Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Bot ; 111(7): e16375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004802

RESUMO

PREMISE: Cross-fertilization in most flowering plants is facilitated by mobile animals that transport pollen while foraging for floral rewards. The contributions of different visitors can vary widely, depending on the amount of pollen transferred during a single visit and on the frequency and timing of the visits of each pollinator taxon. METHODS: We used three approaches to measure the pollination value of bees that visit Mimulus ringens: pollinator interviews, field population observations, and caging studies. RESULTS: The single-visit effectiveness of small bees (primarily Halictidae) was only half that of larger bees (primarily Bombus) for pollen delivery and removal. In five field populations, we found substantial temporal and spatial variation in visitation and pollination. In most sites big bees were active before 08:00 hours, and by 10:00-11:00 hours, stigmas were usually fully pollinated and closed, and little pollen remained in anthers. Small bees seldom visited before 10:00 hours. Excluding big bees from plants confirmed that pollination is reduced and delayed in this ecological context. CONCLUSIONS: Big bees are the primary pollinators of M. ringens, accounting for at least 75% of seed production. Not only are they more effective per visit, in most situations they also visit before small bees become active. Although small bees are not usually important pollinators of M. ringens, they have the potential to partially replace them as a "fail-safe" pollinator in contexts where big bees are not abundant. In a world where pollinator abundance is declining, such backup pollinators may be important for maintaining plant reproduction.


Assuntos
Mimulus , Polinização , Animais , Polinização/fisiologia , Abelhas/fisiologia , Mimulus/fisiologia , Flores/fisiologia , Pólen/fisiologia , Fatores de Tempo
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38767866

RESUMO

Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.


Assuntos
Bactérias , Fungos , Simbiose , Animais , Abelhas/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/fisiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/crescimento & desenvolvimento , Larva/microbiologia , Microbioma Gastrointestinal , Estações do Ano , Interações entre Hospedeiro e Microrganismos , Diapausa/fisiologia
3.
Viruses ; 16(4)2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675943

RESUMO

Members of the Geminviridae family are circular single-stranded DNA plant-infecting viruses, some of which impact global food production. Geminiviruses are vectored by sap-feeding insects such as leafhoppers, treehoppers, aphids, and whiteflies. Additionally, geminivirus sequences have also been identified in other insects such as dragonflies, mosquitoes, and stingless bees. As part of a viral metagenomics study on honeybees and solitary bees (Nomia sp.), two geminivirus genomes were identified. These represent a novel citlodavirus (from honeybees collected from Westmoreland, Jamaica) and a mastrevirus-like genome (from a solitary bee collected from Tempe, Arizona, USA). The novel honeybee-derived citlodavirus genome shares ~61 to 69% genome-wide nucleotide pairwise identity with other citlodavirus genome sequences and is most closely related to the passion fruit chlorotic mottle virus identified in Brazil. Whereas the novel solitary bee-derived mastrevirus-like genome shares ~55 to 61% genome-wide nucleotide identity with other mastreviruses and is most closely related to tobacco yellow dwarf virus identified in Australia, based on pairwise identity scores of the full genome, replication-associated protein, and capsid protein sequences. Previously, two geminiviruses in the Begomovirus genus were identified in samples of stingless bee (Trigona spp.) samples. Here, we identify viruses that represent two new species of geminiviruses from a honeybee and a solitary bee, which continues to demonstrate that plant pollinators can be utilized for the identification of plant-infecting DNA viruses in ecosystems.


Assuntos
Geminiviridae , Genoma Viral , Filogenia , Animais , Abelhas/virologia , Geminiviridae/genética , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Metagenômica , DNA Viral/genética
4.
Insects ; 15(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392503

