Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673146

RESUMO

The development of a new generation of solid particle solar receivers (SPSRs) with high solar absorptivity (0.28-2.5 µm) and high infrared emissivity (1-22 µm) is crucial and has attracted much attention for the attainment of the goals of "peak carbon" and "carbon neutrality". To achieve the modulation of infrared emission and solar absorptivity, two types of medium- and high-entropy rare-earth hexaboride (ME/HEREB6) ceramics, (La0.25Sm0.25Ce0.25Eu0.25)B6 (MEREB6) and (La0.2Sm0.2Ce0.2Eu0.2Ba0.2)B6 (HEREB6), with severe lattice distortions were synthesized using a high-temperature solid-phase method. Compared to single-phase lanthanum hexaboride (LaB6), HEREB6 ceramics show an increase in solar absorptivity from 54.06% to 87.75% in the range of 0.28-2.5 µm and an increase in infrared emissivity from 76.19% to 89.96% in the 1-22 µm wavelength range. On the one hand, decreasing the free electron concentration and the plasma frequency reduces the reflection and ultimately increases the solar absorptivity. On the other hand, the lattice distortion induces changes in the B-B bond length, leading to significant changes in the Raman scattering spectrum, which affects the damping constant and ultimately increases the infrared emissivity. In conclusion, the multicomponent design can effectively improve the solar energy absorption and heat transfer capacity of ME/HEREB6, thus providing a new avenue for the development of solid particles.

2.
Materials (Basel) ; 17(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38473674

RESUMO

This paper presents the results of laboratory tests for new materials made of a carbon fibre-reinforced polymer (CFRP) composite with a single-sided protective coating. The protective coatings were made of five different powders-Al2O3, aluminium, quartz sand, crystalline silica and copper-laminated in a single process during curing of the prepreg substrate with an epoxy matrix. The specimens were subjected to flame exposure and solid particle erosion tests, followed by uniaxial tensile tests. A digital image correlation (DIC) system was used to observe the damage location and deformation of the specimens. All coatings subjected to solid particle erosion allowed an increase in tensile failure force ranging from 5% to 31% compared to reference specimens made of purely CFRP. When exposed to flame, only three of the five materials tested, Al2O3, aluminium, quartz sand, could be used to protect the surface, which allowed an increase in tensile failure force of 5.6%.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38427175

RESUMO

Biodrying refers to the decomposition of organic municipal solid waste (MSW) under aerobic conditions. This process usually lasts 14 days and requires large amounts of air to be injected into the waste matrix. The efficiency of the biodrying process depends on several geotechnical parameters, including initial moisture content, initial organic content, bulk density, dry density, solid particle density, and porosity. To examine the potential influence of these parameters on the biodrying process, we analyzed 13 biodried MSW samples. The results revealed a strong positive linear relationship between the initial moisture content and the mass loss percentage. In the first three days of the biodrying process, the waste mass rapidly decreased; afterwards, the daily mass loss occurred at a less rapid, more constant rate. The established average mass removal ratio between the volatile solids and water was 1:6.38 with a standard deviation of 1.06. Dry and solid particle densities were preserved in all 13 experiments; thus, the corresponding void ratio remained unchanged. This finding suggests that the settlement and degradation of MSW that occur during the biodrying process did not significantly influence the airflow rate.

4.
Sci Total Environ ; 874: 162464, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36858227

RESUMO

Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.


Assuntos
Nitrificação , Solo , Solo/química , Bactérias , Carvão Vegetal/química , Arachis , Concentração de Íons de Hidrogênio , Microbiologia do Solo
5.
Nanomaterials (Basel) ; 12(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079986

RESUMO

High internal phase Pickering emulsion (HIPPE) is a type of emulsion stabilized by solid particles irreversibly adsorbed on an interfacial film, and the volume fraction of the dispersed phase (Φ) is larger than the maximum packing volume fraction (Φmax). Proteins, polysaccharides, and their composite particles can be used as good particle stabilizers. The contact angle can most intuitively demonstrate the hydrophilicity and hydrophobicity of the particles and also determines the type of emulsions (O/W or W/O type). Particles' three-phase contact angles can be adjusted to about 90° by compounding or modification, which is more conducive to emulsion stability. As a shear thinning pseudoplastic fluid, HIPPE can be extruded smoothly through 3D printer nozzles, and its high storage modulus can support the structure of printed products. There is huge potential for future applications in 3D printing of food. This work reviewed the biomacromolecules that can be used to stabilize food-grade HIPPE, the stabilization mechanism of the emulsions, and the research progress of food 3D printing to provide a reference for the development of advanced food products based on HIPPE.

