiency of solar photo-Fenton on the disinfection of effluent from UASB systems to verify reuse possibilities. Finally, future research urges to evaluate the efficiency of solar photo-Fenton at natural pH for the treatment of effluents from UASB systems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Quelantes , Desinfecção/métodos , Peróxido de Hidrogênio , Ferro , Oxirredução , Esgotos , Poluentes Químicos da Água/análise
10.
Environ Technol ; 43(19): 2891-2898, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33769225

RESUMO

In this study, a stochastic model was applied to investigate the degradation of landfill leachate by solar photo-Fenton processes. The coefficient of determination (R2) between experimental and predicted data ranged from 0.9958-0.9995. The optimal conditions for the initial phase (lasting 5-22 min) were high Fe2+ level, low pH level, and intermediate H2O2 level. For the second phase, optimal leachate degradation percentages were obtained by maintaining the pH, increasing H2O2, and decreasing Fe2+ to the lowest level. Determination of optimal reaction conditions (such as pH, Fe2+, and H2O2 values) for both degradation phases is of paramount importance for process scale-up. The major contribution of this study was the development of a tool that considers the effects of one or more reactions on organic carbon degradation. This was achieved by assessing the significance of the effects of experimental conditions on model parameters for the fast and slow steps of leachate degradation by advanced oxidation processes.


Assuntos
Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Oxirredução , Luz Solar , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 801: 149763, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34438135

RESUMO

Solar driven advanced oxidation processes (AOPs) (an alternative solar photo Fenton like process (SPF), sunlight/H2O2 (SHP) and sunlight/chlorine (SCL)) and respective dark conditions, were compared for the first time to conventional (chlorination and UV-C radiation) disinfection processes, in the inactivation of E. coli and Entero strains inoculated in real roof-harvested rainwater (RHRW), to evaluate their possible safe use for crop irrigation. In this regard, bacterial regrowth was also evaluated 6, 12, 24 and 48 h after disinfection treatment. The SPF, using iminodisuccinic acid (IDS)-Cu complex as catalyst, was optimized (H2O2/IDS-Cu 55/1 best molar ratio) under mild conditions (spontaneous pH) and sunlight. The faster inactivation kinetics were observed for the SCL process (k = 1.473 min-1, t1/2 = 0.47 min for E. coli and k = 1.193 min-1, t1/2 = 0.57 min for Entero), while the most effective processes in controlling bacterial regrowth were SPF and SCL. Although UV-C radiation (0-1.3 × 104 µW s cm-2 dose range) was the second faster disinfection process (k = 1.242 min-1, t1/2 = 0.55 min for E. coli and k = 1.150 min-1, t1/2 = 0.60 min for Entero), it was the less effective process in controlling bacterial regrowth (>10 CFU 100 mL-1 already after 6 h post-treatment incubation). According to the bacterial inactivation and regrowth tests carried out in this work, SPF and SCL are interesting options for RHRW disinfection, in case of effluent use for crop irrigation.


Assuntos
Desinfecção , Purificação da Água , Enterococcus , Escherichia coli , Peróxido de Hidrogênio , Luz Solar , Águas Residuárias
12.
Sci Total Environ ; 756: 143593, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33243505

RESUMO

This study focused on the effect of salinity on the performance of a pilot-scale nanofiltration (NF) for preconcentration of microcontaminants (MCs) in combination with solar photo-Fenton or photo-Fenton-like treatment for their elimination from NF permeate and concentrate streams. Photo-Fenton was carried out in a solar simulator at pH of 3 and at natural pH using Ethylenediamine-N, N'-disuccinic acid (EDDS) as an iron complexing agent. Degradation efficacy was tested with MCs commonly found in urban wastewater treatment plant effluents (caffeine, imidacloprid, thiacloprid, carbamazepine and diclofenac). Hydrogen peroxide and persulfate were compared in solar processes. Increase in salinity and pressure had a negligible influence on MC permeability order and NF selectivity. Solar photo-Fenton was able to degrade MCs present in the concentrated stream, and rapidly eliminate any residual MCs that might finally be present in permeate streams. Persulfate used instead of hydrogen peroxide was shown to be inefficient for the selected MCs. Fe(III):EDDS at circumneutral pH was able to remove MCs as quickly as classical photo-Fenton at acid pH, or even faster. This effect supports use of Fe(III):EDDS at natural pH for treating NF concentrates or polishing NF permeates when NF membranes are operated under extreme conditions of salinity.