RESUMO

The reproductive success of flowering plants relates to flower-visitor communities and plant-pollinator interactions. These traits are species- and region-specific and vary across regions, pollinator groups, and plant species. However, little literature exists on the spatiotemporal variation in visitor activity, especially in India. Here, we aimed to depict the spatial and temporal variation in visitor activity on the curry plants (Bergera koenigii). Data were collected at different daytime slots from three vegetation zones (confirmed by field surveys and normalized difference vegetation index values in remote sensing)-dense, medium-density, and low-density vegetation in West Bengal, India. The visitors' richness, diversity, and abundance were higher in the area with dense vegetation. Considering daytime patterns, higher values for these parameters were obtained during 10.00-14.00 h. For most visitors, the flower handling time was shorter, and the visitation rate was higher in dense vegetation areas (at 10.00-14.00 h) than in medium- and low-density vegetation areas. The proportions of different foraging categories varied over time. Vital pollinators were Apis cerana, Apis dorsata, Appias libythea, Halictus acrocephalus, Nomia iridescens, and Tetragonula iridipennis. However, the effectiveness of pollinators remained region-specific. Therefore, it can be concluded that floral visitors' richness, diversity, abundance, and plant-visitor interactions varied spatially with their surrounding vegetation types and also changed daytime-wise.

5.
Sci Total Environ ; 912: 169494, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142004

RESUMO

Floral resource loss and pesticide exposure are major threats to bees in intensively managed agroecosystems, but interactions among these drivers remain poorly understood. Altered composition and lowered diversity of pollen nutrition may reinforce negative pesticide impacts on bees. Here we investigated the development and survival of the solitary bee Osmia bicornis provisioned with three different pollen types, as well as a mixture of these types representing a higher pollen diversity. We exposed bees of each nutritional treatment to five pesticides at different concentrations in the laboratory. Two field-realistic concentrations of three nicotinic acetylcholine receptor (nAChR) modulating insecticides (thiacloprid, sulfoxaflor and flupyradifurone), as well as of two fungicides (azoxystrobin and tebuconazole) were examined. We further measured the expression of two detoxification genes (CYP9BU1, CYP9BU2) under exposure to thiacloprid across different nutrition treatments as a potential mechanistic pathway driving pesticide-nutrition interactions. We found that more diverse pollen nutrition reduced development time, enhanced pollen efficacy (cocoon weight divided by consumed pollen weight) and pollen consumption, and increased weight of O. bicornis after larval development (cocoon weight). Contrary to fungicides, high field-realistic concentrations of all three insecticides negatively affected O. bicornis by extending development times. Moreover, sulfoxaflor and flupyradifurone also reduced pollen efficacy and cocoon weight, and sulfoxaflor reduced pollen consumption and increased mortality. The expression of detoxification genes differed across pollen nutrition types, but was not enhanced after exposure to thiacloprid. Our findings highlight that lowered diversity of pollen nutrition and high field-realistic exposure to nAChR modulating insecticides negatively affected the development of O. bicornis, but we found no mitigation of negative pesticide impacts through increased pollen diversity. These results have important implications for risk assessment for bee pollinators, indicating that negative effects of nAChR modulating insecticides to developing solitary bees are currently underestimated.


Assuntos
4-Butirolactona/análogos & derivados , Fungicidas Industriais , Inseticidas , Neonicotinoides , Praguicidas , Piridinas , Compostos de Enxofre , Tiazinas , Abelhas , Animais , Praguicidas/toxicidade , Inseticidas/toxicidade , Fungicidas Industriais/toxicidade , Pólen
6.
Animals (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958099

RESUMO

Osmia bicornis syn. O. rufa is a univoltine bee species in which adults fly in spring and the offspring overwinter as cocooned imagoes. The flight period of solitary bees is short, so methods of control for development and emergence time are needed to synchronize the activity of managed pollinators with blooming. In our study, we tested the effectiveness of a juvenile hormone analog for the prevention of winter diapause. Bees developed in settled nests outdoors or in the laboratory (22 °C) until the end of the pre-pupa stage, then cocoons were removed from the nest cells and treated with a JH analog-methoprene-during the pupa and young imago stages. Then, bees were activated at 25 °C until the adults left the cocoons. Topical application of methoprene to the cocoon at the pupa or imago stage induced the emergence of some adult bees in the pre-diapause period, while no adults emerged when the bees were not treated with methoprene. Most adults emerged (about 50%) when treated with methoprene on 3-week-old cocooned imagoes. Bees treated in the pupal stage had a lower emergence rate (20-30%), but adult bees emerged earlier. The emergence time of adults for the laboratory group was, on average, from 70 to 91 days, and that for outdoor groups was from 57 to 72 days.