6.
J Mech Behav Biomed Mater ; 132: 105269, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636119

RESUMO

In the present study, solid particle erosion due to micro-blasting of dental implants (3A) made of titanium alloy under the impact of multiple alumina particles with an average diameter of 85 µm was analyzed, experimentally and numerically. The numerical investigation was conducted using finite element (FE) and smoothed particle hydrodynamics (SPH) methods. The erosive behavior of this alloy was simulated as impacts in micro-scale based on Johnson-Cook constitutive equations. By focusing on the particles impacts, a representative volume element (RVE) technique was proposed to simulate the arbitrary multiple particle impacts. The results of FE and SPH models are validated and compared with the experimental results. The effects of particle velocity and impact angle on the erosion rate of the alloy are then investigated. Finally, an equation is presented for prediction of the erosion rate versus velocity and angle of impact. The results indicate that for all impact velocities, the combination of penetration and cutting can create a critical condition of erosion damage for the titanium alloy.


Assuntos
Ligas , Implantes Dentários , Análise de Elementos Finitos , Hidrodinâmica , Titânio
7.
Ultrason Sonochem ; 82: 105910, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35016056

RESUMO

Although there has been extensive research on the factors that influence sonochemical reactions in solid particle suspensions, the role that solid particles play in the process remains unclear. Herein, the effect of monodisperse silica particles (10-100 µm, 0.05-10 vol%) on the sonochemical activity (20 kHz) was investigated using triiodide formation monitoring and luminol tests. The results demonstrate that, in the particle size range considered, the sonochemical yields were enhanced in dilute suspensions (0.05-1 vol%), while further particle addition in semi-dilute suspensions (1-10 vol%) decreased the yields. Two regimes, namely the site-increasing regime and sound-damping regime, are identified in respect of the enhancing and inhibiting effects of the particles, respectively, and their dependence on particle characteristics is analyzed. Both regimes are confirmed based on the cavitation erosion test results or cavitation noise analysis. The clarification of the two regimes provides a better understanding of the dominant factors controlling sonochemistry in the presence of solid particles, as well as a guide for sonochemical efficiency prediction.

8.
Bioresour Technol ; 347: 126721, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051568

RESUMO

Wheat straw was pretreated using ball milling (BM) promoted by solid particles (NaOH, NaCl, citric acid). NaOH showed the best synergistic interaction effect, due to the breakage of ß-1,4-glycosidic bonds among cellulose molecules by the alkali solid particles induced by BM. NaOH-BM pretreatment decreased the straw crystallinity from 46% to 21.4% and its average particle size from 398.3 to 50.6 µm in 1 h. After 4 h milling, the reducing-end concentration of cellulose increased by 3.8 times from 12.5 to 60.2 µM, with glucose yield increased by 2.1 times from 26.6% to 82.4% for 72 h enzymatic hydrolysis at cellulase loading of 15 FPU/g dry substrate. The pretreatment washing liquor was recycled for the re-treatment of partially pretreated biomass at 121 °C for 30 min, resulting in 99.4% glucose yield by enzymatic hydrolysis. BM assisted with alkali particles was an effective approach for improving biomass enzymatic saccharification.


Assuntos
Celulase , Triticum , Biomassa , Celulose , Hidrólise
9.
Carbohydr Polym ; 275: 118711, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742436

RESUMO

High amylose starch nanoparticles (HS-SNPs) were rapidly synthesised by high-speed circumferential force of homogenisation (3000 and 15,000 rpm) during nanoprecipitation. Morphology and dynamic light scattering analyses showed that HS-SNPs fabricated by stronger circumferential shearing were excellent stabilisers in smaller sizes (20-50 nm). Their aggregates were liable to separate in the aqueous phase with the nano effect under either homogenisation over 6 min or ultrasonication in 2 min. SNP-based nanoemulsion (<200 nm) of high-water fraction was achieved, though the high hydrophilicity of the SNPs were identified by the contact angle. For homogenisation (with 100-2000 nm emulsion size), only time prolongation led to a better dispersion of SNP aggregates. Ultrasonication with periodic cavitation could disintegrate SNP aggregates into micro-aggregates for a stable emulsion system in a short period. In contrast, long-term ultrasound caused simultaneous re-agglomeration and solubilisation of the SNPs, leading to weakened interface barriers and decreased storage stability.