13.
J Hazard Mater ; 396: 122699, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32344362

RESUMO

The anti-cancer drug Flutamide (FLUT) is widely used and is of great environmental concern. The solar photo-Fenton (SPF) process can be an effective treatment for the removal of this type of micropollutant. The use of a single addition of 5 mg L-1 of Fe2+ and 50 mg L-1 of H2O2 achieved 20% primary degradation and only 3.05% mineralization. By using three additions of 5 mg L-1 Fe2+, with an initial H2O2 concentration of 150 mg L-1, 58% primary degradation was achieved, together with 12.07% mineralization. Consequently, thirteen transformation products (TPs) were formed. The SPF process was further combined with adsorption onto avocado seed activated carbon (ASAC) as an environmentally friendly approach for the removal of remained FLUT and the TPs. Doehlert design was used to assess the behavior of 13 TPs by optimizing the contact time and the adsorbent mass load. The optimal conditions for removal of FLUT and the TPs were 14 mg of ASAC and a contact time of 40 min. Remained FLUT and the TPs were totally removed using the adsorption process. The mechanisms of adsorption of FLUT and the TPs were strongly influenced by their polarity and π-π interactions of the TPs onto ASAC.


Assuntos
Antineoplásicos , Poluentes Químicos da Água , Adsorção , Flutamida , Hospitais , Peróxido de Hidrogênio , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
14.
Environ Res ; 183: 109223, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32045729

RESUMO

Flutamide (FLUT) is a non-steroidal drug mainly used in the treatment of prostate cancer and has been detected in the aquatic environment at ng L-1 levels. The environmental fate and effects of FLUT have not yet been studied. Conventional treatment technologies fail to completely remove pharmaceuticals, so the solar photo-Fenton process (SPF) has been proposed as an alternative. In this study, the degradation of FLUT, at two different initial concentrations in ultra-pure water, was carried out by SPF. The initial SPF conditions were pH0 5, [Fe2+]0 = 5 mg L-1, and [H2O2]0 = 50 mg L-1. Preliminary elimination rates of 53.4% and 73.4%. The kinetics of FLUT degradation could be fitted by a pseudo-first order model and the kobs were 6.57 × 10-3 and 9.13 × 10-3 min-1 t30W and the half-life times were 95.62 and 73.10 min t30W were achieved for [FLUT]0 of 5 mg L-1 and 500 µg L-1, respectively. Analysis using LC-QTOF MS identified thirteen transformation products (TPs) during the FLUT degradation process. The main degradation pathways proposed were hydroxylation, hydrogen abstraction, demethylation, NO2 elimination, cleavage, and aromatic ring opening. Different in silico (quantitative) structure-activity relationship ((Q)SAR) freeware models were used to predict the toxicities and environmental fates of FLUT and the TPs. The in silico predictions indicated that these substances were not biodegradable, while some TPs were classified near the threshold point to be considered as PBT compounds. The in silico (Q)SAR predictions gave positive alerts concerning the mutagenicity and carcinogenicity endpoints. Additionally, the (Q)SAR toolbox software provided structural alerts corresponding to the positive alerts obtained with the different mutagenicity and carcinogenicity models, supporting the positive alerts with more proactive information.


Assuntos
Antineoplásicos , Flutamida , Poluentes Químicos da Água , Flutamida/química , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Medição de Risco
15.
Environ Technol ; 41(4): 411-419, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30010497

RESUMO

Natural effluents with marked variation in their chemical composition over decomposition time in the matrix from which they are generated have a complex composition and are not totally known in most cases. Landfill leachate can be considered an effluent with complex composition, requiring imminent and more comprehensive studies on organic load degradation. Such complexity of numerous organic compounds (most of them recalcitrant humic and fulvic substances) demands a large number of kinetic equations to satisfactorily describe the temporal evolution of such conversion. Thereby, this work aims to study a kinetic approach grounded on previously consolidated chemical reactions of radical generation through the photo-Fenton mechanism. A molar balance was developed for each species in a batch photo-Fenton process and the resulting ordinary differential equations were numerically solved in MATLABTM. The kinetic model satisfactorily described an organic load conversion of the effluent under the various experimental conditions studied herein. Experimental trends could be represented by a free-radical mechanism and a degradation rate equation of first order for organic carbon, hydroxyl radical and H+. The model fittings revealed a hydroxyl radical/organic carbon stoichiometric ratio of 2:1. The kinetic study has confirmed the importance of pH levels for the reaction medium, and indicated that degradation rate depends on the medium organic composition, which provided an exponential function of conversion for the degradation rate coefficient. The model simulations corroborated the positive effect of sunlight on the radical generation through [Formula: see text] decomposition reaction with a rate coefficient in the range 4 × 10-3-2 × 10-1 s-1.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Oxirredução , Luz Solar
16.
J Hazard Mater ; 378: 120740, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31301555