7.
BMC Biol ; 21(1): 229, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867198

RESUMO

BACKGROUND: Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS: Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS: Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.


Assuntos
Venenos de Abelha , Abelhas/genética , Animais , Perfilação da Expressão Gênica , Transcriptoma , Genômica , Duplicação Gênica
8.
Microb Ecol ; 86(4): 3013-3026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794084

RESUMO

We characterized the microbial communities of the crop, midgut, hindgut, and ovaries of the wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta through 16S rRNA gene and ITS2 amplicon sequencing and a large-scale isolation campaign. The bacterial communities of these bees were dominated by endosymbionts of the genera Wolbachia and Spiroplasma. Bacterial and yeast genera representing the remaining predominant taxa were linked to an environmental origin. While only a single sampling site was examined for Andrena vaga, Anthophora plumipes, and Colletes cunicularius, and two sampling sites for Osmia cornuta, the microbiota appeared to be host specific: bacterial, but not fungal, communities generally differed between the analyzed bee species, gut compartments and ovaries. This may suggest a selective process determined by floral and host traits. Many of the gut symbionts identified in the present study are characterized by metabolic versatility. Whether they exert similar functionalities within the bee gut and thus functional redundancy remains to be elucidated.


Assuntos
Microbiota , Micobioma , Spiroplasma , Abelhas , Animais , RNA Ribossômico 16S/genética , Bactérias
9.
Rev. peru. biol. (Impr.) ; 30(3)jul. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1530327

RESUMO

Se presenta el primer reporte de la abeja colectora de óleo Centris (Odontoxys) melanochlaena Smith, 1874 en Nicaragua. Esta especie se distribuye en varios países de Centroamérica y México, siendo este el primer reporte en el occidente de Nicaragua. Este registro contribuye al conocimiento del rango de distribución de esta especie, así como también incrementa la lista de especies de abejas nativas de Nicaragua.


The first report of the oil-collecting bee Centris (Odontoxys) melanochlaena Smith, 1874 in Nicaragua is presented. This species occurs in several Central American countries and Mexico, being this the first record from western Nicaragua. This record contributes to the knowledge of the distribution range of this species, as well as increases the list of native bees occurring in Nicaragua.

10.
Neotrop Entomol ; 52(5): 814-825, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369980

RESUMO

Megachile amparo (González, Revista Colombiana De Entomología 32(1):93-96, 2006) is the only high Andean leaf-cutter bee reported in Colombia and is possibly endemic to the Colombian Andes. Although it is frequently observed, even in urban areas, its biology and ecology remain unknown. The present study aimed to describe detailed aspects of its bionomy. Trap-nests were installed on the Campus of the Nueva Granada University (Cajicá, Colombia) from June/2018 to March/2020. The trap-nests were wooden blocks (25 × 15 × 14 cm) with 30 cavities of Ø = 1 cm and different lengths (50 mm, 75 mm, and 100 mm) lined with waxed paper straws. During the observations, an increasing number of trap-nests were installed, increasing from 250 to 720 cavities. The trap-nests were monitored three times a week, recording both the date the start and end building by female. Most of the nest were maintained in the field to estimate the sex ratio, cell survival, and total development time under natural conditions. Thirty-two nests were removed at different times of the observation period to establish number of cells per nest, and cells built per female per day. We incubated 20 cells from different nests at 18 °C, 22 °C, 26 °C, and 32 °C to estimate the base temperature, thermal constant k (developmental time in degree days), and cell survival. Young cells of different positions were dissected and weighed to characterize food provision and brood cells. Computerized tomography-CT scans were performed in 30 brood cells to determine if diapause occurred during prepupal stage. Females nested 7- and 10-cm-long cavities and the number of cells per nest varied with cavity length. The brood cells had a length of 1.23 ± 0.12 cm and a diameter of 0.92 ± 0.05 cm. The female spends 1.17 ± 0.29 days to build a brood cell. Food provision varied according to the position of the brood cell in the nest. The adults of M. amparo present a marked seasonality being more active during dry months. Base temperature and thermal constant k were different for males and females. The sex ratio is female biased (1.9:1), and cell survival in the field was 89% with no cleptoparasites or predators recorded.


