Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharm Sci ; 113(4): 1113-1120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160712

RESUMO

Oral drug absorption involves drug permeation across the apical and basolateral membranes of enterocytes. Although transporters mediating the influx of anionic drugs in the apical membranes have been identified, transporters responsible for efflux in the basolateral membranes remain unclear. Monocarboxylate transporter 6 (MCT6/SLC16A5) has been reported to localize to the apical and basolateral membranes of human enterocytes and to transport organic anions such as bumetanide and nateglinide in the Xenopus oocyte expression system; however, its transport functions have not been elucidated in detail. In this study, we characterized the function of MCT6 expressed in HEK293T cells and explored fluorescent probes to more easily evaluate MCT6 function. The results illustrated that MCT6 interacts with CD147 to localize at the plasma membrane. When the uptake of various fluorescein derivatives was examined in NaCl-free uptake buffer (pH 5.5), the uptake of 5-carboxyfluorescein (5-CF) was significantly greater in MCT6 and CD147-expressing cells. MCT6-mediated 5-CF uptake was saturable with a Km of 1.07 mM and inhibited by several substrates/inhibitors of organic anion transporters and extracellular Cl ion with an IC50 of 53.7 mM. These results suggest that MCT6 is a chloride-sensitive organic anion transporter that can be characterized using 5-CF as a fluorescent probe.


Assuntos
Transportadores de Ânions Orgânicos , Animais , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Cloretos/metabolismo , Células HEK293 , Transporte Biológico , Fluoresceínas , Mamíferos/metabolismo
2.
Curr Drug Res Rev ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157206

RESUMO

The study of transporter proteins is key to understanding the mechanism behind multi-drug resistance and drug-drug interactions causing severe side effects. While ATP-binding transporters are well-studied, solute carriers illustrate an understudied family with a high number of orphan proteins. To study these transporters, in silico methods can be used to shed light on the basic molecular machinery by studying protein-ligand interactions. Nowadays, computational methods are an integral part of the drug discovery and development process. In this short review, computational approaches, such as machine learning, are discussed, which try to tackle interactions between transport proteins and certain compounds to locate target proteins. Furthermore, a few cases of selected members of the ATP binding transporter and solute carrier family are covered, which are of high interest in clinical drug interaction studies, especially for regulatory agencies. The strengths and limitations of ligand-based and structure-based methods are discussed to highlight their applicability for different studies. Furthermore, the combination of multiple approaches can improve the information obtained to find crucial amino acids that explain important interactions of protein-ligand complexes in more detail. This allows the design of drug candidates with increased activity towards a target protein, which further helps to support future synthetic efforts.

3.
J Pharm Sci ; 112(4): 1137-1144, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36627052

RESUMO

Pregabalin is an anti-neuropathic pain drug inhibiting the α2δ subunit of the voltage-dependent calcium channel in the spinal cord. The aim of this study is to characterize the transport mechanism of pregabalin at the blood-spinal cord barrier (BSCB) by means of in vivo experiments in rats and in vitro studies using primary-cultured rat spinal cord endothelial cells. We isolated endothelial cells by culturing rat spinal cord tissue in the presence of puromycin, and confirmed the expression of BSCB markers such as Cd31, Mdr1a, and Claudin-5. The uptake of pregabalin by primary-cultured rat spinal cord endothelial cells was sodium-independent and was significantly inhibited by L-leucine, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, and JPH203. These results suggest the involvement of L-type amino acid transporter (LAT) 1. LAT1 mRNA and protein was expressed in primary-cultured rat spinal cord endothelial cells, which is consistent with LAT1 expression at the BSCB. In the in vivo study, the transfer of pregabalin to rat spinal cord and brain was significantly decreased by the pre-administration of branched chain amino acids (BCAAs), which are endogenous substrates of LAT1. Our results indicate that pregabalin transport across the BSCB is mediated at least in part by LAT1 and is inhibited by plasma BCAAs.


Assuntos
Aminoácidos de Cadeia Ramificada , Transportador 1 de Aminoácidos Neutros Grandes , Ratos , Animais , Pregabalina , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Células Endoteliais/metabolismo , Medula Espinal/metabolismo
4.
J Pharm Sci ; 110(1): 365-375, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159914

RESUMO

In predicting the hepatic elimination of compounds, the extended clearance concept has proven useful. Yet, its experimental proof was scarce partly due to the lack of models with the controlled expression of transporters. Here, the uptake and efflux transporters [NTCP (SLC10A1) and BSEP (ABCB11), respectively] were doubly and transiently expressed in MDCKII cells by electroporation-based transfection (with the BSEP plasmid amount varied and with the NTCP plasmid fixed), achieving the activity levels of NTCP and BSEP comparable to those of sandwich cultured human hepatocytes. The biliary excretion clearance for taurocholate increased proportionally to the BSEP expression level. Under the same conditions, the basal-to-apical transcellular clearance of taurocholate displayed an initial increase, and a subsequent plateau, indicating that the basolateral uptake of taurocholate became rate-limiting. The doubly transfected MDCKII cells were also used to kinetically analyze the inhibitory effects of rifampicin on BSEP and NTCP. The obtained results showed a bell-shaped profile for cell-to-medium concentration ratios over a range of rifampicin concentrations, which were quantitatively captured by kinetic modeling based on the extended clearance concept. The present study highlights the utility of the transient, tunable transporter expression system in delineating the rate-determining process and providing mechanistic insights into intracellular substrate accumulation.