RESUMO

The use of the solar photo-Fenton process for water treatment requires monitoring of the main conditions, especially the total dissolved iron concentration and the consumption of hydrogen peroxide. In this study, a new methodology using the PhotoMetrixPRO application was validated for rapid monitoring of total dissolved iron and hydrogen peroxide concentrations, and was tested in the solar photo-Fenton process. A comparison was made between the results obtained using a reference spectrophotometric method and the PhotoMetrixPRO application employing a portable device. Both methods were validated in terms of linearity, sensitivity, precision, robustness, and matrix effects. The degree of dispersion between the series of measurements obtained using UV-vis and portable device tool was low and was in compliance with the established Brazilian and ICH validation criteria. Additionally, PhotoMetrixPRO enabled the use of a smaller sample volume. The total volume generated of each sample is 1 mL, reducing 6 and 10 times the wastes produced in different validated methods. These results evidencing that the miniaturization can provide positive advantages in terms of simplicity, cost effectiveness, and less environmental impact. PhotoMetrixPRO offers significant advantages including rapid analysis, smaller sample volumes, and greater portability and accessibility.

17.
J Hazard Mater ; 378: 120737, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202058

RESUMO

Solar photo-Fenton process in raceway pond reactors was investigated at neutral pH as a sustainable tertiary treatment of real urban wastewater. In particular, the effect on antibiotic resistance determinants was evaluated. An effective inactivation of different wild bacterial populations was achieved considering total and cefotaxime resistant bacteria. The detection limit (1 CFU mL-1) was achieved in the range 80-100 min (5.4-6.7 kJ L-1 of cumulative solar energy required) for Total Coliforms (TC) (40-60 min for resistant TC, 4.3-5.2 kJ L-1), 60-80 min (4.5-5.4 kJ L-1) for Escherichia coli (E. coli) (40 min for resistant E. coli, 4.1-4.7 kJ L-1) and 40-60 min (3.9-4.5 kJ L-1) for Enterococcus sp. (Entero) (30-40 min for resistant Entero, 3.2-3.8 kJ L-1) with 20 mg L-1 Fe2+ and 50 mg L-1 H2O2. Under these mild oxidation conditions, 7 out of the 10 detected antibiotics were effectively removed (60-100%). As the removal of antibiotic resistance genes (ARGs) is of concern, no conclusive results were obtained, as sulfonamide resistance gene was reduced to some extent (relative abundance <1), meanwhile class 1 integron intI1 and ß-lactam resistance genes were not affected. Accordingly, more research and likely more intensive oxidative conditions are needed for an efficient ARGs removal.


Assuntos
Resistência Microbiana a Medicamentos/genética , Peróxido de Hidrogênio , Ferro , Energia Solar , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Carga Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Concentração de Íons de Hidrogênio , Luz Solar , Microbiologia da Água
18.
Sci Total Environ ; 687: 567-576, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31216510

RESUMO

This paper contains a multidisciplinary approach that will contribute to design and properly evaluate a treatment line for complex biorecalcitrant wastewaters. To demonstrate this approach a specific industrial wastewater (cork boiling wastewater, CBW) was used. A treatment line based on a coagulation-flocculation step followed by an Advanced Oxidation Process (AOP) (solar photo-Fenton) and combined with an aerobic biological system was evaluated. Applied microbiological techniques: optical microscopy, plate count, DNA extraction and qPCR, indicated that some communities disappeared after the activated sludge adaptation period to the partially treated wastewater, while communities that did not disappear were damaged: 2-log reduction of total heterotrophic bacteria (THB) and a decrease in DNA concentration from 200 ng/µL to 65 ng/µL were observed. Therefore, chemical and microbiological results obtained along the set of experiments, suggested the inefficiency of the combined treatment option between solar photo-Fenton and advanced aerobic biological systems for CBW. This led to the necessity of applying solar photo-Fenton without combining with biotreatment and with the objective of improving the effluent quality enough for being reused in the own industry. Toxicity tests, based on different organisms (after coagulation-flocculation followed by solar photo-Fenton), showed increase on acute toxicity (from 46% to 71% by respirometric assays) and the development of chronic toxicity (from 21-29% to 83-90% also measured by respirometric assays), made evident the incompatibility of this type of wastewater with a biological treatment even after the application of an AOP.