Assuntos
Diapausa , Comportamento de Nidação , Humanos , Masculino , Abelhas , Feminino , Animais , Ecologia , Alimentos , Razão de Masculinidade
11.
Environ Toxicol Chem ; 42(7): 1564-1574, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083249

RESUMO

Declines in bee populations, in part due to pesticides, especially insecticides, are of global concern. Although most studies have investigated insecticide residues in honeybees and bumblebees, few have focused on non-Apis solitary bees, which are considered essential pollinators in the field. Most non-Apis bees are solitary and build their nests in the ground or in tree holes, therefore insecticide exposure pathways would differ from those of honeybees and bumblebees. We analyzed the residues of 20 insecticides in Osmia cornifrons bees and their pollen-provisions and nesting materials, along with adult honeybees, soil, and wildflowers collected in four apple orchards in two regions in Japan. Few insecticides were common among adult bees, pollen-provisions, and wildflowers. Insecticides applied in orchards were detected at high frequency: chlorantraniliprole, flubendiamide, and diazinon were detected in almost all samples. Insecticides without a known history of application were detected from various samples at frequencies ranging from 0% to 100%. Even in orchards without a known history of insecticide application, clothianidin was detected in many sample types and at high concentration. A purple deadnettle sample had the highest concentration at 17.5 mg/kg. These results highlight the complexity of pathways of insecticide exposure to O. cornifrons in the environment because insecticides may remain in the environment for long periods and wild bees may forage farther than previously known distances. Furthermore, each sample type contained different insecticides, so wild bees may have been exposed to different insecticides at different life stages. Future research should prioritize wide-scale measurements of insecticide residues in field conditions and toxicity testing with multiple exposures at different life stages of target species. Environ Toxicol Chem 2023;42:1564-1574. © 2023 SETAC.


Assuntos
Inseticidas , Malus , Resíduos de Praguicidas , Praguicidas , Abelhas , Animais , Inseticidas/toxicidade , Inseticidas/análise , Neonicotinoides , Diazinon
12.
Bull Entomol Res ; 113(3): 299-305, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36883790

RESUMO

The success of agriculture relies on healthy bees to pollinate crops. Commercially managed pollinators are often kept under temperature-controlled conditions to better control development and optimize field performance. One such pollinator, the alfalfa leafcutting bee, Megachile rotundata, is the most widely used solitary bee in agriculture. Problematically, very little is known about the thermal physiology of M. rotundata or the consequences of artificial thermal regimes used in commercial management practices. Therefore, we took a broad look at the thermal performance of M. rotundata across development and the effects of commonly used commercial thermal regimes on adult bee physiology. After the termination of diapause, we hypothesized thermal sensitivity would vary across pupal metamorphosis. Our data show that bees in the post-diapause quiescent stage were more tolerant of low temperatures compared to bees in active development. We found that commercial practices applied during development decrease the likelihood of a bee recovering from another bout of thermal stress in adulthood, thereby decreasing their resilience. Lastly, commercial regimes applied during development affected the number of days to adult emergence, but the time of day that adults emerged was unaffected. Our data demonstrate the complex interactions between bee development and thermal regimes used in management. This knowledge can help improve the commercial management of these bees by optimizing the thermal regimes used and the timing of their application to alleviate negative downstream effects on adult performance.


Assuntos
Temperatura Baixa , Medicago sativa , Abelhas , Animais , Temperatura , Pupa , Metamorfose Biológica
13.
Biol Lett ; 19(2): 20220411, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789529

RESUMO

Change in land configuration is an important driver of pollinator decline. Understanding patch selection by bees in fragmented landscapes has therefore become imperative to guide the design of habitats that support pollinators and ensure their conservation. This is especially true for solitary bees that make up most bee species in the world. To elucidate the decision-making process of a solitary bee when selecting patches, we tested four models of patch attractiveness that differed in the role of patch size and isolation distance in the selection process. In these models, bees used both patch size and patch distance, only patch distance, or chose randomly among patches. When patch size was included, bees could estimate patch resources fully or partially. An experiment with a centre patch, surrounded by four peripheral patches of different sizes and distances from the centre, provided observed transition data to test against predictions derived from each of the models. The alfalfa leafcutting bee, Megachile rotundata, does not move randomly among patches. This bee uses both patch size and isolation distance when selecting a patch but can only evaluate patch resources partially. This knowledge can guide the design of habitats in fragmented landscapes to facilitate solitary bee conservation.