Assuntos
Nanopartículas/química , Amido/química , Emulsões , Tamanho da Partícula , Estresse Mecânico
10.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616351

RESUMO

Solid particle erosion at room and elevated temperatures of filled and unfilled hot-cured epoxy resin using an anhydride hardener were experimentally tested using an accelerated method on a special bench. Micro-sized dispersed industrial wastes were used as fillers: fly ash from a power plant and spent filling material from a copper mining and processing plant. The results showed that the wear of unfilled epoxy resin significantly decreases with increasing temperature, while the dependence on the temperature of the wear intensity at an impingement angle of 45° is linear and inversely proportional, and at an angle of 90°, non-linear. The decrease in wear intensity is probably due to an increase in the fracture limit because of heating. Solid particle erosion of the filled epoxy compounds is considerably higher than that of unfilled compounds at impingement angles of 45° and 90°. Filled compounds showed ambiguous dependences of the intensity of wear on temperature (especially at an impingement angle of 45°), probably as the dependence is defined by the filler share and the structural features of the samples caused by the distribution of filler particles. The intensity of the wear of the compounds at impingement angles of 45° and 90° has a direct and strong correlation with the density and the modulus of elasticity, and a weak correlation with the bending strength of the materials. The data set for determining the correlation between the mechanical properties and the wear included compound filling characteristics and temperature.

11.
Environ Pollut ; 286: 117320, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33991739

RESUMO

Hybrid electric vehicle (HEV) technology is critical to reduce the impact of the internal combustion engines on air pollution and greenhouse gases. HEVs have an advantage in market penetration due to their lower cost and higher driving range compared to battery electric vehicles (BEVs). On the other hand, HEVs use an internal combustion engine and still emit air pollutants. It is hypothesized that HEV performance is impacted by the weather conditions as a result of many factors. It was beyond the scope of this work to systematically evaluate all factors so instead we measured emissions from two vehicles driving city and highway routes in Minneapolis, Minnesota in the winter (-5 °C) and looked for major differences in emissions relative to each vehicle and relative to results that would be obtained from a chassis dynamometer in a controlled laboratory setting at a higher temperature approximately 20 °C). The study then looked to associate differences in emissions with the prevailing conditions to gain new insights. Emissions of interest included the total particle number (TPN), solid particle number (SPN), particulate matter mass (PM), and NOx. One key difference in vehicle engine technology was PFI (port fuel injection) versus GDI (gasoline direct injection). We found the frequency at which the Prius hybrid engine reignited was much higher than the Sonata for city and highway driving, although for both vehicles the catalyst temperature remained high and appeared to be unaffected by the reignitions, despite the cold weather. For most conditions, the Prius emitted more NOx but fewer particles than the Sonata. In some cases, NOx and particle emissions exceeded the most comparable laboratory-based emissions standards.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Temperatura Baixa , Gasolina/análise , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise
12.
Ultrason Sonochem ; 73: 105544, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33819869

RESUMO

The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents. Thus, we sonicated trimethylene glycol and propylene glycol in the presence of silica particles (SiO2) of different sizes (5-15 nm, 0.2-0.3 µm, 12-26 µm) and amounts (0.5 wt% and 3 wt%) at an ultrasound frequency of 20 kHz to quantify the radicals generated. The spin trap 5,5-dimethyl-1-pyrrolin-N-oxide (DMPO) was used to trap the generated radicals for study by electron paramagnetic resonance (EPR) spectroscopy. We identified the trapped radical as the hydroxyalkyl radical adduct of DMPO, and we quantified it using stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a quantitation standard. The concentration of DMPO spin adducts in solutions containing silica size 12-26 µm was higher than the solution without particles. The presence of these particles increased the concentration of the acoustically generated radicals by a factor of 1.5 (29 µM for 0.5 wt% of SiO2 size 12-26 µm vs 19 µM for 0 wt%, after 60 min of sonication). Ultrasound produced fewest radicals in solutions with the smallest particles; the concentration of radical adducts was highest for SiO2 particle size 12-26 µm at 0.5 wt% loading, reaching 29 µM after 60 min sonication. Ultrasound power of 50.6 W produced more radicals than 24.7 W (23 µM and 18 µM, respectively, at 30 min sonication). Increased temperature during sonication generated more radical adducts in the medium (26 µM at 75 °C and 18 µM at 61 °C after 30 min sonication). Acoustic cavitation, in the presence of silica, increased the production of radical species in the studied organic medium.