Assuntos
Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Floculação , Esgotos , Águas Residuárias/química , Poluentes Químicos da Água/análise
19.
Water Res ; 156: 232-240, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30921539

RESUMO

The present study shows the results of solar photo-Fenton oxidation of paracetamol (PCT) and amoxicillin (AMX). Fe2(SO4)3 was used as the source of iron and EDDS as the iron complexing agent, employing different doses of hydrogen peroxide. Two aqueous matrices, a synthetic wastewater and real wastewater from El Ejido WWTP effluent (Almeria) were used. In all cases, the process was operated under conditions of natural sunlight. Results showed that the degradation of both drugs is favoured when the aqueous matrix presents low concentration of carbonates. Under the conditions studied here, degradation percentages above 90% were obtained in the synthetic wastewater and 80% in the actual effluent. The degradation products were determined using liquid chromatography coupled to high-resolution mass spectrometry with hybrid quadrupole time-of-flight analyser. The intermediates detected throughout the oxidative process for both micro-contaminants were mainly products of hydroxylation reactions. The toxicity of the samples was determined using the bacterium Vibrio fischeri. In the acute toxicity test, it was observed that the bacteria did not undergo inhibition in any of the cases. However, chronic toxicity studies showed that the higher the Hydraulic Retention Time (HRT) employed in the assays, the higher the bacterial inhibition.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Acetaminofen , Amoxicilina , Peróxido de Hidrogênio , Luz Solar
20.
Eng. sanit. ambient ; 24(1): 33-43, jan.-fev. 2019. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1001943

RESUMO

RESUMO Neste trabalho foi avaliado o processo foto-Fenton solar mediado por ferrioxalato como tratamento primário de um efluente têxtil bruto (E1) e como um processo de polimento, após processo de lodos ativados (E2). Por um ano, ao menos uma vez por mês, a eficiência de descoloração e o comportamento dos sólidos foram avaliados sob condições naturais de radiação, temperatura e características dos efluentes. As condições operacionais foram as seguintes: 50 mg L-1 de ferro, pH 5, 525 mg L-1 de H2O2, administrados em dosagens decrescentes. O oxalato foi adicionado na razão molar de 1:3 [Fe+3:(C2O4)-2]. A descoloração máxima de E1 foi de 67% para intensidade de radiação de 690 W m-2; já a de E2 foi de 95% para intensidade de 620 W m-2. Houve considerável aumento na turbidez e nos sólidos suspensos em função da precipitação do ferro e de sua ação coagulante. A degradação do complexante durante o processo no E2 em dias ensolarados provocou elevada sedimentabilidade dos sólidos do efluente final, resultando em um sobrenadante clarificado, o que não ocorreu em dias nublados.


ABSTRACT This work evaluates the solar photo-Fenton process mediated by ferrioxalate as a primary treatment of raw textile effluent (E1) and as a polishing step, after active sludge process (E2). For a year, at least once a month, the color removal's efficiency and solids' behavior in the oxidative process treatment were analyze under natural conditions of light, temperature and effluents characteristics. The operational parameters values were: 50 mg L-1 iron, pH 5, 525 mg L-1 H2O2, introduced in decreasing doses. The oxalate was added at the molar ratio of 1:3 [Fe+3:(C2O4)-2]. The color removal of E1 was 60% for 690 W m-2 of radiation intensity and 95% for 620 W m-2 intensity to E2. Considerable increases were observed in turbidity and suspended solids due to the iron precipitation and the consequent coagulant action. In sunny days, the complex degradation in E2 resulted in high settle ability of solids in the final effluent, resulting in a clear supernatant. This has not happened in cloudy days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...