Assuntos
Ecossistema , Polinização , Abelhas , Animais
14.
Ecol Appl ; 33(1): e2743, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107148

RESUMO

There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers.


Assuntos
Malus , Polinização , Abelhas , Animais , Ecossistema , Insetos , Frutas , Produtos Agrícolas , Flores
15.
Insect Mol Biol ; 31(6): 686-700, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35716016

RESUMO

Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite the importance of solitary bees, which are ecologically relevant, our understanding of the genomic basis and molecular mechanisms underlying their immune potential, and how intrinsic and extrinsic factors may influence it is limited. To improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterized putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionarily conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, with greater enrichment of immune-related processes among genes with higher constitutive expression in males than females. Our results also suggest an up-regulation of immune-related genes in response to exposure to two common neonicotinoids, thiacloprid and imidacloprid. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.


Assuntos
Ecossistema , Inseticidas , Feminino , Masculino , Abelhas , Animais , Neonicotinoides , Genômica
16.
Front Physiol ; 13: 844820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350686

RESUMO

Within the United States and Canada, the primary pollinator of alfalfa is the alfalfa leafcutting bee (ALCB), Megachile rotundata. Our previous findings showed that overwintering conditions impacted gene expression profile in ALCB prepupae that entered diapause early in the season. However, ALCB are a bivoltine species, which begs the question of whether bees entering diapause later in the season also show this trend. To better understand the effects of the timing of diapause initiation, we analyzed mRNA copy number of genes known to be involved in diapause regulation in early and late season diapausing ALCB that were overwintered in field conditions or using current agricultural management conditions. We hypothesized that overwintering conditions for late diapausing bees also affects gene expression profiles. Our results showed that expression profiles were altered by both overwintering condition and timing of diapause initiation, with bees that entered diapause earlier in the season showing different expression patterns than those that entered diapause later in the season. This trend was seen in expression of members of the cyclin family and several targets of the insulin signaling pathway, including forkhead box protein O (FOXO), which is known to be important for diapause regulation and stress responses. But, of the genes screened, the proto-oncogene, Myc, was the most impacted by the timing of diapause initiation. Under field conditions, there were significant differences in Myc expression between the early and late season samples in all months except for November and February. This same general trend in Myc expression was also seen in the laboratory-maintained bees with significant difference in expression in all months except for November, February, and May. These results support previous conclusions from our research showing that the molecular regulation of diapause development in ALCB is not a simple singular cascade of gene expression but a highly plastic response that varies between bees depending upon their environmental history.

17.
Insects ; 13(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35323533

RESUMO

(1) Background: Many insects have evolved different strategies to adapt to subzero temperatures and parasites, but the supercooling response of pollinator populations under the brood parasitism pressure has not been sufficiently investigated. (2) Methods: This study assessed the supercooling traits (supercooling points, fresh weight and fat content) of the solitary bee Osmia excavata Alfken and its brood parasite, Sapyga coma Yasumatsu & Sugihara. We measured 4035 samples (3025 O. excavata and 1010 S. coma, one individual as one sample) and discovered the supercooling traits relations between solitary bee and brood parasite. (3) Results: Significant differences in the supercooling points were found between O. excavata (females: −24.18 (−26.02~−20.07) vs. males: −23.21 (−25.15~−18.65) °C) and S. coma (females: −22.19 (−25.46~−18.38) vs. males: −20.65 (−23.85~−16.15) °C, p < 0.0001) in the same sex, and also between sexes of same species. The two species' supercooling traits (supercooling points, fresh weight, and fat content) were significantly positively correlated. The supercooling points of the solitary bee varies regularly under brood parasitism pressure. (4) Conclusions: Our study indicates the supercooling traits relationships between a solitary bee and its brood parasite and suggests that the supercooling points of the solitary bee increase under the biological stress of its brood parasite in a certain level.