13.
Materials (Basel) ; 15(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009433

RESUMO

Solid particle erosion inevitably occurs if a gas-solid or liquid-solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Having a good understanding of this complex phenomenon enables one to reduce the maintenance costs in several industrial applications by designing components that have longer lifetimes. In this paper, we propose a methodology to numerically investigate erosion behavior of ductile materials. We employ smoothed particle hydrodynamics that can easily deal with large deformations and fractures as a truly meshless method. In addition, a new contact model was developed in order to robustly handle contacts around sharp corners of the solid particles. The numerical predictions of erosion are compared with experiments for stainless steel AISI 304, showing that we are able to properly predict the erosion behavior as a function of impact angle. We present a powerful tool to conveniently study the effect of important parameters, such as solid particle shapes, which are not simple to study in experiments. Using the methodology, we study the effect of a solid particle shape and conclude that, in addition to angularity, aspect ratio also plays an important role by increasing the probability of the solid particles to rotate after impact. Finally, we are able to extend a widely used erosion model by a term that considers a solid particle shape.

14.
J Hazard Mater ; 402: 123479, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32702616

RESUMO

Because of the relatively low pressure drop and high particle removal efficiency, nanofiber filter media can be potentially used for indoor particulate air pollution control. However, the influence of particle loading on the long-term performance of nanofiber filters in indoor particle control has not been well studied. This study first experimentally investigated the relationship between the pressure drop and solid particle loading mass for 42 nanofiber filter samples under various face velocities. The results show that the air resistance coefficient increased with the solid particle loading mass for the nanofiber filter media. Furthermore, the air resistance coefficient was positively associated with the face velocity, as a higher air velocity tended to make the particle cake tighter with higher resistance. Based on the experimental data, a semi-empirical equation was developed for predicting the pressure drop under different particle loading masses and face velocities. The developed semi-empirical model was then used to assess the long-term performance of an air cleaner equipped with nanofiber filter media in indoor PM2.5 control. The case study demonstrated that an air cleaner equipped with nanofiber filter media could effectively control indoor PM2.5, but the lifetime of the nanofiber filter was shorter than that of traditional HEPA filters.

15.
Carbohydr Polym ; 251: 116990, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142562

RESUMO

Microfibrillated cellulose (MFC) from Argan (Argania spinosa) shells was prepared by chemical purification of cellulose, then mechanical disintegration via high pressure homogenization was performed to isolate fibrils of cellulose. Chemical characterization of raw argan shell (AS-R), purified cellulose (AS-C), and argan shell MFC (AS-MFC) included FT-IR, XRD and NMR. Morphological characterization of AS-MFC was assessed using TEM. Next, the use of AS-MFC as oil-in-water (O/W) emulsions stabilizer was investigated. The particle concentration was observed to affect the long-term stability of the emulsions; high concentrations (0.5-1 % w/w) of AS-MFC resulted in emulsions that were thermodynamically stable during 15 days of storage, which was demonstrated by the droplet's size evolution. The suitable oil concentration for a maximum volume of emulsion using 1 % w/w AS-MFC was demonstrated. The results show that AS-MFC is able to stabilize 70 % w/w MCT oil without visual phase separation. Finally, CLSM shows the adsorption of AS-MFC at the oil-water interface and the formation of a 3D network surrounding oil droplets, confirming Pickering emulsion formation and stabilization.


Assuntos
Celulose/química , Sapotaceae/química , Eletrólitos , Emulsões , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanofibras/química , Nanofibras/ultraestrutura , Tamanho da Partícula , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
16.
Polymers (Basel) ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114088

RESUMO

Carbon fiber reinforced polycarbonate (CF/PC) composites have attracted attention for their excellent performances. However, their performances are greatly affected by environmental factors. In this work, the composites were exposed to hydrothermal aging to investigate the effects of a hot and humid environment. The mechanical properties of CF/PC composites with different aging times (0, 7, 14, 21, 28, 35, and 42 days) were analyzed. It was demonstrated that the storage modulus of CF/PC composites with hot water aged for seven days has the highest value in this sampling period and frequency. Through the solid particle erosion experiment, it was found that the hydrothermal aging causes the deviation of the maximum erosion angle of composites, indicating the composites underwent ductile-brittle transformation. Furthermore, the crack and cavity resulting from the absorption of water was observed via the scanning electron microscope (SEM). This suggested that the hydrothermal aging leads to the plasticization and degradation of CF/PC composites, resulting in a reduction of corrosion resistance.