Assuntos
Simportadores , Ácido Taurocólico , Transportadores de Cassetes de Ligação de ATP , Ácidos e Sais Biliares , Hepatócitos , Humanos , Fígado , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Rifampina/farmacologia , Simportadores/genética
5.
Organ Transplantation ; (6): 496-2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-881537

RESUMO

Tacrolimus (Tac) is a commonly used immunosuppressant after organ transplantation, which has high immunosuppressive efficacy. However, the pharmacokinetics of Tac significantly differ among individuals, and gene polymorphism is the main influencing factor. In recent years, the gene polymorphism of drug transporter has become a novel research hotspot. Nevertheless, the effect of the gene polymorphism of transporter on Tac pharmacokinetics remains controversial. Consequently, the correlation between the gene polymorphism of transporter and Tac blood concentration plays a significant role in guiding Tac-based individualized immunosuppressive therapy. In this article, the research progresses on the gene polymorphism of adenosine triphosphate-binding cassette (ABC) transporter and solute carrier (SLC) transporter in organ transplantation was reviewed. The correlation between the gene polymorphism of transporter and Tac blood concentration was summarized, aiming to provide reference for Tac-based individualized therapy.

6.
AAPS PharmSciTech ; 21(5): 196, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32666325

RESUMO

Vigabatrin (VGB) is a first-line drug used for treatment of infantile spasms. On therapeutic dose, VGB accumulates in the retina causing permanent peripheral visual field constriction. The mechanism involved in retinal accumulation of VGB is ambiguous. In the present study, mechanism of VGB transport into retina was evaluated. VGB uptake into retina was studied in vitro using human adult retinal pigment epithelial (ARPE-19) cells as a model for outer blood retinal barrier. The VGB cell uptake studies demonstrated saturation kinetics with Km value of 13.1 mM and uptake was significantly increased at pH 7.4 and hyperosmolar conditions indicating involvement of carrier-mediated Na+-Cl--dependent transporter. In the presence of taurine transporter (TauT) substrates (taurine and GABA) and inhibitor guanidinoethyl sulfonate (GES), the uptake of VGB decreased significantly demonstrating contribution of TauT. The VGB retinal levels in rats were decreased by 1.5- and 1.3-folds on chronic administration of GES and taurine, respectively. In conclusion, this study demonstrated the TauT involvement in VGB uptake and accumulation in retina.


Assuntos
Anticonvulsivantes/farmacocinética , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Retina/metabolismo , Vigabatrina/farmacocinética , Animais , Transporte Biológico , Linhagem Celular , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
7.
J Pharm Sci ; 109(8): 2622-2628, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32339528

RESUMO

Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 µM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 µM, which was comparable to that of 2.30 µM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo , Transportador Equilibrativo 2 de Nucleosídeo , Adenina , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Células Hep G2 , Humanos
8.
Int J Neurosci ; 130(5): 476-489, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31906755

RESUMO

Purpose: The major facilitator superfamily (MFS) is known as the largest and most diverse superfamily containing human transporters, and these transporters are essential as they sustain the homeostasis within cellular compartments by moving substances over lipid membranes.Methods: We have identified a novel MFS protein, named Major facilitator superfamily domain containing 6 (MFSD6), and confirmed that it is phylogenetically related to the human Solute Carrier (SLC) transporter family. A homology model of MFSD6 revealed 12 predicted transmembrane segments (TMS) with the classical MFS fold between TMS 6 and 7.Results: Immunohistological analyses showed specific MFSD6 staining in neurons of wildtype mouse brain tissue, but no expression in astrocytes. Furthermore, we explored expression and probable function(s) of MFSD6 in relation to its phylogenetically related proteins, major facilitator superfamily domain containing 8 (MFSD8) and 10 (MFSD10), which is of interest as both these proteins are involved in diseases.Conclusions: We showed that expression levels of Mfsd6 and Mfsd10 were decreased with elevated or depleted energy consumption, while that of Mfsd8 remained unaffected.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Proteínas Carreadoras de Solutos/metabolismo , Animais , Humanos , Camundongos , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...