18.
Sci Total Environ ; 809: 151142, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34688758

RESUMO

Agricultural landscapes have changed substantially in recent decades, shifting from the dominance of small fields (S) with diverse cropping systems toward large-scale monoculture (L), where landscape heterogeneity disappears. In this study, artificial nests of the red mason bee, Osmia bicornis, were placed in S and L landscape types on the perimeter of oilseed rape fields representing different oilseed rape coverages (ORC, % land cover). The local landscape structure around each nest was characterised within a 100, 200, 500, and 1000 m radius using ORC and 14 landscape characteristics, which were then reduced by non-metric multidimensional scaling (nMDS) to two axes: nMDS1 characterised the dataset primarily according to land fragmentation and the main crop, whereas nMDS2 captured the prevalence of more natural areas in the landscape. Pollen diversity and insecticide risk levels in the pollen provisions collected by the bees were analysed, and their dependence on the landscape structure was tested. Thereafter, the effects of pollen diversity, insecticide risk, and landscape structure on the life-history traits of bees and their sensitivity to topically applied Dursban 480 EC were determined. Pollen taxa richness in a single nest ranged from 3 to 12, and 34 pesticides were detected in the pollen at concentrations of up to 320 ng/g for desmedipham. The O. bicornis foraging range was relatively large, indicating that the landscape structure within a radius of ~1000 m around the nest is important for this species. Pollen diversity in the studied areas was of minor importance for bee performance, but the ORC or landscape structure significantly affected the life-history traits of the bees. Contamination of pollen with insecticides affected the bees by decreasing the mass of newly emerged adults but their sensitivity to Dursban 480 EC was not related to environmental variables.


Assuntos
Brassica napus , Inseticidas , Resíduos de Praguicidas , Agricultura , Animais , Abelhas , Inseticidas/toxicidade , Pólen , Polinização
19.
Environ Entomol ; 51(1): 240-251, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34718488

RESUMO

Wild and managed bee populations are in decline, and one of many environmental causes is the impact of pesticides on developing bees. For solitary bees, delayed larval development could lead to asynchronous adult emergence, unhealthy and inefficient adult pollinators, and decreased brood production and survival. We examined a methodology for testing Osmia lignaria Say (Hymenoptera: Megachilidae) larval responses to pesticide exposure using a laboratory bioassay. We created two provision types: a homogenized blend of O. lignaria provisions from an apple orchard and homogenized almond pollen pellets collected by honey bees plus sugar water. Pesticides were administered to the provisions to compare toxic effects. We recorded larval developmental durations for second-fifth instar and for fifth instar to cocoon initiation for larvae fed provisions treated with water (control) or doses of three pesticides and a representative spray-tank mixture (acetamiprid, boscalid/pyraclostrobin, dimethoate, and acetamiprid plus boscalid/pyraclostrobin). All larvae survived to cocoon initiation when only water was added to provisions. Impacts of pesticide treatments significantly differed between the apple and almond homogenates. The greatest treatment effects occurred when the homogenized almond provision was mixed with acetamiprid alone and when combined with boscalid/pyraclostrobin. Optimizing bioassays through the use of appropriate larval food for exposing solitary bee larvae to agrochemicals is crucial for assessing risks for pollinators.


Assuntos
Himenópteros , Praguicidas , Prunus dulcis , Animais , Abelhas , Himenópteros/fisiologia , Larva , Praguicidas/toxicidade , Pólen
20.
Biodivers Data J ; 9: e75997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916869

RESUMO

The paper presents the first record of Lithurguscornutus (Fabricius, 1787) in Poland. Until recently, bees of the genus Lithurgus have not been recorded in Poland. Five females and one male of L.cornutus were caught in Lublin Region, SE Poland. The localities are beyond the range of this species, being the northernmost known records from Central Europe. The following information is provided: short diagnosis, ecology, distribution, recent records and threat status of L.cornutus in Central Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...