17.
Ultrason Sonochem ; 68: 105214, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32531453

RESUMO

Although the factors that influence ultrasonic cavitation erosion in solid particle suspensions have been extensively studied, the role that solid particles play in the cavitation process remains poorly understood. The ultrasonic cavitation erosion of AISI 1045 carbon steel was studied in the presence of monodisperse silica particles (10-100 µm, 0.5-20 vol%) suspended in transformer oil. Based on our results, we propose an overview of the possible influencing mechanisms of particle addition for specific particle sizes and concentrations. Four major regimes, namely a viscosity-enhancing regime (V), a particle-impinging regime (I), a particle-shielding regime (S), and a nuclei-adding regime (A) are identified, and their dependence on suspended particle characteristics is analyzed. The VISA regimes, in essence, reflect the viscous and inertial effects of suspended particles, and the way in which particle-particle interactions and heterogeneous nucleation affect erosion. This regime-based framework provides a better understanding of the dominant factors controlling the erosive wear caused by cavitation in the presence of solid particles, and provides a guide for erosion prediction and prevention.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32486197

RESUMO

The particle number (PN) emissions of vehicles equipped with particulate filters are low. However, there are technologies that can have high PN levels, especially below the currently lower regulated particle size of 23 nm. Sub-23-nm particles are also considered at least as dangerous as the larger ultrafine particles. For this reason, the European Union (EU) is planning to regulate particles down to 10 nm. In this study we compared prototype portable emission measurement systems (PEMS) and reference laboratory systems measuring from 10 nm. The tests included cycles and constant speeds, using vehicles fuelled with diesel, gasoline or liquefied petroleum gas (LPG). The results showed that the PEMS were within ±40% of the reference systems connected to the tailpipe and the dilution tunnel. Based on the positive findings and the detection efficiencies of the prototype instruments, a proposal for the technical specifications for the future regulation was drafted.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise , Gasolina/análise , Humanos , Tamanho da Partícula
19.
Artigo em Inglês | MEDLINE | ID: mdl-31801216

RESUMO

Portable emissions measurement systems (PEMS) for gaseous pollutants were firstly introduced in the United States regulation to check the in-use compliance of heavy-duty engines, avoiding the high costs of removing the engine and testing it on a dynamometer in the laboratory. In Europe, the in-service conformity of heavy-duty engines has been checked with PEMS for gaseous pollutants since 2014. To strengthen emissions regulations with a view to minimise the differences between on-road and laboratory emission levels in some cases, PEMS testing, including solid particle number (SPN), was introduced for the type-approval of light-duty vehicles in Europe in 2017 and for in-service conformity in 2019. SPN-PEMS for heavy-duty engines will be introduced in 2021. This paper gives an overview of the studies for SPN-PEMS from early 2013 with the first prototypes until the latest testing and improvements in 2019. The first prototype diffusion charger (DC) based systems had high differences from the reference laboratory systems at the first light-duty vehicles campaign. Tightening of the technical requirements and improvements from the instrument manufacturers resulted in differences of around 50%. Similar differences were found in an inter-laboratory comparison exercise with the best performing DC- and CPC- (condensation particle counter) based system. The heavy-duty evaluation phase at a single lab and later at various European laboratories revealed higher differences due to the small size of the urea generated particles and their high charge at elevated temperatures. This issue, along with robustness at low ambient temperatures, was addressed by the instrument manufacturers bringing the measurement uncertainty to the 50% levels. This measurement uncertainty needs to be considered at the on-road emission results measured with PEMS.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental/legislação & jurisprudência , Política Ambiental , Europa (Continente) , Estados Unidos , Emissões de Veículos/legislação & jurisprudência
20.
Sensors (Basel) ; 19(24)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847386

RESUMO

On-board portable emissions measurement systems (PEMS) are part of the type approval, in-service conformity, and market surveillance aspects of the European exhaust emissions regulation. Currently, only solid particles >23 nm are counted, but Europe will introduce a lower limit of 10 nm. In this study, we evaluated a 10-nm prototype portable system comparing it with laboratory systems measuring diesel, gasoline, and CNG (compressed natural gas) vehicles with emission levels ranging from approximately 2 × 1010 to 2 × 1012 #/km. The results showed that the on-board system differed from the laboratory 10-nm system on average for the tested driving cycles by less than approximately 10% at levels below 6 × 1011 #/km and by approximately 20% for high-emitting vehicles. The observed differences were similar to those observed in the evaluation of portable >23 nm particle counting systems, despite the relatively small size of the emitted particles (with geometric mean diameters <42 nm) and the additional challenges associated with sub-23 nm measurements. The latter included the presence of semivolatile sub-23 nm particles, the elevated concentration levels during cold start, and also the formation of sub-23 nm artefacts from the elastomers that are used to connect the tailpipe to the measurement devices. The main conclusion of the study is that >10 nm on-board systems can be ready for introduction in future regulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...